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Abstract

Desmosomes are intercellular junctions that provide tissues with structural stability. These

junctions might also act as signaling centers that transmit environmental clues to the cell, thereby

affecting cell differentiation, migration, and proliferation. The importance of desmosomes is

underscored by devastating skin and heart diseases caused by mutations in desmosomal genes.

Recent observations suggest that abnormal desmosomal protein expression might indirectly

contribute to skin disorders previously not linked to these proteins. For example, it has been

postulated that reduced desmosomal protein expression occurs in patients affected by

Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC), a skin fragility disorder

caused by mutations in the transcription factor TP63. Currently, it is not clear how these changes

in desmosomal gene expression contribute to AEC. We will discuss new approaches that combine

in vitro and in vivo models to elucidate the role of desmosomal gene deregulation in human skin

diseases such as AEC.
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DESMOSOMES—CONTEXT AND HISTORICAL PERSPECTIVE

Desmosomes are multiprotein complexes (junctions) that are assembled at the plasma

membrane (Figure 1). These junctions serve a dual function: they mediate cell–cell

attachment and they provide anchorage points for cytoplasmic intermediate filaments (IF).

As such, desmosomes and the IF cytoskeleton form a three-dimensional network of

structural proteins that confers resistance to tissues and organs that are exposed to significant

mechanical stress forces, such as the skin and the heart (Petrof et al., 2012; Schmidt &

Koch, 2007; Cheng et al., 2005; Ganeshan et al., 2010).

Desmosomes consist of a core of type-1 transmembrane glycoproteins (desmogleins [DSG]

and desmocollins [DSC]) that connect neighboring cells by participating in hetero- and/or

homophilic interactions in the intercellular space (Chitaev et al., 1996; Nie et al., 2011). On

the cytoplasmic side of the plasma membrane, DSGs and DSCs interact with plaque proteins

(desmoplakin [DSP], plakophilins [PKP], and plakoglobin [JUP]) (Figure 1). These plaque

proteins in turn connect DSGs and DSCs to the IF cytoskeleton. Based on their predicted

amino acid sequences, DSGs and DSCs are classified as members of the cadherin subfamily,

a group of calcium-dependent cell adhesion proteins (Koch et al., 1990; Koch et al., 1991a,

1991b; Buxton et al., 1993). Further, DSGs and DSCs each comprise a group of multiple

related proteins (DSG1-4 and DSC1-3 in humans [Buxton et al., 1993; Mahoney et al.,

2006]), each of which exhibit tissue-and cell type-specific expression patterns. For example,

all DSG and DSC proteins are expressed in the skin, whereas other tissues and cell types

express subsets of desmosomal cadherins [e.g. (Koch et al., 1992; Theis et al., 1993)].

Abnormalities in desmosome structure or function underlie a subset of human disorders,

mainly affecting the skin and the heart (Petrof et al., 2012). The first diseases unequivocally

linked to impaired desmosome function were the autoimmune disorders pemphigus vulgaris

and pemphigus foliaceus (Amagai & Stanley, 2012). In these diseases, auto-antibodies are

generated against DSGs, leading to blistering lesions in mucous membranes and the skin.

Further, auto-antibodies against DSC3 have been linked to atypical pemphigus (Rafei et al.,

2011; Hatano et al., 2012). In addition to autoimmune responses targeting desmosomal

proteins, mutations in seven desmosomal genes have now been linked to disorders affecting

the structure and function of skin and skin appendages (Petrof et al., 2012). Further, a severe

form of heart disease, arrhythmogenic right ventricular cardiomyopathy (ARVC), has been

linked to mutations in desmosomal genes [JUP, DSC2, DSG2, DSP, and PKP2 (Petrof et al.,

2012; Li Mura et al., 2013)].

