
ar
X

iv
:c

m
p-

lg
/9

50
50

33
v2

 1
7

M
ay

 1
99

5

User-Defined Nonmonotonicity in Unification-Based Formalisms

Lena Strömbäck

Department of Computer and Information Science

Linköping University

S-58185 Linköping, Sweden

lestr@ida.liu.se

Abstract

A common feature of recent unification-
based grammar formalisms is that they
give the user the ability to define his own
structures. However, this possibility is
mostly limited and does not include non-
monotonic operations. In this paper we
show how nonmonotonic operations can
also be user-defined by applying default
logic (Reiter, 1980) and generalizing previ-
ous results on nonmonotonic sorts (Young
and Rounds, 1993).

1 Background

Most of the more recent unification-based for-
malisms, such as TFS (Emele and Zajac, 1990), UD
(Johnson and Rosner, 1989), CUF (Dörre and Eisele,
1991), and FLUF (Strömbäck, 1994), provide some
possibility for the user to define constructions of his
own. This possibility can be more or less powerful
in different formalisms. There are, however, sev-
eral constructions proposed as desirable extensions
to unification grammars that cannot be defined in
a general and well-defined way in these formalisms.
One such class of constructions is those that have
some degree of nonmonotonic behaviour. Examples
of such constructions are any-values, default-values,
and some constructions (e.g. constraining equations,
completeness and coherence) used in LFG (Kaplan
and Bresnan, 1983).
This paper describes a method that permits the

user to define such nonmonotonic constructions.
This is done through generalizing the work on non-
monotonic sorts (Young and Rounds, 1993). This
generalization results in a default logic similar to
(Reiter, 1980), but where subsumption and unifica-
tion are used instead of logical truth and consistency.
There are three main advantages to Young and

Rounds’ work compared with other approaches to

default unification (Bouma, 1990; Bouma, 1992;
Russel et al., 1992) which justify choosing it as a
starting point for this work. The first is the sep-
aration of definite and default information, where
Young and Rounds are more distinct than the other.
The second is that the nonmonotonic unification op-
eration used is order independent. This is achieved
by separating the unification operation from com-
puting the nonmonotonic extension, which Young
and Rounds call explanation. This suggests that all
the user needs to define when generalizing the ap-
proach is how a sort is explained. Finally, there is a
close relationship to Reiter’s (1980) default logic.

This paper starts by providing the minimal prop-
erties required of a unification-based formalism when
extending with nonmonotonic definitions. I then de-
scribe the approach of user-defined nonmonotonicity
and illustrate how some commonly used nonmono-
tonic constructions can be defined within it. Finally
I conclude with a discussion of the relation to Re-
iter’s default logic and computational properties of
the approach.

2 Preliminaries

There are two main properties that will be assumed
of a unification-based formalism in order to extend
it with the possibility of defining nonmonotonic con-
structions. The first, and most important, is that
we require a subsumption order on the set S of ob-
jects denoted by the formalism. Secondly it should
be possible to define inheritance hierarchies on the
linguistic knowledge described by the formalism.

One very plausible subsumption order that can be
used is the ordinary subsumption lattice of feature
structures. It is, however, possible to use some other
kind of subsumption order if that is more suitable for
the domain to be modelled by the formalism. Exam-
ples of other subsumption orders that might be use-
ful are typed feature structures, feature structures
extended with disjunction, or simply an order based

http://arxiv.org/abs/cmp-lg/9505033v2

on sets and set inclusion.
In this paper the notation a ⊑ b is used when-

ever a subsumes b (i.e. whenever a “is more specific
than” or “contains more information than” b). Con-
sequently, a ❁ b is used whenever a ⊑ b but a 6= b.
The subsumption order is assumed to be a semi-

lattice and permits computing a unifier, denoted
a ⊓ b, corresponding to the greatest lower bound,
for every pair of elements within it. The element
corresponding to the bottom of the order relation is
denoted fail and represents inconsistent information
or unification failure.
The second constraint placed on the formalism,

the possibility of defining an inheritance hierarchy,
is not essential for the definition of nonmonotonic
operations. It is, however, very useful when defin-
ing nonmonotonic constructions. The following no-
tation will be used for describing an inheritance hi-
erarchy.

class the name of the class;

isa its parent in the hierarchy;

requires a structure.

