Skip to main content
Log in

Rates of the Strong Uniform Consistency for the Kernel-Type Regression Function Estimators with General Kernels on Manifolds

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

In the present paper, we develop strong uniform consistency results for the generic kernel (including the kernel density estimator) on Riemannian manifolds with Riemann integrable kernels in order to accomplish these difficult tasks. The kernels of the Vapnik-Chervonenkis class that are commonly utilized in statistical problems are different to the isotropic kernels we address in this paper. Moreover, we show, in the same context, the uniform consistency for nonparametric inverse probability of censoring weighted (IPCW) estimators of the regression function under random censorship. As an application, we present the strong uniform consistency for estimators of the Nadaray-Watson type, which is of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. The kernel is defined as \(K(\mathbf{x},\mathbf{y}):=\Psi(||\mathbf{x}-\mathbf{y}||)\) for a ‘‘proper’’ function \(\Psi\) defined on \(\mathbb{R}_{\geq 0}\) for all \(\mathbf{x},\mathbf{y}\in\iota(M_{d})\).

  2. The kernel is defined as \(K(\mathbf{x},\mathbf{y}):=\Phi(\mathbf{x}-\mathbf{y})\) for a ‘‘proper’’ function \(\Phi\) defined on \(\mathbb{R}^{p}\) for all \(\mathbf{x},\mathbf{y}\in\iota(M_{d})\).

  3. The kernel \(K\) is defined on \(\mathbb{R}^{d}\times\mathbb{R}^{d}\) and cannot be defined on \(\mathbf{x}-\mathbf{y}\) for all \(\mathbf{x},\mathbf{y}\in\mathbb{R}^{d}\).

  4. The density estimators are given by

    $$f_{n}(\mathbf{x}):=r_{n}(1;\mathbf{x})=\frac{1}{nh_{n}^{d}}\sum_{i=1}^{n}K\left(\frac{||\iota(\mathbf{X}_{i})-\iota(\mathbf{x})||_{\mathbb{R}^{p}}}{h_{n}}\right)$$
    (1.6)

    or

    $$f_{n}(\mathbf{x}):=r_{n}(1;\mathbf{x})=\frac{1}{nh_{n}^{d}U_{\mathbf{x}}(0)}\sum_{i=1}^{n}K_{h_{n}}(\mathbf{x},\mathbf{X}_{i}).$$
    (1.7)

REFERENCES

  1. E. Aamari and C. Levrard, ‘‘Nonasymptotic rates for manifold, tangent space and curvature estimation,’’ Ann. Statist. 47 (1), 177–204 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  2. I. M. Almanjahie, S. Bouzebda, Z. Kaid, and Ali Laksaci, ‘‘Nonparametric estimation of expectile regression in functional dependent data,’’ J. Nonparametr. Stat. 34 (1), 250–281 (2022).

    Article  MathSciNet  Google Scholar 

  3. A. Aswani, P. Bickel, and C. Tomlin, ‘‘Regression on manifolds: Estimation of the exterior derivative,’’ Ann. Statist. 39 (1), 48–81 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bhattacharya and D. B. Dunson, ‘‘Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds,’’ Ann. Inst. Statist. Math. 64 (4), 687–714 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Bouzebda, ‘‘On the strong approximation of bootstrapped empirical copula processes with applications,’’ Math. Methods Statist. 21 (3), 153–188 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Bouzebda and M. Chaouch, ‘‘Uniform limit theorems for a class of conditional \(Z\)-estimators when covariates are functions,’’ J. Multivariate Anal. 189, Paper no. 104872, 21 (2022).

  7. S. Bouzebda and S. Didi, ‘‘Some results about kernel estimators for function derivatives based on stationary and ergodic continuous time processes with applications,’’ Comm. Statist. Theory Methods 51 (12), 3886–3933 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Bouzebda and Th. El-Hadjali, ‘‘Uniform convergence rate of the kernel regression estimator adaptive to intrinsic dimension in presence of censored data,’’ J. Nonparametr. Stat. 32 (4), 864–914 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Bouzebda and I. Elhattab, ‘‘Uniform-in-bandwidth consistency for kernel-type estimators of Shannon’s entropy,’’ Electron. J. Stat. 5, 440–459 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Bouzebda, I. Elhattab, and B. Nemouchi. ‘‘On the uniform-in-bandwidth consistency of the general conditional \(U\)-statistics based on the copula representation,’’ J. Nonparametr. Stat. 33 (2), 321–358 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Bouzebda, I. Elhattab, and Cheikh Tidiane Seck, ‘‘Uniform in bandwidth consistency of nonparametric regression based on copula representation,’’ Statist. Probab. Lett. 137, 173–182 (2018).