INSIGHTS INTO THE ROLE OF DESMOSOMAL PROTEINS FROM IN VIVO

STUDIES

To gain further insight into the role of individual desmosomal proteins, several mouse lines

with null mutations in desmosomal genes have been developed since the early 1990s (e.g.,

Ganeshan et al., 2010; Cheng et al., 2005; Cheng & Koch, 2004). As describing the

individual role of each protein analyzed would exceed the scope of this manuscript, we will

highlight a few major conclusions derived from these animal studies. Interestingly, although

loss of some desmosomal proteins in mice led to viable mice that could be analyzed, loss of
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others was found to be incompatible with life. Embryonic lethality was noted, for example,

in mice with null mutations in Jup, Dsp, and Dsc3 (Ruiz et al., 1996; Bierkamp et al., 1996;

Gallicano et al., 2001, 1998; Den et al., 2006). To overcome the embryonic lethality, tissue-

specific null mutations were introduced into desmosomal genes required for embryogenesis

(e.g., Chen et al., 2008; Vasioukhin et al., 2001; Li et al., 2011). One key finding obtained

by analyzing these mice was that many desmosomal proteins are indeed required to maintain

tissue adhesion, as demonstrated, for example, by the blistering skin and hair loss

phenotypes of Dsg3 and Dsc3 null mice (Koch et al., 1997; Chen et al., 2008). In addition,

loss of some desmosomal proteins, such as DSP, led to defects in keratinocyte

differentiation (Vasioukhin et al., 2001). Finally, as expected, severe heart defects were

observed when desmosomal proteins expressed in the heart were inactivated in genetically

engineered mice (Li et al., 2011).

In many cases, the phenotypes of animals with impaired desmosome function provided the

rationale to investigate the role of desmosomal proteins in human skin and heart diseases.

However, we are far from fully understanding the role of desmosomal proteins in human

disease; although it is clear that complete loss of desmosomal proteins will lead to severe

phenotypes, it is not clear whether more subtle changes in desmosomal gene expression

contribute to human diseases. For example, increased as well as decreased expression of

desmosomal genes has been observed in human cancers (e.g. Chen et al., 2011 and

references therein). Developing appropriate animal models will be essential in these cases to

establish a causal link between these expression changes and cancer development and

progression. In addition, desmosomal abnormalities may be present in skin fragility

syndromes with primary defects in upstream regulators of desmosomal genes. Few upstream

regulators of desmosomal genes have been identified so far, but their future identification is

anticipated to facilitate a more comprehensive understanding of different types of skin

fragility disorders (e.g. Tokonzaba et al., 2013 and references therein).

In the following section, we will discuss new disease models which will be essential to

understand the role of desmosomal proteins in skin fragility. The specific example we will

focus on is Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC), an

ectodermal dysplasia caused by mutations in the transcription factor-encoding gene TP63

(McGrath et al., 2001). As outlined below, it has recently been discovered that desmosomal

proteins are deregulated in the skin of AEC patients. However, the contribution of these

desmosomal defects to the skin fragility observed in affected individuals is currently not

known. We will use this disorder as an example to highlight the challenges faced in

modeling diseases and the advantages of utilizing a combination of animal and human cell-

based models to understand disease mechanisms.

AEC

AEC is an ectodermal dysplasia characterized by the presence of severe skin erosions, often

located to the scalp (Figure 2). In addition to skin erosions, clinical features of AEC include

abnormalities in appendages such as hair, nail, teeth, sweat glands, and limbs as well as the

presence of cleft lip and/or palate. The severe skin erosions place AEC patients at high risk
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for local and systemic infections, and represent the main cause for the morbidity and

mortality associated with AEC (Julapalli et al., 2009; Siegfried et al., 2005; Vanderhooft et

al., 1993). AEC is caused by dominant mutations in TP63, a gene that encodes multiple

transcription factors that are critical for the development and homeostasis of the skin and

skin appendages (Yang et al., 1998; Koster, 2010). Although all TP63 isoforms can be

detected in the epidermis at the transcript level, it is well-established that the ΔNp63α

isoform is the predominantly expressed isoform at the protein level, at least under

homeostatic conditions (Parsa et al., 1999; Truong et al., 2006; Yang et al., 1998; Testoni &

Mantovani, 2006). Interestingly, AEC-causing TP63 mutations cluster in exons encoding the

SAM domain, a domain that is only present in isoforms that contain the α C-terminus, such

as ΔNp63α (McGrath et al., 2001; Rinne et al., 2007). Within the epidermis, ΔNp63α

expression levels are highest in the basal layer, and its expression declines rapidly during

keratinocyte differentiation through phosphorylation- and ubiquitin-dependent protein

degradation (Bellomaria et al., 2010; Browne et al., 2011; Di Costanzo et al., 2009; Yang et

al., 1998). Although the expression pattern is well-described, transcriptional networks

controlled by ΔNp63α in normal or diseased skin are still relatively poorly characterized. A

review of known pathways controlled by ΔNp63α has been provided elsewhere and is

beyond the scope of the current manuscript (Koster, 2010).