Thus, each member in the inheritance hierarchy is
called a class, which is defined by giving it a name
and a parent in the hierarchy. It is also possible to
define some constraints, called requirements, which
must hold for a class. These requirements can be
both structures in the subsumption order and non-
monotonic rules. The constraints on classes are in-
herited through the hierarchy. Every object in a
class is assumed to contain at least the information
given by the constraints specified for it and all its an-
cestors. For simplicity multiple inheritance between
classes will not be allowed. This means that two
classes where none of them is a subclass of the other,
will always be considered inconsistent and thus yield
a failure when unified.

3 User-Defined Nonmonotonicity

I will now describe how the work by Young and
Rounds can be generalized to allow the user to de-
fine nonmonotonic constructions. The main idea in
their approach is that each node in a feature struc-
ture consists of a nonmonotonic sort. Such sorts can
contain two different kinds of information, the ordi-
nary monotonic information and a set of defaults. If
we assume that β is defined as a default in Young
and Rounds’ work then it is interpreted according to
the rule: if it is consistent to believe β then believe
β. In Reiter’s default logic this is expressed with the
following normal default rule.

: β

β

In this paper I want to allow the user to use other
forms of nonmonotonic inferences and not only the
normal default rule given above. Therefore, I will
consider the general form of default rules. An in-
tuitive reading of a general default rule is, if α is
believed and it is consistent to believe β then be-
lieve γ. In default logic this is usually expressed as

α : β

γ

The next question is how such defined nonmono-
tonic rules are going to be interpreted in a unifica-
tion framework. In (Reiter, 1980), a rule like the
one above could be applied whenever α is true and
β is consistent with the information we already have.
If we assume that V represents the information al-
ready given this means that the default rule can be
applied whenever V ⊑ α and V ⊓ β does not yield
unification failure. When the rule is applied the new
information obtained would be V ⊓ γ.
In the approach described in this paper, the user is

allowed to define the actual nonmonotonic rule that
should be used for a particular operation by using
the following syntax.

nonmon

name(parameter1, . . . parametern):when

α :β => γ

In the syntax given above name assigns a name
to the defined rule, and thus allows the user to
use nonmonotonic information when defining lin-
guistic knowledge. The parameters in the rule defi-
nition are variables, which can be used within the
actual default rule at the end of the description.
The user is assumed to assign the nonmonotonic
information contained in this rule to his linguis-
tic knowledge by using an expression of the form
name(parameter1, . . . parametern).
The when slot in the rule allows the user to decide

when the rule is going to be applied, or in Young and
Rounds’ terminology, explained. I will make use of
two values for the when-slot, immediate and poste-

rior. Immediate means that the nonmonotonic rule
is going to be applied each time a full unification task
has been solved or whenever all information about
an object in the defined inheritance hierarchy has
been retrieved. Posterior explanation means that
the explanation of the rule is postponed until reach-
ing the result of some external process, for example,
a parser or generator. There is however no hinder in
excluding the use of other values here. One could,
for example, imagine cases where one would want
different nonmonotonic rules to be explained after

a completed parse, a generation, or after resolving
discourse referents.
Note that although the when slot in the defini-

tion of a nonmonotonic rule allows the user to define
when his rule is going to be applied we will still have
an order independent nonmonotonic unification op-
erator. This is the case because we follow Young
and Rounds’ approach and separate the unification
operation from the explanation of a nonmonotonic
rule. Therefore, what affects the final result of a
computation is when one chooses to explain default
rules and not the order of the unification operations
occurring between such explanations.

4 Formal Definitions

In this section I provide give the formal definitions
for nonmonotonic sorts and how nonmonotonic sorts
are unified and explained. The definitions are gen-
eralizations of the definitions in Young and Rounds
(1993). The notation a ∼ b is used to denote the
fact that a ⊓ b does not yield unification failure.
A nonmonotonic sort is a structure containing

both information from the basic subsumption order
and information about default rules to be explained
at a later point in the computation.

Definition 1 A nonmonotonic sort is a pair 〈s,∆〉
where s ∈ S and ∆ is a set of nonmonotonic
rules of the form 〈w,α : β ⇒ γ〉 where w is an
atom and α, β and γ ∈ S. It is assumed that for
each nonmonotonic rule γ ⊑ β, α ∼ s, β ∼ s,
and γ ⊓ s ❁ s.