    Article  MathSciNet  Google Scholar 

  12. S. Bouzebda and B. Nemouchi, ‘‘Central limit theorems for conditional empirical and conditional \(U\)-processes of stationary mixing sequences,’’ Math. Methods Statist. 28 (3), 169–207 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Bouzebda and B. Nemouchi, ‘‘Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional \(U\)-statistics involving functional data,’’ J. Nonparametr. Stat. 32 (2), 452–509 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Bouzebda and B. Nemouchi, ‘‘Weak-convergence of empirical conditional processes and conditional \(U\)-processes involving functional mixing data,’’ Stat. Inference Stoch. Process. To appear 1–56 (2022).

  15. S. Bouzebda and A. Nezzal, ‘‘Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional \(U\)-statistics involving functional data,’’ Jpn. J. Stat. Data Sci. To appear 1–103 (2022).

  16. E. Brunel and F. Comte, ‘‘Adaptive nonparametric regression estimation in presence of right censoring,’’ Math. Methods Statist. 15 (3), 233–255 (2006).

    MathSciNet  Google Scholar 

  17. A. Carbonez, L. Györfi, and E. C. van der Meulen, ‘‘Partitioning-estimates of a regression function under random censoring,’’ Statist. Decisions 13 (1), 21–37 (1995).

    MathSciNet  MATH  Google Scholar 

  18. I. Castillo, G. Kerkyacharian, and D. Picard, ‘‘Thomas Bayes’ walk on manifolds,’’ Probab. Theory Related Fields 158 (3–4), 665–710 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Chakraborty and B. C. Vemuri, ‘‘Statistics on the Stiefel manifold: Theory and applications,’’ Ann. Statist. 47 (1), 415–438 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Chen and H.-G. Müller, ‘‘Nonlinear manifold representations for functional data,’’ Ann. Statist. 40 (1), 1–29 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  21. Haoran Chen, Yanfeng Sun, Junbin Gao, Yongli Hu, and Baocai Yin, ‘‘Solving partial least squares regression via manifold optimization approaches,’’ IEEE Trans. Neural Netw. Learn. Syst. 30 (2), 588–600 (2019).

    Article  MathSciNet  Google Scholar 

  22. Ming-Yen Cheng and Hau-Tieng Wu, ‘‘Local linear regression on manifolds and its geometric interpretation,’’ J. Amer. Statist. Assoc. 108 (504), 1421–1434 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Cleanthous, A. G. Georgiadis, G. Kerkyacharian, P. Petrushev, and D. Picard, ‘‘Kernel and wavelet density estimators on manifolds and more general metric spaces,’’ Bernoulli 26 (3), 1832–1862 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Cleanthous, A. G. Georgiadis, and E. Porcu, ‘‘Oracle inequalities and upper bounds for kernel density estimators on manifolds and more general metric spaces,’’ J. Nonparametr. Stat. 1–24 (2022).

  25. T. M. Cover, ‘‘Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition,’’ IEEE Transactions on Electronic Computers EC-14 (3), 326–334 (1965).

    Article  MATH  Google Scholar 

  26. T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley Series in Telecommunications (John Wiley and Sons, Inc., New York, A Wiley-Interscience Publication, 1991).

  27. I. Csiszár, ‘‘Informationstheoretische Konvergenzbegriffe im Raum der Wahrscheinlichkeitsverteilungen,’’ Magyar Tud. Akad. Mat. Kutató Int. Közl. 7, 137–158 (1962).

    MATH  Google Scholar 

  28. Xiongtao Dai and H.-G. Müller, ‘‘Principal component analysis for functional data on Riemannian manifolds and spheres,’’ Ann. Statist. 46 (6B), 3334–3361 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Deheuvels, ‘‘One bootstrap suffices to generate sharp uniform bounds in functional estimation,’’ Kybernetika 47 (6), 855–865 (2011).

