STURM-LIOUVILLE PROBLEMS
IN DOMAINS WITH NON-SMOOTH EDGES

A. SHLAPUNOV AND N. TARKHANOV

ABSTRACT. We consider a (generally, non-coercive) mixed boundary value
problem in a bounded domain D of R™ for a second order elliptic differen-
tial operator A(z,d). The differential operator is assumed to be of divergent
form in D and the boundary operator B(z,d) is of Robin type on 8D. The
boundary of D is assumed to be a Lipschitz surface. Besides, we distinguish a
closed subset Y C 9D and control the growth of solutions near Y. We prove
that the pair (A, B) induces a Fredholm operator L in suitable weighted spaces
of Sobolev type, the weight function being a power of the distance to the sin-
gular set Y. Moreover, we prove the completeness of root functions related to
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Introduction

The Hilbert space methods take considerable part in the modern theory of partial
differential equations. In particular, the spectral theorem for compact selfadjoint
operators attributed to Hilbert and Schmidt allows one to look for solutions of
boundary value problems for formally selfadjoint operators in the form of expansions
over eigenfunctions of the operator.

Non-selfadjoint compact operators fail to have eigenvectors in general. Keldysh
[Kel51] (see also [GK69, Ch. 5, §8] for more details) elaborated expansions over root
functions for weak perturbations of compact selfadjoint operators. In particular,
he applied successfully the theorem on the completeness of root functions to the
Dirichlet problem for second order elliptic operators in divergent form.

The problem of completeness of the system of eigen- and associated functions of
boundary value problems for elliptic operators in domains with smooth boundary
was studied in many articles (see for instance [Bro53|, [Bro59al, [Bro59b], [Agm62],
[Kon99]). In a series of papers [Agr94a], [Agr94b], [Agr08], [Agriib|, [Agrlid],
including two surveys [Agr02] and [Agrila], Agranovich proved the completeness
of root functions for a wide class of boundary value problems for second order elliptic
equations with boundary conditions of the Dirichlet, Neumann and Zaremba type
in standard Sobolev spaces over domains with Lipschitz boundary. In [ST12] this
method was extended to a class of non-coercive mixed problems with Robin type
boundary conditions over domains with Lipschitz boundary.

Root functions of general elliptic boundary value problems in weighted Sobolev
spaces over domains with conic and edge type singularities on the boundary were
studied in [EKSO1] and [Tar06]. These papers used estimates of the resolvent of
compact operators and the so-called rays of minimal growth. In order to realise
fully to what extent the completeness criteria of [EKS0I] and [Tar(Q6] are efficient,
we dwell on the concept of ellipticity on a compact manifold with smooth edges on
the boundary. Such a singular space X’ has three smooth strata, more precisely,
the interior part Xy of X, the smooth part X} of the boundary and the edge A5
which is assumed to be a compact closed manifold. Pseudodifferential operators
on X are (3 x 3)-matrices A whose entries A; ; are operators mapping functions
on X; to functions on A;. To each operator A one assigns a principal symbol
o(A) := (00(A),01(A),02(A)) in such a way that o(A) = 0 if and only if A is
compact, and o(BA) = o(B)o(A) for all operators A and B whose composition
is well defined. The components o;(A) of the principal symbol are functions on
the cotangent bundles of X; with values in operator spaces. They are smooth
away from zero sections of the bundles and bear certain twisted homogeneity as
operator families. An operator A is called elliptic if its principal symbol is invertible
away from the zero sections of cotangent bundles. The invertibility of oq(A) just
amounts to the ellipticity of A in the interior of X. The invertibility of o1 (A)
is equivalent to the Shapiro-Lopatinskii condition on the smooth part of 9X. The
invertibility of o2(A) constitutes the most difficult problem, for this operator family
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is considered in weighted Sobolev spaces on an infinite cone. An operator A proves
to be Fredholm if and only if it is elliptic. However, from what has been said it
follows that there is no efficient criteria of ellipticity on compact manifolds with
edges on the boundary. In general these techniques allow one to derive at most
the following result. Consider a classical boundary value problem on X satisfying
the Shapiro-Lopatinskii condition away from the edge X5. It is actually given by a
column of operators A; o with ¢ = 0,1, where Ag ¢ is an elliptic differential operator
in Xy and A; o a differential operator near X; followed by restriction to &;. We
complete the column to a (2 x 2)-matrix A by setting Ag; = 0 and A;; = 0.
The Shapiro-Lopatinskii condition implies that o2(A)(y,n) is a family of Fredholm
operators on the unit sphere in T*X5. Hence we can set o2(A4)(y,n) in the frame
of a (3 x 3) -matrix a(y,n) on the unit sphere of T* X, which is moreover invertible.
A distinct quantisation procedure leads then immediately to a Fredholm operator
of the type