DEREGULATION OF DESMOSOMAL PROTEINS AND GENES IN AEC

Despite the severity of skin erosions in AEC patients, few studies have addressed the

cellular and molecular abnormalities leading to the apparent skin fragility. This is caused, in

part, by the lack of availability of skin samples for this rare disorder. We obtained skin

biopsies from AEC patients, thus allowing us to interrogate abnormal expression of genes

and proteins associated with skin integrity (Fete et al., 2009; Koster et al., 2009; Beaudry et

al., 2009). Consistent with reports using smaller sample sets, our analysis of AEC patient

skin revealed the presence of suprabasal proliferation, impaired terminal differentiation, and

abnormal deposition of basement membrane components (Koster et al., 2009; Marinari et

al., 2009; Clements et al., 2012; Browne et al., 2011; McGrath et al., 2001).

In addition to these abnormalities, the skin fragility exhibited by AEC patients suggested

that desmosomal protein expression or localization may be aberrant in AEC patient skin. In

support of this hypothesis, several desmosomal genes, including DSP, DSC3, DSG1, and

PERP, were found to be under direct transcriptional control of ΔNp63α in keratinocytes

(Ferone et al., 2013; Ihrie et al., 2005). Further, expression of some desmosomal genes was

reported to be compromised in AEC patients (Beaudry et al., 2009; Ferone et al., 2013), and

structural desmosomal abnormalities were observed in one AEC patient (Payne et al., 2005).

However, a systematic analysis of desmosomal abnormalities in AEC patient skin has not

been reported. Preliminary data from our group demonstrate that expression of DSP and

DSC3 is deregulated in a subset of AEC patient skin samples (Figure 3). These findings are

of particular interest since genetic ablation of Dsc3 and Dsp in mouse skin has been

associated with loss of cell adhesion (Vasioukhin et al., 2001; Chen et al., 2008). Further,

Dsp null mutations result in keratinocyte differentiation defects in the mouse (Vasioukhin et

al., 2001), a feature also observed in AEC patient skin (Koster et al., 2009; Clements et al.,

2012; Marinari et al., 2009).
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MODELING AEC IN MICE

Our data, together with published work, clearly demonstrate that desmosomal abnormalities

occur in AEC patients. However, these data do not provide insight into the cause or

consequence of these abnormalities. To further understand the role of desmosomal protein

deregulation in AEC patient skin, it is critical to generate models that replicate the disease.

Several mouse models aimed at understanding the role of mutant ΔNp63α proteins

expressed in AEC patients (ΔNp63α-AEC) have been generated. The first, generated by our

group, is based on the premise that ΔNp63α-AEC proteins function, at least in part, as

dominant-negative molecules towards wild-type ΔNp63α (ΔNp63α-wt) protein (Koster et

al., 2009; Marinari et al., 2009; Lopardo et al., 2008; Browne et al., 2011). To mimic this

dominant-negative effect in a mouse model, we designed genetically engineered mice that

allow for the downregulation of ΔNp63 proteins through the inducible expression of a

ΔNp63-specific siRNA in the epidermis (Koster et al., 2007). Upon epidermal-specific

ΔNp63 downregulation, these mice developed skin erosions within a few days. These

erosions mimicked erosions observed in AEC patients on a cellular and molecular level, thus

highlighting the value of this model for further understanding AEC (Koster et al., 2009).

However, despite the usefulness of this model, it does not take into account that mechanisms

other than a dominant-negative effect may contribute to the skin fragility in AEC patients.

For example, it has been postulated that ΔNp63α-AEC proteins may harbor gain-of-function

effects towards specific genes, although evidence for this hypothesis is currently lacking

(Chung et al., 2011; Brunner et al., 2002). To overcome limitations of this siRNA-based

mouse model, another group generated mice in which an AEC-causing mutation was

engineered into the endogenous Trp63 gene locus (Ferone et al., 2012). In principle, this

model should allow for a more detailed understanding of the role of ΔNp63α-AEC proteins

in the epidermis. However, although several features of AEC were replicated in these mice,

most notably the presence of a cleft palate, the skin phenotype did not mimic that of AEC

patients. In fact, whereas AEC patient skin is hyperplastic and exhibits suprabasal

proliferation (Koster et al., 2009; Marinari et al., 2009; Clements et al., 2012; Browne et al.,

2011; McGrath et al., 2001), the epidermis of the mice is hypoplastic and exhibits reduced

proliferation (Ferone et al., 2012).