    MathSciNet  MATH  Google Scholar 

  30. L. P. Devroye and T. J. Wagner, The Strong Uniform Consistency of Kernel Density Estimates, in Multivariate Analysis, V (Proc. Fifth Internat. Sympos., Univ. Pittsburgh, Pittsburgh, Pa., 1978; North-Holland, Amsterdam-New York, 1980), p. 59–77.

  31. L. Devroye, A Course in Density Estimation, vol. 14 of Progress in Probability and Statistics, (Birkhäuser Boston, Inc., Boston, MA, 1987).

  32. L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation (Springer Series in Statistics. Springer-Verlag, New York, 2001).

  33. M. Díaz, A. J. Quiroz, and M. Velasco, ‘‘Local angles and dimension estimation from data on manifolds,’’ J. Multivariate Anal. 173, 229–247 (2019).

  34. Manfredo Perdigão do Carmo, Riemannian geometry. Mathematics: Theory and Applications. Birkhäuser Boston, Inc., Translated from the second Portuguese edition by Francis Flaherty (Boston, MA, 1992).

  35. D. L. Donoho and C. Grimes, ‘‘Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data,’’ Proc. Natl. Acad. Sci. USA 100 (10), 5591–5596 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  36. E. J. Dudewicz and E. C. van der Meulen, ‘‘Entropy-based tests of uniformity,’’ J. Amer. Statist. Assoc. 76 (376), 967–974 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  37. R. M. Dudley, Uniform Central Limit Theorems, vol. 142 of Cambridge Studies in Advanced Mathematics (Cambridge University Press, New York, 2nd ed., 2014).

  38. N. Ebrahimi, M. Habibullah, and E. Soofi, ‘‘Testing exponentiality based on Kullback-Leibler information,’’ J. Roy. Statist. Soc. Ser. B 54 (3), 739–748 (1992).

    MathSciNet  MATH  Google Scholar 

  39. U. Einmahl and D. M. Mason, ‘‘Uniform in bandwidth consistency of kernel-type function estimators,’’ Ann. Statist. 33 (3), 1380–1403 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Ellingson, V. Patrangenaru, and F. Ruymgaart, ‘‘Nonparametric estimation of means on Hilbert manifolds and extrinsic analysis of mean shapes of contours,’’ J. Multivariate Anal. 122, 317–333 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Eltzner and S. F. Huckemann, ‘‘A smeary central limit theorem for manifolds with application to high-dimensional spheres,’’ Ann. Statist. 47 (6), 3360–3381 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Ettinger, S. Perotto, and L. M. Sangalli, ‘‘Spatial regression models over two-dimensional manifolds,’’ Biometrika 103 (1), 71–88 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Földes and L. Rejtő, ‘‘A LIL type result for the product limit estimator,’’ Z. Wahrsch. Verw. Gebiete 56 (1), 75–86 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  44. D. H. Fuk and S. V. Nagaev. ‘‘Probabilistic inequalities for sums of independent random variables,’’ Teor. Verojatnost. i Primenen. 16, 660–675 (1971).

    MathSciNet  MATH  Google Scholar 

  45. D. G. Giovanis and M. D. Shields. ‘‘Data-driven surrogates for high dimensional models using Gaussian process regression on the Grassmann manifold,’’ Comput. Methods Appl. Mech. Engrg. 370 (113269), 26 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  46. D. V. Gokhale and S. Kullback. The Information in Contingency Tables, vol. 23 of Statistics: Textbooks and Monographs (Marcel Dekker, Inc., New York, 1978).

  47. L. Györfi, M. Kohler, A. Krzyżak, and H. Walk, A Distribution-Free Theory of Nonparametric Regression (Springer Series in Statistics, Springer-Verlag, New York, 2002).

  48. P. Hall, ‘‘Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function,’’ Z. Wahrsch. Verw. Gebiete 67 (2), 175–196 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  49. W. Härdle, Applied Nonparametric Regression, vol. 19 of Econometric Society Monographs (Cambridge University Press, Cambridge, 1990).