C*(X)
Aoo Aoz C>(X) D
ALO ALQ : D — COO((?X,(Cm) y (01)
Asg Az C>(X,, Ch) ®
C>®(X,, Cl2)

where [ and lo are non-negative integers. However, the Fredholm property of (0.1
elucidates by no means the original problem

AQQU = f in Xo,
Al’ou = Up at Xl s

unless X5 is of dimension 0. Thus, operator-valued symbols make the condition of
ellipticity ineffective.

In the present paper we study the completeness of root elements associated
with a mixed boundary value problem (A, B) for a second order elliptic differential
equation with Robin type boundary condition in a bounded domain D of R™. The
differential operator A(zx,d) is assumed to be of divergent form and the boundary
operator B(z,d) includes an oblique derivative with discontinuous coeflicients. The
boundary 0D of the domain D is assumed to be a Lipschitz surface. Besides, we
distinguish a closed set Y C 9D and control the behaviour of solutions to the
problem near Y. To this end we consider the boundary value problem in weighted
Sobolev spaces over D, the weight being a power of the distance to Y. We allow
Y to be empty, so the case of standard Sobolev spaces is not excluded. Within
the framework of analysis on manifolds with singularities the set Y bears usually
singularities of the boundary (cones, edges, etc.) or discontinuities of boundary
operators.

The theory of [Tar06] applies in similar situation (with edge singularities) pro-
vided that one is able to establish the invertibility of the edge symbol. This latter
is a family of Sturm-Liouville boundary value problems in an infinite plane cone
parametrised by the points of the cotangent bundle of the edge. On reducing the
family to the boundary of the cone one obtains two ordinary pseudodifferential
equations on the rays constituting the boundary of the cone. The invertibility of
the edge symbol just amounts to the unique solvability of these equations in cer-
tain weighted Sobolev spaces on the rays. This is a hard problem which deserves
separate investigation.
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Instead we exploit the classical approach of non-negative forms inducing inner
products in spaces of smooth functions (cf. [Sch60], [LM72], [LU73], [Agr94al),
and the method of rays of minimal growth of the resolvent ([Agm62], [DS63]) to
study the completeness of root elements of the boundary value problem in weighted
Sobolev spaces. Note that usually one imposes Shapiro-Lopatinskii type conditions
on the boundary value problem at the smooth part of 9D, cf. [AV64], [Tar06], etc.
Our contribution consists in considering non-coercive forms, and hence the Shapiro-
Lopatinskii condition can be violated. Indeed, a Hermitian form associated with a
second order elliptic formally selfadjoint operator A is usually constructed through
a factorization A = C*C, where C is an overdetermined elliptic first order operator
and C* its formal adjoint. According to [SKKT73], microlocally any first order op-
erator C' with complex-valued coefficients can be presented via the Lewy operator
or the gradient operator or the multidimensional Cauchy-Riemann operator. The
operators of the first type go beyond the elliptic theory, the second type opera-
tors correspond to coercive mixed problems related to A, and the operators of the
third type inherit non-coercive boundary conditions. Thus, it is not fortuitous that
non-coercive boundary value problems for elliptic differential operators attract con-
siderable attention of mathematicians since the 1950s, see for instance [ADNBS9],
[KN65]. One of the typical problems of this type is the famous d-Neumann problem
in complex analysis whose boundary conditions involve precisely the multidimen-
sional Cauchy-Riemann operator, see [Koh79]. The investigation of the problem
resulted in the discovery of the subellipticity phenomenon which greatly influenced
to the development of the theory of partial differential equations, cf. [Hor66]. To
the best of our knowledge, there have been no advanced results on the complete-
ness of root functions for non-coercive problems. However, the use of non-coercive
forms enlarges essentially the class of those boundary conditions for which the root
functions of the corresponding mixed problems are dense in weighted Lebesgue and
Sobolev spaces. The enlargement allows one to perturb the boundary conditions
by diverse tangential vector fields. In general, we lose on regularity of solutions,
however, this gap is well motivated by the nature of problems.