NEW APPROACHES OF MODELING COMPLEX DISEASES IN VITRO

As outlined above, mouse models have been extremely informative in modeling aspects of

AEC. However, significant discrepancies in the skin phenotype of mice expressing a TP63 -

AEC mutation and AEC patient skin indicate that the mouse model does not truly mimic all

aspects of the disease. One possible explanation is a difference in the biology of mouse and

human skin. To overcome this issue, in vitro approaches using human cell-based systems

were designed. The Khavari group ectopically expressed ΔNp63α-AEC proteins in 3D skin

equivalents generated from discarded human tissue (Zarnegar et al., 2012; Sen et al., 2012).

Interestingly, deregulation of several desmosomal genes was observed in keratinocytes that

ectopically expressed the ΔNp63α - AEC protein. Ectopic expression of mutant genes is a

potentially powerful approach to assess the function of mutated transcription factors.

Disadvantages of this system, however, include the use of viral vectors to express genes

which randomly integrate into the keratinocyte genome, mutant gene expression levels that
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do not reflect the balance of wild-type and mutant transcripts found in patient cells, and the

inability to mimic the effects of a possible change in the ratio of different splice variants of

TP63 (e.g., ΔNp63α and ΔNp63β) in patient keratinocytes. Lastly, the use of genetically

heterogeneous sources of keratinocytes in this type of study is of concern. In fact, genetic

background effects are well-known to influence the severity of disease phenotypes as

demonstrated by the clinical variability observed in related patients carrying the same TP63

mutation (Bertola et al., 2004; Clements et al., 2010; Dianzani et al., 2003). Further,

discarded patient skin is often derived from different body sites. It remains to be determined

whether keratinocytes obtained from foreskin and breast tissue, for example, show identical

transcriptome changes in response to the expression of mutant TP63. Thus, using patient

cells from defined anatomical locations represent an ideal approach to study the disease

mechanisms.

What would be the biological requirements for an ideal human cell-based in vitro model to

study the patho-physiology of AEC? The system would (i) harbor disease-causing TP63

mutations and (ii) mimic the AEC skin phenotype at the cellular and the molecular levels.

Further, to generate reproducible results in a genetically defined system, the model has to be

renewable. Induced pluripotent stem cell (iPSC) technology has provided an ideal tool for

the generation of tissue models as it allows for the generation of unlimited supplies of

human iPSC that can be differentiated into keratinocytes and 3D epidermal equivalents

[(Itoh et al., 2011; Tolar et al., 2011); Figure 4]. To generate iPSC, a set of transcription

factors (reprogramming factors) is introduced into somatic cells (e.g., skin fibroblasts

isolated from a skin biopsy (Park et al., 2008b; Park et al., 2008a; Okita et al., 2007;

Takahashi et al., 2007)). These reprogramming factors dedifferentiate somatic cells to a state

similar to that of embryonic stem (ES) cells. These cells can then be differentiated into

keratinocytes. Because iPSC can be amplified indefinitely, this technology enables

investigators to produce unlimited quantities of patient-derived keratinocytes, thereby

circumventing the problem of the limited lifespan and amplification potential of cultured

primary human keratinocytes in vitro (Green et al., 1977; Chapman et al., 2010).

iPSC-based approaches also allow for the correction of point mutations in the TP63 gene of

AEC patients. The development of genome editing tools such as zinc finger nucleases,

TALEN and CRISPR/CAS (Hockemeyer et al., 2009; Hockemeyer et al., 2011; Mali et al.,

2013; Cong et al., 2013) enables us to correct these mutations and generate pairs of

conisogenic iPSC-derived keratinocytes that differ only with respect to the presence or

absence of a TP63 -AEC mutation. The identical genetic background of these pairs of cells

facilitates disease pathway analysis using advanced transcriptome and proteome tools.

Because this approach eliminates genetic background variation effects, it is conceptually

superior to using “normal controls” from donors without TP63 mutations.