As seen by the definition a nonmonotonic sort
is considered to be a pair of monotonic informa-
tion from the subsumption order and nonmonotonic
information represented as a set of nonmonotonic
rules. The user can assign nonmonotonic informa-
tion to a nonmonotonic sort by calling a nonmono-
tonic definition as defined in the previous section.
The actual nonmonotonic rule occurring within the
sort is a pair consisting of the when slot and the last
part of the nonmonotonic definition, with the pa-
rameter variables instantiated according to the call
made by the user.
The second part of this definition contains some

well-foundedness conditions for a nonmonotonic
sort. The first condition (γ ⊑ β) is a restriction
similar to the restriction to normal default rules in
Reiter’s (1980) default logic. This restriction ensures
that the application of one default rule will never
cause previously applied default rules to be inappli-
cable. This makes the procedure for application of
defaults more efficient and will be further discussed
in section 6.

The next two conditions in the definition, α ∼ s

and β ∼ s, guarantee that the default rule is or can
be applicable to the nonmonotonic sort. The reason
for only checking that α ∼ s instead of s ⊑ α is that
future unifications can restrict the value of s into
something more specific than α and thus may make
the default rule applicable.
The last condition on a nonmonotonic sort, γ⊓s ❁

s, may seem superfluous. The reason for including
it is to ensure that applying the default actually re-
stricts the value of the sort. Otherwise the default
rule would have no effect and can be removed. Note
in particular that the above conditions on a non-
monotonic sort implies that γ may be fail.
Given the unification operation of objects within

the subsumption order and the definition of non-
monotonic sorts it is possible to define an operation
for nonmonotonic unification.

Definition 2 The nonmonotonic unification (⊓N)
of two nonmonotonic sorts 〈s1,∆1〉 and 〈s2,∆2〉
is the sort 〈s,∆〉 where

• s = s1 ⊓ s2 and

• ∆ = {d | d = 〈w,α : β ⇒ γ〉, d ∈ ∆1 ∪
∆2, α ∼ s, β ∼ s, and γ ⊓ s ❁ s}

The nonmonotonic unification is computed by
computing the unification of the monotonic parts of
the two sorts and then taking the union of their non-
monotonic parts. The extra conditions used when
forming the union of the nonmonotonic parts of the
sorts are the same as in the definition of a nonmono-
tonic sort and their purpose is to remove nonmono-
tonic rules that are no longer applicable, or would
have no effect when applied to the sort resulting from
the unification.
It is important to note that this generalization of

the original definition of nonmonotonic unification
from Young and Rounds (1993) preserves the prop-
erty of order independence for default unification.
When using nonmonotonic sorts containing non-

monotonic rules, we also need to know how to
merge the monotonic and nonmonotonic informa-
tion within the sort. I will use the terminology w-

application for applying one nonmonotonic rule to
the sort and w-explanation when applying all possi-
ble rules.

Definition 3 The nonmonotonic rule
〈w,α : β ⇒ γ〉 is w-applicable to s ∈ S if:

• s ⊑ α

• s ∼ β or s = fail

• s ⊓ γ ❁ s or s = fail

The result of the w-application is γ ⊓ s

Note that the w in w-application should be consid-
ered as a variable. This means that only nonmono-
tonic rules whose first component is w are considered
and that it is possible to choose which nonmonotonic
rules should be applied in a particular point at some
computation.
In addition note that the restriction that γ ⊑ β

in all nonmonotonic rules and the special cases for
s = fail ensures that the application of one non-
monotonic rule never destroys the applicability of a
previously applied rule. This reduces the amount
of work required when computing a w-explanation.
Based on these observations, a sufficient condition
for w-explanation is defined as follows.

Definition 4 t is a w-explanation of a nonmono-
tonic sort 〈s,∆〉 if it can be computed in the
following way:

1. If s = fail or no d ∈ ∆ is w-applicable then
t = s else

2. Choose a d = 〈w,α : β ⇒ γ〉 ∈ ∆ such that
d is w-applicable to s.

3. Let s = s ⊓ γ and go to 1.

As shown by the definition, a w-explanation is
computed by choosing one w-applicable default rule
at a time and then applying it. Since the defini-
tion of w-applicability and the condition that γ ⊑ β

in all nonmonotonic rules ensures that whenever a
nonmonotonic rule is applied it can never be inappli-
cable, there is no need to check if the preconditions
of earlier applied nonmonotonic rules still hold.
Note also that the choice of which nonmonotonic

rule to apply in each step of a w-explanation is non-
deterministic. Consequently, it is possible to have
conflicting defaults and multiple w-explanations for
a nonmonotonic sort.
Note also that the result of a w-explanation is al-

lowed to be fail. Another option would be to inter-
pret fail as if the application of the nonmonotonic
rule should not be allowed. However, as seen in the
next section, for many uses of nonmonotonic exten-
sions within unification-based formalisms, the aim is
to derive failure if the resulting structure does not
fulfill some particular conditions. This makes it im-
portant to allow fail to be the result of applying a
nonmonotonic rule.