Part 1. Weighted Sobolev-Slobodetskii spaces in Lipschitz domains
1. SOBOLEV-SLOBODETSKII SPACES

Let D be a bounded domain in R™ with Lipschitz boundary 9D, i.e. the surface
0D is locally the graph of a Lipschitz function. More precisely, for each boundary
point p € 9D there is a neighbourhood U of p in R™, such that, after a possible
rotation, DNU = {(z/,2") € U : 2™ > f(2')}, where f : R""! — R is a Lipschitz
function, i.e. |f(z') — f(y/')] < L|a’ — /| for all 2/, 3’ € R*~!. The smallest L for
which the estimate holds is called the bound of the Lipschitz constants. By choosing
finitely many balls {U, } covering 0D, the Lipschitz constant for a Lipschitz domain
is the smallest L with the property that the Lipschitz constant is bounded by L for
every ball U,.

Any bounded Lipschitz domain has actually a global Lipschitz defining function
0, i.e. 0:R™ — R satisfies o < 0 in D, o > 0 outside D, and ¢; < |¢'| < ¢y almost
everywhere at 0D, where ¢y, ¢o are positive constants. The geometric interpretation
of this description is that both D and R™ \ D are locally situated on exactly one
side of the boundary 0D.
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As a Lipschitz function is differentiable almost everywhere and the derivatives
are bounded, the boundary 0D possesses a tangent hyperplane and a normal vector
almost everywhere.

We consider complex-valued functions defined in the domain D. For 1 < g < oo,
we write L1(D) for the space of all (equivalence classes of) measurable functions u
in D, such that the Lebesgue integral of |u|? over D is finite. When endowed with

the norm
a 1/q
fullvocoy = ([ uiraz) ™"
D

the space L(D) is Banach. As usual, this scale continues to include the case ¢ = oo,
too. The C*° functions of compact support in D lie dense in L9(D) provided that
q < 0.

More generally, for s = 1,2, ..., we denote by H*(D) the completion of C*(D)
with respect to the norm

/
”u”HS(D) = (/D Z |804u‘2 dz)l 27

jal<s

where the sum is over all multi-indices a = (o, ..., a,) of norm |a| := a1 +...+ay,
not exceeding s, and 9% = 9y - - - 9%~ with §; = 9/dx7. It is convenient to define
H*(D) := L*(D) for s = 0. Obviously, every H*(D) with s = 0,1,... specifies
within L?(D). In this way we get a scale of Hilbert spaces H*(D) endowed with

scalar product
(w, ) s (D) :/ Z 0“udv dx,

lee|<s
for u,v € H*(D).

In order to extend the scale H*(D) to the fractional values of s > 0, one can use
an interpolation procedure. There is also a direct construction along more classical
lines developed in [Slo58]. Given any non-integer s > 0, the so-called Sobolev-
Slobodetskii space H*(D) is defined to be the completion of C*°(D) with respect
to the norm

8O‘u(x) o aau(y)‘z 1/2
ull e = ()2 Jr// | dxdy ,
llull e (D) (|| HH[ (D) DD ag[s] |z — y|n+2(s—[s]) )

where [s] is the integer part of s. The space H*(D) is endowed with obvious inner
product under which it is a Hilbert space.