  50. W. Härdle and J. S. Marron, ‘‘Optimal bandwidth selection in nonparametric regression function estimation,’’ Ann. Statist. 13 (4), 1465–1481 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  51. H. Hendriks, ‘‘A Cramér-Rao type lower bound for estimators with values in a manifold,’’ J. Multivariate Anal. 38 (2), 245–261 (1991).

    Article  MathSciNet  Google Scholar 

  52. H. Hendriks and Z. Landsman. ‘‘Asymptotic data analysis on manifolds,’’ Ann. Statist. 35 (1), 109–131 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  53. G. Henry, A. Muñoz, and D. Rodriguez, ‘‘Locally adaptive density estimation on Riemannian manifolds,’’ SORT 37 (2), 111–129 (2013).

    MathSciNet  MATH  Google Scholar 

  54. G. Henry and D. Rodriguez, ‘‘Robust nonparametric regression on Riemannian manifolds,’’ J. Nonparametr. Stat. 21 (5), 611–628 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  55. P. J. Huber, ‘‘Robust estimation of a location parameter,’’ Ann. Math. Statist. 35, 73–101 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  56. E. T. Jaynes, ‘‘Information theory and statistical mechanics,’’ Phys. Rev. (2) 106, 620–630 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  57. P. E. Jupp, ‘‘Data-driven Sobolev tests of uniformity on compact Riemannian manifolds,’’ Ann. Statist. 36 (3), 1246–1260 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  58. P. E. Jupp, ‘‘Copulae on products of compact Riemannian manifolds,’’ J. Multivariate Anal. 140, 92–98 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  59. P. E. Jupp and A. Kume, ‘‘Measures of goodness of fit obtained by almost-canonical transformations on Riemannian manifolds,’’ J. Multivariate Anal. 176 (104579), 10 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  60. E. L. Kaplan and P. Meier, ‘‘Nonparametric estimation from incomplete observations,’’ J. Amer. Statist. Assoc. 53, 457–481 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  61. R. Koenker and G. Bassett, Jr., ‘‘Regression quantiles,’’ Econometrica 46 (1), 33–50 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  62. M. Kohler, K. Máthé, and M. Pintér, ‘‘Prediction from randomly right censored data,’’ J. Multivariate Anal. 80 (1), 73–100 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  63. M. R. Kosorok. Introduction to Empirical Processes and Semiparametric Inference (Springer Series in Statistics, Springer, New York, 2008).

  64. S. Kullback, Information Theory and Statistics (John Wiley and Sons, Inc., New York; Chapman and Hall, Ltd., London, 1959).

  65. Lizhen Lin, Niu Mu, Pokman Cheung, and D. Dunson, ‘‘Extrinsic Gaussian processes for regression and classification on manifolds,’’ Bayesian Anal. 14 (3), 907–926 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  66. Lizhen Lin, B. St. Thomas, Hongtu Zhu, and D. B. Dunson, ‘‘Extrinsic local regression on manifold-valued data,’’ J. Amer. Statist. Assoc. 112 (519), 1261–1273 (2017).

    Article  MathSciNet  Google Scholar 

  67. Zhenhua Lin and Fang Yao, ‘‘Functional regression on the manifold with contamination,’’ Biometrika 108 (1), 167–181 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  68. O. Litimein, A. Laksaci, B. Mechab, and S. Bouzebda, ‘‘Local linear estimate of the functional expectile regression,’’ Statist. Probab. Lett. 192, 109682 (2023).

  69. B. Maillot and V. Viallon, ‘‘Uniform limit laws of the logarithm for nonparametric estimators of the regression function in presence of censored data,’’ Math. Methods Statist. 18 (2), 159–184 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  70. J. Malik, Chao Shen, Hau-Tieng Wu, and Nan Wu, ‘‘Connecting dots: from local covariance to empirical intrinsic geometry and locally linear embedding,’’ Pure Appl. Anal. 1 (4), 515–542 (2019).

    Article  MathSciNet  Google Scholar 

  71. K. V. Mardia and C. G. Khatri, ‘‘Uniform distribution on a Stiefel manifold,’’ J. Multivariate Anal. 7 (3), 468–473 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  72. K. V. Mardia and P. E. Jupp, Directional Statistics (Wiley Series in Probability and Statistics. John Wiley and Sons, Ltd., Chichester, 2000). Revised reprint of ıt Statistics of directional data by Mardia [MR0336854].