5 Examples

In this section I will show how some of the most
common nonmonotonic extensions to unification-
based grammar can be expressed by defining rules

as above. I will start with defining default values.
This is done by defining a nonmonotonic rule default
for the class value, which is assumed to be the most
general class in a defined hierarchy. The rule defined
here is treated as the one in (Young and Rounds,
1993).

class value;

nonmon default(X):immediate :X =>

X.

This default rule can be used when defining verbs.
The rule is used for stating that verbs are active by
default. I also define the two Swedish verbs skickade
(sent) and skickades (was sent) to illustrate how this
rule works.

class verb;

isa value;

requires [form: default(active)].

class skickade;

isa verb;

requires [lex: skicka].

class skickades;

isa verb;

requires [lex: skicka, form:

passive].

While retrieving the information for these two
verbs we will obtain the following two feature struc-
tures containing nonmonotonic sorts:

For skickade:
[lex: skicka, form:

〈[],{〈immediate, :active ⇒
active 〉}〉]

For skickades:
[lex: skicka, form:

〈passive,{〈immediate, :active ⇒
active 〉}〉]

Since I have used immediate for the when-slot in
the definition of the default rule, this nonmonotonic
rule will be applied immediately after retrieving all
information about a verb in the hierarchy. For the
two structures above, the default rule can be ap-
plied for skickade, since active is consistent with [],
but not for skickades, since active and passive are
inconsistent. The result after applying immediate-
explanation to the two structures above is shown
below.

For skickade:
[lex: skicka, form: active]

For skickades:
[lex: skicka, form: passive]

Another nonmonotonic operation that has been
used in LFG (Kaplan and Bresnan, 1983) is the
value constraint (=c) used to check whether a sub-
structure has a particular value after a completed
parse. The definition of value constraints as a non-
monotonic rule makes use of negation, interpreted
as negation as failure.

class value;

nonmon =c(X):posterior :¬X => fail.

One use of value constraints in LFG is to assert
a condition that some grammar rules can only be
used for passive sentences. I will here assume that
a representation for verbs where passive verbs have
the value passive for the attribute form, but where
other verbs have no value for this attribute. In the
syntax used in this paper the constraint that a par-
ticular grammar rule can only be used for passive
verbs would be expressed as below:

[form: =c(passive)]

This would result in the nonmonotonic sort:

[form: 〈[],{〈posterior, :¬passive
⇒ fail 〉}〉]

As seen by the definition of =c, the explanation
for this nonmonotonic sort is postponed and is as-
sumed to be computed after finding a parse for some
sentence. This implies that the only case where this
rule would not apply, and thus not give fail as a re-
sult, is when the value of form actually is passive.
For all other values of form, we would have some-
thing that is consistent with ¬passive and thus the
nonmonotonic rule will derive failure when applied.
The next nonmonotonic structure I want to dis-

cuss is any-values. The inheritance hierarchy is used
to be able to define any-values in a simple way.

class value.

class none;

isa value.

class any value;

isa value.

nonmon any():posterior

:any no value => fail.

class any no value;

isa any value.

In this small hierarchy it is assumed that all pos-
sible values of a structure is a subtype of value. We
then divide this into none, which represents that a
structure cannot have any value and any value which
contains all actual values. The class any value is
then further divided into a class called any no value,
which only contains this single value, and the ac-
tual values of a structure. The class any no value

should not be used when defining linguistic knowl-
edge. However, when applying the default rule a
value that has not been instantiated is compatible
with this any no value. Therefore the default rule
can make the conclusion that the structure is in-
consistent, which is what we desire. Note that, as
soon as a value has been further instantiated into
a ’real’ value, it will no longer be consistent with
any no value, and the nonmonotonic rule cannot ap-
ply. Two examples will further illustrate this.