In the sequel, for a closed subset S of D, we denote by H*(D, S) the closure of the
subspace C5,,(D \ S) in H*(D). When endowed with induced norm, H*(D, S)
is obviously a Hilbert space. If S is the whole boundary we get what is usually

[e]
referred to as H*(D).

To define the spaces H*(D) for all negative s € R, too, we exploit an appropriate
duality. More precisely, let H and H° be complex Hilbert spaces with scalar
products (-,-)4 and (-,-)o, respectively. Suppose that H* is a subspace of H° and
the natural inclusion

v:HY — H° (1.1)

is continuous. We also assume that there is a space & C Ht, such that X is dense
in H* and «(X) is dense in HY. Write H~ for the completion of X with respect to
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the norm
l[u]— = sup 1(v, w)ol
ver v+
v#0

Remark 1.1. Since X is dense in HT and the norm ||-||; majorises ||-||o, we conclude
that

full- = sup 12l
v ol
v#0

The following two lemmas are well known (see for instance [Sch60]).

Lemma 1.2. The space H® is continuously embedded into H—. If inclusion
is compact then the space H is compactly embedded into H ™.

Proof. By definition and the continuity of the map (1.1) we get

[[ull o [0l o
lul_ < sup Lellzelvlme
ver+  lIvll+
v#£0
for all w € HY, i.e. the space H? is continuously embedded into H~ indeed.
Suppose ([1.1)) is compact. Then the Hilbert space adjoint «* : HY — HT is
compact, too. By Remark [I.1] we conclude that

< clull o

||’U,||, _ sup |(L(’U),U)HD|
vert  Ivll+
v#0
I O
vert  lIvll+
v#0
= W)+ (1.2)
for all w € HC. Therefore, any weakly convergent sequence in H° converges in H—,
which shows the second part of the lemma. ([l

Lemma 1.3. The Banach space H™ is topologically isomorphic to the dual space
(HT) and the isomorphism is defined by the sesquilinear form

(v,u) = lim (v,uy,)o (1.3)
vV—00
forue H™ and v € HY where {u,} is any sequence in X converging to u.

That is, for every fixed u € H™, pairing defines a continuous linear
functional f, on HT and, for each f € (H™)’, there is a unique v € H~ with
f(v) = fu(v) for all v € HT. Moreover, the conjugate linear map w ~ f, is an
isometry.

Proof. Cf. Lemma 3.3 of [Sch60] for Sobolev spaces. To show that the limit on the
right-hand side of (1.3) exists for each fixed function v € H™, is suffices to show
that {(v,uy)o} is a Cauchy sequence. By definition,

(v, = up)ol < [loll4fluy — wull- =0

as v, — 0o, which is our claim. Clearly, this limit does not depend on the
particular sequence {u, }, for if |Ju, ||~ — 0, then |(v,u,)o| — 0 for all v e H*.
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From the definition it follows that
[(v, u)| < lull- [[v]l+

for all u € H~ and v € H™. Hence, for each fixed element u € H™, the formula
fu(v) := (v,u) defines a continuous linear functional f, on H™, such that

[ full ey < el -

If {u,} C X approximates an element u in H ™, then equality (1.2)) implies that
the sequence {¢t*1u, } converges to a function U in the space H and

Ul = lim etea
V—r00

= lim [ju,|-
o0

I
=l
|

Moreover,

fu(v) = <U7u>

= (v,U)+

for all v € H*. Now, the Riesz theorem yields ||U||+ = || full(z+) whence

| full (zrry = llull -

It remains to show that any continuous linear functional f on H* has the form
f(v) = (v,uy) for some uy € H~. By the Riesz theorem, for any f € (H")" there
is a unique element Uy € HY, such that f(v) = (v,Uy)4 for all v € HT. Besides,
IUsll+ = || fll(z+)y - By definition, the operator ¢ is injective and its image is dense
in H°. Hence, the image of the operator ¢*¢ in H' is dense, too. Pick a sequence
{u,} € H' with the property that {¢*tu,} converges to Us. Then, according to
, {u,} is a Cauchy sequence in H~, and so it converges to an element uy in
this space. It as easy to see that uy is actually independent of the particular choice
of the sequence {u,}. Finally, we obtain

(v,up) = Vli)nolo(z,v, Luy)o

= lim (v,t"tuy)4
V—r 00

= ('U, Uf)+
= fv)

for all v € HT, as desired. O

Remark 1.4. Note that H is reflexive, since it is a Hilbert space. Hence it follows
that (HT)" = H™, i.e., the spaces H™ and H~ are dual to each other with respect

to .