  73. K. V. Mardia, H. Wiechers, B. Eltzner, and S. F. Huckemann, ‘‘Principal component analysis and clustering on manifolds,’’ J. Multivariate Anal. 188 (104862), 21 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  74. M. Mohammedi, S. Bouzebda, and A. Laksaci, ‘‘On the nonparametric estimation of the functional expectile regression,’’ C. R. Math. Acad. Sci. Paris 358 (3), 267–272 (2020).

    MathSciNet  MATH  Google Scholar 

  75. M. Mohammedi, S. Bouzebda, and A. Laksaci, ‘‘The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data,’’ J. Multivariate Anal. 181 (104673), 24 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  76. H.-G. Müller, Nonparametric Regression Analysis of Longitudinal Data, vol. 46 of Lecture Notes in Statistics (Springer-Verlag, Berlin, 1988).

  77. È. A. Nadaraja, ‘‘On a regression estimate,’’ Teor. Verojatnost. i Primenen. 9, 157–159 (1964).

    MathSciNet  Google Scholar 

  78. È. A. Nadaraya, Nonparametric Estimation of Probability Densities and Regression Curves, vol. 20 of Mathematics and Its Applications (Soviet Series) (Kluwer Academic Publishers Group, Dordrecht, 1989).

  79. W. K. Newey and J. L. Powell, ‘‘Asymmetric least squares estimation and testing,’’ Econometrica 55 (4), 819–847 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  80. D. Nolan and D. Pollard, ‘‘\(U\)-Processes: Rates of Convergence,’’ Ann. Statist. 15 (2), 780–799 (1987).

    Article  MathSciNet  Google Scholar 

  81. D. Osborne, V. Patrangenaru, L. Ellingson, D. Groisser, and A. Schwartzman, ‘‘Nonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and diffusion tensor image analysis,’’ J. Multivariate Anal. 119, 163–175 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  82. E. Parzen, ‘‘On estimation of a probability density function and mode,’’ Ann. Math. Statist. 33, 1065–1076 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  83. X. Pennec, ‘‘Barycentric subspace analysis on manifolds,’’ Ann. Statist. 46 (6A), 2711–2746 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  84. D. Pollard, Convergence of Stochastic Processes (Springer Series in Statistics, Springer-Verlag, New York, 1984).

  85. M. Rachdi and P. Vieu, ‘‘Nonparametric regression for functional data: Automatic smoothing parameter selection,’’ J. Statist. Plann. Inference 137 (9), 2784–2801 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  86. T. Reese and M. Mojirsheibani, ‘‘On the \(L_{p}\) norms of kernel regression estimators for incomplete data with applications to classification,’’ Stat. Methods Appl. 26 (1), 81–112 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  87. A. Rényi, ‘‘On the dimension and entropy of probability distributions,’’ Acta Math. Acad. Sci. Hungar. 10, 193–215 (unbound insert) (1959).

  88. A. Rinaldo and L. Wasserman, ‘‘Generalized density clustering,’’ Ann. Statist. 38 (5), 2678–2722 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  89. M. Rosenblatt, ‘‘Remarks on some nonparametric estimates of a density function,’’ Ann. Math. Statist. 27, 832–837 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  90. S. T. Roweis and L. K. Saul, ‘‘Nonlinear dimensionality reduction by locally linear embedding,’’ Science 290 (5500), 2323–2326 (2000).

    Article  Google Scholar 

  91. N. Sauer, ‘‘On the density of families of sets,’’ J. Combinatorial Theory Ser. A 13, 145–147 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  92. D. W. Scott, Multivariate Density Estimation (Wiley Series in Probability and Statistics, John Wiley and Sons, Inc., Hoboken, NJ, 2nd ed., 2015).

  93. C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell System Tech. J. 27, 379–423, 623–656 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  94. G. R. Shorack and J. A. Wellner, Empirical Processes with Applications to Statistics, vol. 59 of Classics in Applied Mathematics (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009). Reprint of the 1986 original [ MR0838963].

  95. B. W. Silverman, Density Estimation for Statistics and Data Analysis (Monographs on Statistics and Applied Probability. Chapman and Hall, London, 1986).