The nonmonotonic sort:
〈[], {〈 posterior, :any no value ⇒

fail 〉}〉
will be posterior-explained to:
fail

While the sort:
〈[lex: kalle], {〈 posterior,

:any no value ⇒ fail 〉}〉
will be posterior-explained to:
[lex: kalle]

The last nonmonotonic operations I want to dis-
cuss are completeness and coherence as used in LFG.
To be able to define these operations I assume the
inheritance hierarchy above, without the nonmono-
tonic definition of any. I will, instead, make use of
the two nonmonotonic definitions below.

class value;

nonmon coherence(A):immediate :[A:

none] => [A: none];

nonmon completeness(A):posterior

:[A: any no value] => fail.

The first of these rules is used to check coher-
ence, and the effect is to add the value none to each
attribute that has been defined to be relevant for
coherence check, but has not been assigned a value
in the lexicon. The second rule is used for check-
ing completeness and it works similarly to the any-
definition above.
Finally, I will show how a fragment of a lexicon can

be defined according to these rules. Note that in the

definition of the transitive verb, the value any value

is given to the appropriate attributes. This means
that they are inconsistent with none, and thus, the
coherence rule cannot be applied.

concept verb;

isa any value;

requires coherence(subj) ∧
coherence(obj) ∧ ...;

requires completeness(subj) ∧
completeness(obj) ∧

concept transitiveverb;

isa verb;

requires [subj: any value, obj:

any value].

6 Relation to Default Logic

In this section I will discuss the relation of this work
to Reiter’s (1980) default logic. There will also be
some discussion on the computational properties and
limitations of the given approach.
Compared with Reiter’s default logic, our notion

of nonmonotonic sorts corresponds to default theo-
ries. Unification of nonmonotonic sorts would then
correspond to merging two default theories into one
single theory and our notion of explaining a non-
monotonic sort corresponds to computing the exten-
sion of a default theory in default logic.
In default logic there is often a restriction to

normal-default theories since non-normal default
theories are not even semi-decidable. The restric-
tion in our nonmonotonic rules that γ ⊑ β is similar
to the restriction into normal default rules and cap-
tures the important property, that the application of
one nonmonotonic rule should not affect the appli-
cability of previously applied rules. The decidability
of the nonmonotonic rules defined here is, however,
highly dependant on the given subsumption order.
In particular it is dependent on having a decidable
unification operation and subsumption check.
As mentioned previously there is with nonmono-

tonic sorts, as well as normal default logic, a possi-
bility of conflicting defaults and thus multiple non-
monotonic extensions for a structure. One difference
is that nonmonotonic sorts allow that the applica-
tion of a nonmonotonic rule leads to fail, i.e. an
inconsistent structure, while default logic does not
allow this outcome. However, since fail is allowed as
a valid explanation for a nonmonotonic sort, there
is, as for normal default logic, always at least one
explanation for a sort.
The two following examples will illustrate the dif-

ference between nonmonotonic rules giving multiple

extensions and nonmonotonic rules giving a single
explanation fail.

Example a

:[a:1]

[a:1 b:1]

:[c:2]

[b:2 c:2]

Example b

:[a:1]

[a:1 b:1]

:[b:2]

[a:2 b:2]

In example a the application of one rule, does not
make the other inapplicable. Thus the only expla-
nation for a structure is achieved by applying both
these two rules and results in fail. In example b,
however, the application of one of the rules would
block the application of the other. Thus, in this
case there are two explanations for the structure de-
pendant on which of the rules that has been applied
first. Note that even though there is an order de-
pendency on the application order of nonmonotonic
rules this does not affect the order independency
on nonmonotonic unification between application of
nonmonotonic rules.
Allowing multiple extensions gives a higher com-

putational complexity than allowing only theories
with one extension. Since it is the user who defines
the actual nonmonotonic theory multiple extensions
must be allowed and it must be considered a task for
the user to define his theory in the way he prefers.