Now we define H=*°(D) to be the dual to H*(D) with respect to the paring
induced by (-, -)r2(p). More precisely, by H*(D) is meant the completion of C>°(D)
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with respect to the norm

L |(U7U)L2(D)|
HUHH*S(D)— sup —r
ver*(0) vllas(p)

v#£0

Then, by Lemma and Rellich Theorem, H*(D) is compactly embedded to
H* (D) for any s, s’ € R with s > s.

It is also well known that any differential operator of order m > 0 with coefficients
of class C¥1=™1(D) maps H*(D) continuously to H*~™(D), for s > m. To extend
the proper action of differential operators to the whole scale of Sobolev spaces,
one needs a slightly different definition of Sobolev spaces of negative smoothness.
Namely, for s > 0, denote by H ~5(D) the completion of C*(D) with respect to
the norm

lullgoemy = sup 2@zl
‘comp (D) ||U||Hs(D)
v#0

Obviously, H—*(D) is continuously embedded into H—*(D), if s > 0. According to

Lemma H~%(D) is the dual of He (D) with respect to the pairing induced by
(s)L2(D)- _

Any differential operator of order m > 0 with coefficients of class C°° (D) proves
to map H*(D) continuously to H*~™(D), if 0 < s < m — 1/2, and H*(D) to
Hs=™(D), if s < 0.

Moreover, the following result holds, cf. Proposition 12.1 of [LM72, Ch. 1, § 12.8]
for domains with smooth boundary.

Lemma 1.5. Let 0D be a Lipschitz surface. If 142 < s < 1 then any first order
differential operator with coefficients of class C*°(D) maps H*(D) continuously to
H*=1(D).

Proof. Indeed, the space Cgy,,,(D) is dense in H* (D) for all 0 < s’ < 1/2 (see for
instance Corollary 1.4.4.5 of [Gris85]). For 1/2 < s <1, we have 0 < 1 — s < 1/2,
and so

B |<'U7w)L2(D)| . |(va)L2(D)|
lwlgs-1py = sup F——— = ol
vem—+(p) IVlmi-s0)  wveez,, @ [Vla-2mD)

v#0 v#0

whenever w € H*~(D). Hence, given any u € C*°(D) and 1 < j < n, we get

|(v, 3ju)Lz(D)|

||8-u||Hs—1 D = Sup
j (D) veC, (D) [[v]] 21—+ (D)
v#£0
o;v, u
= sup M
VECGmp (D) ]| -+ (D)
v#£0
O:v|l#_. wllore
< sup I J ”H (D)” |z (D)
VECE, (D) [0l -2 (p)
v#0
<

cllull s (pys
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for the operator d; : H'~*(D) — H~*(D) is bounded, if s > 1/2 (see for instance
Corollary 1.4.4.6 of [Gris85]). O

Also the traces of functions from H*®(D), where s > 1/2, are well defined on the
Lipschitz surface 9D. More precisely, for 0 < s < 1, we define H*(0D) to be the
completion of C°°(D) with respect to the norm

|u(z) — u(y)|? 1/2
1wl 2 op) = (IIuH% +// DL ds,ds ) ,
P L*(oD) opxop |T —y[r Tt Y

If s > 1, then we define H*(0D) as the completion of C°°(D) with respect to the
norm

1/2
lullireomy = (32 10°ulBaomy + 32 10%uleaom)) -

| <[s] lee|=[s]

To justify the designation, we note that if 9D € C%!, then, for 0 < s < 1, one
arrives at the same space H*(9D) when completing C%1(9D) with respect to the
(equivalent) norm

lulaom + lullreomy)
L2(8D) u||Hs(aD) :

If s > 1 and 9D € Ol then using a proper partition of unity {¢,} on 9D one
obtains the same space H*(9D) as the completion of C*'' (D) with respect to the
(equivalent) norm

(X (3 10°@ilon + 3 10°6l o))
]

v BI<[s] 1B1=[s

Here, 07 are (tangential) derivatives in appropriate local coordinates on the surface
oD.