A potentially unlimited source of patient iPSC-derived keratinocytes enables us to generate

in vitro skin equivalents designed to mimic the histo-pathology of AEC. Further,

xenotransplantation approaches (Lichti et al., 2008), that is, the generation of human

epidermis with iPSC-derived keratinocytes on immunosuppressed mice, will enable

researchers to evaluate AEC epidermis in an in vivo environment. Of particular interest with

respect to desmosomal proteins is the question of whether these systems will be able to

Koster et al. Page 6

Cell Commun Adhes. Author manuscript; available in PMC 2014 July 31.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



reproduce the aberrant expression patterns of key targets in AEC, such as DSP and DSC3.

Next, it will be possible to define the signaling pathways that lead to the deregulation of

desmosomal genes in this context using advanced transcriptome and proteome analyses.

Finally, using conventional overexpression and knockdown experiments, this in vitro skin

equivalent system should be ideally suited to mechanistically define the contribution of

individual desmosomal proteins to the skin fragility observed in AEC patient skin.

SUMMARY AND CONCLUSIONS

Although it is undisputed that null mutations in many desmosomal genes can cause severe

diseases in humans, it is not clear in which way more subtle changes in desmosomal gene

expression or protein synthesis contribute to skin disorders such as AEC. The case of AEC

is of particular interest. Several desmosomal genes are targets of the transcription factor

TP63. However, only a few desmosomal genes are downregulated in nonlesional skin of

AEC patients, in particular DSC3 and DSP. It will be of interest to determine whether

reduced expression of these genes contributes to the tissue fragility and keratinocyte

differentiation defects observed in the skin of AEC patients. Given that mouse models have

limitations in their ability to mimic the AEC skin phenotype, we propose that new human

cell-based tissue models of this disease are needed. Using stem cell (iPSC) technology, we

now have the tools to generate patient-derived keratinocytes for cell biological,

transcriptome, and proteome analysis. This technology also enables us to generate

conisogenic pairs of cells from patients that differ only with respect to the presence and

absence, respectively, of disease causing mutations such as those causing AEC. These

genetically defined cells will be invaluable for identifying disease pathways. Further, the

approach described here will be applicable to any monogenetic skin disorder. In the future,

this technology will also be essential for generating patient-derived and gene-corrected

replacement tissue for transplantation, for example, in cases of severe skin fragility

disorders.
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Figure 1.
Desmosomal structure and composition. (A) Electron micrograph of a desmosome from

mouse epidermis. The arrows demarcate the positions of the plasma membranes of

neighboring cells. The brackets indicate the location of the cytoplasmic plaques. (B)

Schematic representation of the proteins that assemble into desmosomes. Note that the

transmembrane components (DSG and DSC) connect on the cytoplasmic surface of the

desmosome with the plaque proteins (JUP, DSP and PKP) which in turn link to the

intermediate filament (IF) cytoskeleton.
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Figure 2.
Clinical presentation of AEC patients. Scalp and palmar erosions on two patients affected by

AEC. Patient images provided by the National Foundation for Ectodermal Dysplasias

(NFED).
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Figure 3.
Focal downregulation of DSP and DSC3 expression in non-lesional skin of an AEC patient.

(A,B) Normal human skin and (C, D) skin of an AEC patient. The dashed line demarcates

the epidermal–dermal junction. The arrowheads in panels (C) and (D) point to areas of

normal DSP and DSC3 staining, respectively, while the arrows indicate area in which

expression of either DSC3 or DSP is significantly downregulated.
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Figure 4.
Generating in vitro tissue models using iPSC-derived keratinocytes. (A) iPSC-derived

keratinocytes were generated following a protocol similar to a previously published

procedure (Itoh et al., 2011). (B) iPSC-derived keratinocytes express keratin 14 (KRT14)

and desmoglein 1/2 (DSG1/2). Note that these cells also express other epithelial markers,

such as keratin 5, TP63, and α6β4 integrin (data not shown). (C) in vitro skin equivalent

generated from human iPSC-derived keratinocytes on an artificial surface. Note that the

epithelium stratified with a notable granular and cornified layer. Parakeratosis (retention of

nuclei in the stratum corneum) occurs occasionally in in vitro skin equivalents. (D) Staining

of the skin equivalent shown in (C) with an antibody for desmocollin 3 (DSC3). Note that

these iPSC-derived skin equivalents also express other epithelial markers such as KRT5/14,

KRT1/10, and loricrin (data not shown). The dotted line demarcates the junction between

stratified epithelium and the artificial matrix on which the cells are growing.
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