7 Improvements of the Approach

I will start with two observations regarding the defi-
nitions given in section 3. First, it is possible to gen-
eralize these definitions to allow the first component
of a nonmonotonic sort to contain substructures that
are also nonmonotonic sorts. With the generalized
versions of the definitions explanations that simulta-
neously explain all substructures of a nonmonotonic
sort will be considered. Note that the explanation of
default rules at one substructure might affect the ex-
planation of rules at other substructures. Therefore
the order on which nonmonotonic rules at different
substructures are applied is important and all pos-
sible application orders must be considered.
Considering unification of nonmonotonic sorts it

is not necessary to simplify the nonmonotonic part
of the resulting sort. ∆ = ∆1∪∆2 can be defined as
an alternative to the given definition. This alternate
definition is useful for applications where the simpli-
fication of nonmonotonic sorts by each unification is
expected to be more expensive than the extra work

needed to explain a sort whose nonmonotonic part
is not simplified.
As stated previously, nonmonotonic sorts allow

multiple explanations of a nonmonotonic sort. If de-
sired, it would be fairly easy to add priorities to the
nonmonotonic rules, and thus induce a preference
order on explanations.
One further example will illustrate that it is also

possible to define negation as failure with nonmono-
tonic rules. An intuitive interpretation of the defined
rule below is that if X is believed (V ⊑ X), failure
should be derived.

nonmon not(X):immediate X => fail;

However, if this definition is to be really useful
we must also allow one definition of a nonmonotonic
rule to make use of other nonmonotonic rules. In our
original definition we said that the nonmonotonic
rule above should be applied if V ∼ ¬X . This can
be generalized to the case where ¬X is a nonmono-
tonic rule if we extend the definition of ∼ to also
mean that the application (or explanation) of the
not rule at this node does not yield failure. However,
this generalization is outside default logic. There-
fore, its computational properties are unclear and
needs more investigation.

8 Conclusion

In this paper I have proposed a method allow-
ing the user to define nonmonotonic operations in
a unification-based grammar formalism. This was
done by generalizing the work on nonmonotonic
sorts (Young and Rounds, 1993) to allow not only
normal defaults rules but general default rules that
are defined by the user. The method has a very
close relation to Reiter (1980). We also noted that
the method can be applied to all domains of struc-
tures where we have a defined subsumption order
and unification operation.
The generality of the approach was demonstrated

by defining some of the most commonly used non-
monotonic operations. We also gave formal defini-
tions for the approach and provided a discussion on
its computational properties.

Acknowledgments

This work has been supported by the Swedish Re-
search Council for Engineering Sciences (TFR). I
would also like to thank Lars Ahrenberg and Patrick
Doherty for comments on this work and Mark A.
Young for providing me with much-needed informa-
tion about his and Bill Rounds’ work.

References

[Bouma1990] Gosse Bouma. 1990. Defaults in Unifi-
cation Grammar. in Proceedings of the 1990 Con-
ference of the Association for Computational Lin-
guistics, pages 165–172.

[Bouma1992] Gosse Bouma. 1992. Feature Struc-
tures and Nonmonotonicity. Computational Lin-
guistics 18(2):183–203.

[Dörre and Eisele1991] Jochen Dörre and Andreas
Eisele. 1991. A Comprehensive Unification-Based
Grammar Formalism. DYANA Report – Deliver-
able R3.1B. January 1991.

[Emele and Zajac1990] Martin C. Emele, and Remi
Zajac. 1990. Typed Unification Grammars. In
Proceedings of the 13th International Conference
on Computational Linguistics, Vol. 3, pages 293–
298, Helsinki, Finland.

[Johnson and Rosner1989] Rod Johnson and Michael
Rosner. 1989. A Rich Environment for Exper-
imentation with Unification Grammars. In Pro-
ceedings of the 4th Conference of the European
Chapter of the Association for Computational
Linguistics, pages 182–189, Manchester, England.

[Kaplan and Bresnan1983] R. Kaplan and
J.Bresnan. 1983. A Formal System for Gram-
matical Representation. In: J Bresnan (ed.), The
Mental Representation of Grammatical Relations.
MIT Press, Cambridge, Massachusetts.

[Reiter1980] Ray Reiter. 1980. A Logic for Default
Reasoning. In Artificial Intelligence, 13:81-132.

[Russel et al.1992] Graham Russel, Afzal Ballim,
John Carrol and Susan Warwick-Armstrong.
1992. A Practical Approach to Multiple Default
Inheritance for Unification-Based Lexicons. Com-
putational Linguistics 18(3):311-337.

[Strömbäck1994] Lena Strömbäck. 1994. Achieving
Flexibility in Unification Grammars. In Proceed-
ings of the 15th International Conference on Com-
putational Linguistics, Vol. 3, pages 842–846, Ky-
oto, Japan.

[Young and Rounds1993] Mark A Young and Bill
Rounds. 1993. A Logical Semantics for Nonmono-
tonic Sorts. In Proceedings of the 1993 Conference
of the Association for Computational Linguistics,
pages 209–215