Let u € H*(D). There is a sequence {u;} in C°°(D) approximating u in the
H*(D)-norm. If s > 1/2 then {u;} is a Cauchy sequence in L*(0D). As usual,
the limit ¢,(u) of {u;} in L?(9D) is called the trace of u on D. It is known that
ts(u) does not depend on the approximating sequence {u;}. For 1/2 < s < 3/2, the
trace operator ¢, obtained in this way acts continuously from H*(D) to H*~1/2(9D).
Moreover, it possesses a bounded right inverse, see for instance [McL00] and [LM72]
Ch. 1, § 8] for domains with smooth boundary. If the surface 9D is sufficiently
smooth, then t, : H*(D) — H*"1/2(9D) is bounded and possesses a bounded right
inverse for all s > 1/2.

2. WEIGHTED SOBOLEV SPACES OF NON-NEGATIVE INTEGER SMOOTHNESS

Mixed problems for partial differential equations are often considered in weighted
spaces of Sobolev type. One chooses a weight function to appropriately control the
behavior of solutions near interface surface on the boundary where the boundary
conditions change their character.

Another motivation to introduce weights consists in possible geometric singular-
ities of the boundary of the manifold where the problem is posed. Indeed, local
analysis of formal solutions to a partial differential equation immediately shows that
there are solutions with typical behavior adequately described in weighted spaces
only.
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By the so-called Simonenko principle, the Fredholm property of a boundary
value problem is equivalent to the local solvability of the problem. While the local
solvability of elliptic problems is easily determined away from the set of singularities,
localization at singular points requires a hard analysis. However, this approach does
not work at all to study the spectrum of the problem, because the spectral problems
are non-local by the very nature. So, we are going to consider singular sets rather
globally.

To this end we fix a closed set Y C D situated on an (n — 1)-dimensional
surface. Introduce special weighted Sobolev spaces associated with Y. Let p be
a continuous non-negative function in D and let p be smooth away from Y. We
assume that 0 < p(z) < 1 for all z € D and p(x) = 0 if and only if z € Y. Moreover,
we require

plel=19%p € L>=(D) (2.1)

for all multi-indices a € Z%,. Estimates 1' guarantee various important prop-
erties of weighted Sobolev spaces with weight function p. One may think of p(x)
as the distance from z to Y locally near Y in D. If the set Y is empty, we choose

p=1.
Remark 2.1. Our results apply also in the case where Y contains cuspidal points of

dD, except for statements on traces, e.g., Theorems and Corollaries
lowi

Let s be a non-negative integer and v € R. On smooth functions with compact
support in D\ Y we introduce the scalar product

(U, V)35 (D) = / —2 Z P29 uday da

la|<s

Y) with respect to the cor-

and denote by H*7(D) the completion of C35,,, (D \
) is a Hilbert space. Starting

responding norm. By the very construction, H*7(D
from the scalar product

(u,v)ﬂw(p) :/D Z 0% (p° " Yu)0*(ps~7v) dx

jal<s

in C (D\Y) we get similarly a Hilbert space #*7(D).

comp

Remark 2.2. We emphasise that in order to define the spaces H*7 (D) and H*7 (D)
for a fixed s € Z>0, one needs p € C*(D \ Y) N L>(D) satisfying (2.1) for |a| < s
only.

As we allow for the set Y to be empty, the standard Sobolev spaces are not
excluded from consideration. Obviously,

HOY (D) = HO(D),
Hs5(D) = H(D,Y)

for all s € Z>p and v € R.