  96. W. Stute, ‘‘On almost sure convergence of conditional empirical distribution functions,’’ Ann. Probab. 14 (3), 891–901 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  97. M. Talagrand, ‘‘Sharper bounds for Gaussian and empirical processes,’’ Ann. Probab. 22 (1), 28–76 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  98. S. A. van de Geer, Applications of Empirical Process Theory, vol. 6 of Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, Cambridge, 2000).

  99. A. W. van der Vaart, Asymptotic Statistics, vol. 3 of Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, Cambridge, 1998).

  100. A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes (Springer Series in Statistics, Springer-Verlag, New York, 1996). With applications to statistics.

  101. V. N. Vapnik and A. Ya. Chervonenkis, ‘‘On the uniform convergence of relative frequencies of events to their probabilities,’’ In Measures of Complexity (Springer, Cham, 2015), p. 11–30; Reprint of Theor. Probability Appl. 1 (6), 264–280 (1971).

  102. O. Vasicek, ‘‘A test for normality based on sample entropy,’’ J. Roy. Statist. Soc. Ser. B 38 (1), 54–59 (1976).

    MathSciNet  MATH  Google Scholar 

  103. J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski, ‘‘Information retrieval perspective to nonlinear dimensionality reduction for data visualization,’’ J. Mach. Learn. Res. 11, 451–490 (2010).

    MathSciNet  MATH  Google Scholar 

  104. A. C. G. Verdugo Lazo and P. N. Rathie, ‘‘On the entropy of continuous probability distributions,’’ IEEE Trans. Inform. Theory IT-24 (1), 120–122 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  105. H. Walk, Strong Laws of Large Numbers and Nonparametric Estimation, in: Recent Developments in Applied Probability and Statistics (Physica, Heidelberg, 2010), p. 183–214.

  106. M. P. Wand and M. C. Jones, Kernel Smoothing, vol. 60 of Monographs on Statistics and Applied Probability (Chapman and Hall, Ltd., London, 1995).

  107. Y. Wang, H. Huang, C. Rudin, and Y. Shaposhnik, ‘‘Understanding how dimension reduction tools work: An empirical approach to deciphering t-SNE, UMAP, TriMap, and PaCMAP for data visualization,’’ J. Mach. Learn. Res. 22, 201, 73 (2021).

    MathSciNet  MATH  Google Scholar 

  108. G. S. Watson, ‘‘Smooth regression analysis,’’ Sankhyā Ser. A 26, 359–372 (1964).

    MathSciNet  MATH  Google Scholar 

  109. Hau-Tieng Wu and Nan Wu, ‘‘Think globally, fit locally under the manifold setup: Asymptotic analysis of locally linear embedding,’’ Ann. Statist. 46 (6B), 3805–3837 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  110. ‘‘Hau-tieng Wu and Nan Wu, When locally linear embedding hits boundary’’ (2018).

  111. Hau-Tieng Wu and Nan Wu, ‘‘Strong uniform consistency with rates for kernel density estimators with general kernels on manifolds,’’ Inf. Inference 11 (2), 781–799 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  112. X. Xing, S. Du, and K. Wang, ‘‘Robust Hessian locally linear embedding techniques for high-dimensional data,’’ Algorithms (Basel) 9 (2), 36, 21 (2016).

  113. Y. Yang and D. B. Dunson, ‘‘Bayesian manifold regression,’’ Ann. Statist. 44 (2), 876–905 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The author would like to thank the Editor-in-Chief, an Associate-Editor, and two referees for their extremely helpful remarks, which resulted in a substantial improvement of the original form of the work and a presentation that was more sharply focused.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salim Bouzebda or Nourelhouda Taachouche.

Ethics declarations

CONFLICTS OF INTEREST

All authors declare that they have no conflicts of interest.

CREDIT AUTHOR STATEMENT

Nourelhouda TAACHOUCHE: conceptualization, methodology, investigation, writing–original draft, writing–review, and editing.

Salim BOUZEBDA: conceptualization, methodology, investigation, writing–original draft, writing–revie, and editing.

Both authors contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzebda, S., Taachouche, N. Rates of the Strong Uniform Consistency for the Kernel-Type Regression Function Estimators with General Kernels on Manifolds. Math. Meth. Stat. 32, 27–80 (2023). https://doi.org/10.3103/S1066530723010027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530723010027

Keywords:

Navigation