Lemma 2.3. For a function u to belong to H%7 (D) it is necessary and sufficient
that p~u be in L?(D).
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Proof. If u € H"7 (D) then there is a sequence {u;} in CS,,,(D\Y') which converges
to u in the H%Y(D)-norm. This implies that {p~7u;} is a Cauchy sequence in
L?(D). As the space L?(D) is complete, the sequence {p~7u;} converges in it to a
function v € L?(D). Obviously, v = p~7u. Conversely, suppose that p~7u belongs
to L*(D). As Cg5,p(D) is dense in L?(D), there is a sequence {v;} in C5,,,(D)
converging to p~ 7w in this space. It follows that the sequence u; = pYv; lies in
Coonp(D) C Cp(D\Y) and p~u; converges to p~"u in L*(D). Therefore, {u;}
converges to u in H%7 (D). O

From the definition of H*7 (D) it follows readily that if u € H*7(D) then
9%u € HO el (D)
for all multi-indices a with |a] < s.

Lemma 2.4. The space C5,, (D) is dense in H*7 (D).

comp

Proof. This follows immediately from the fact that C5 (D) is dense in L?(D), cf.

comp

the proof of Lemma 2.3 O

Although H%°(D) = H°(D), the space H*°(D) does not coincide with H*(D,Y))
for integer s > 0. Besides, H*7(D) is continuously embedded into L?(D) for all
v =0.

For particular configurations of singularities Y, if we choose as p the distance
from to Y in a suitable coordinate system, then the scale of Hilbert spaces H*7 (D)
coincides with that used in [BKO0G] for cone type singularities and [NP94] for edge
type singularities, the only difference being in indexing the spaces.

Let us also introduce an important re-indexation. Namely, for each s € Z>y and
v € R, we have H*7(D) = H>(=5)+5(D) and H*" (D) = H*>('=9)+5(D). Then we
set

H%Y(D) =: H"(D), H®Y(D) =: H>T™(D),

H*Y(D) =: H"(D), H*'(D) = H>**(D),
for s € Z>o. The significance of this re-indexation will be clarified later. In any
case, it allows one to distinguish important natural embeddings.

Our primary interest consists in the study of boundary value problems in the
re-indexed scales H*7 (D) and H*7(D). We first describe basic properties of these
spaces. Notice that the scales under study possess embeddings similar to those for
Sobolev spaces.

(2.2)

Lemma 2.5. Suppose that s, s’ are non-negative integers with s > s’ and the

function p € C*(D\'Y) satisfies for all o € 2%, with |a| < s. If moreover
v >, then

1) the space H* (D) is continuously embedded into H*' ' (D);

2) the space HS"(D) is continuously embedded into HS V' (D).

Proof. By definition,

[ull2s-14 (D) < ||ullagsr ()
for all u € Cogp,(D\Y), ie. H*7(D) is continuously embedded into H*~'7(D).
Since 0 < p < 1in D\ Y, we conclude that p=7 > p= in D\ Y, provided that
v > «'. Hence, if v > 4/, then

HUHHOW’(D) < [lull#o (D)
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for all u € C5, (D \Y), i.e. H%7(D) is continuously embedded into H%' (D). It
follows that

10%]| 3507101y < 0% ul[300.4-101 (D)
whence
[ull3gar v (py < llulles(p)
for all u € €2, (D\Y), i.e. H*(D) is continuously embedded into H*7' (D)

comp

provided s > s’ and v > +/. In particular,
[ullggor .o (py < Iltllieeso ()

holds for all u € C, (D \ Y), which proves the continuity of the embedding

comp
H*(D) — H*' (D). O
The following theorem states that the spaces H*7(D) and #*7(D) and their

re-indexed versions are weighted indeed.

Theorem 2.6. Let p € C5(D\Y) and hold for all multi-indices o with
la| < s, where s € Z>o. Then, for any 6 € R, the correspondence

Op (p‘s) cu— plu (2.3)

induces bounded linear operators
H™(D) — HT(D),  H*Y(D) — H*YH(D),
HD) = H(D), D) = (D).

Moreover, the operators in the first line are topological isomorphisms, the operators
in the second line are isometries.

Proof. As mentioned, all the spaces #%7 (D), H®(D), H*Y(D) and H*Y(D) co-
incide and

(2.4)

||P6u||?{0w+6(73) = ||UH?-L°v"f(D)7
which establishes the theorem in the case s = 0. For arbitrary s € Z>(, we obtain
immediately

10°ull sy = 17O ey = 16" ooy = Nulligonmy  (25)

showing that the operators in the second line of (2.4)) are isometries.
Note that (2.1)) implies p’ € L>°(D), where v’ = (u’.,...,u}.) is the gradient of
u. As (pou)’ = 6p°~p'u + pu’, we obtain

||p6u||3-Ll»7+5(D) = ||P5U||§¢0w+5(1>) + ||(P§U)I||?¢0wfl+6(p)

< HUH%OW(D) + 262 Hp/H%OO(’D)”pé_lu”%[(’vv—l-%—é(p) +2 ||P§U,||3-ww—1+é(p)

HUH%OW(D) +26° HP’|\%°0(D)||UH3{M(D) + 2||U,||i¢0w—1(p)

IN

max{2, 14+20% ||/ | Zoe () } lull31 )

for all u € H7(D). This proves the continuity of the operators in the first line of
(2.4) for s = 1.

To continue the proof we need an auxiliary assertion.

Lemma 2.7. If p€ C*(D\Y) and is fulfilled for all |a| < s, where s € Zx>q,
then

ple1=09%p% € L>°(D) (2.6)
whenever 6 € R and |a] < s.
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Proof. If |a| =1, then o = ¢;, with k =1,...,n, and so
p1—5akp5 — 5p1—6p§—lakp _ 581@[’ c Loo(D)
for all § € R, which is due to (2.1). Analogously, if |a| = 2, then a = ¢; + ) with
1<j,k<n,and so
p*=00;0kp° = 6(8 — 1) (9;)(kp) + 6 p(9;01p) € L(D)

for all § € R because of (2.1)).

We now proceed by induction. Assume that (2.6]) holds for all § € R and all multi-
indices a with |a| < m, where m < s. If « is a multi-index of length |a| = m + 1,

then 9% = 9 9, with some 1 < k < n and o/ € Z%,, where |o/| = m. Tt follows
that -

0°p° = 0% (Okp’) = 0 (0" "Ohkp) =6 Y (%) 07(p° 1) ¥ (Ohp)
B<a’

whence

plol =09 p% =5 3 (%’) (plBlI=(=1) 9B i1y (plo’ =Bl ga’ —B+ex )

B<a!
which is in L®°(D) by (2.1) and inductive assumption. Thus, (2.6 holds for all
§ € R and for all o € Z%, satisfying |af <m + 1. O

Further, for any u € H*7(D) we have, by definition, pl*/=79u € L?(D), pro-
vided that |a| < s. If |a| < s, then

p\a|—'y—6aa(p6u) — p|a| y— 62 8’8 ) 8(1 B
B<a
= Z (g) plP1=3 (9P po) pla=Bl=rgo=Fy,
BLla

Hence, combining Lemmas [2.5] and [2.7] yields
10 (p°w)|3g0.2 5101 py < Y (5) 10177207 p) | v (2) 10 P340, 1051 ()
B<a

for all u € H*7(D), i.e. p’u € H*IT9(D) and

||P§U||Hw+5(9) < clluflysm(p)

with ¢ a constant independent of u. This establishes the continuity of the operator
Op (p°) acting as H*7 (D) — H*7+°(D), and hence its continuity as operator acting
as HV(D) — H*" (D).

From what has already been proved it follows that for each 6 € R there is a
positive constant ¢ = ¢(s,~,d), such that

1/c(s,7+6, =0) [[ullss(py < [0°Ull3ge+5(p) < (5,7, 6) [[ull3e (D) (2.7)

for all u € H*7(D). Indeed, we only need to clarify the left-hand side estimate. On
applying the argument to the multiplier p™ we see that

w0y = P70 () lagsrvs-s(py < (5,746, —6) ||p’ul

for all uw € H*V(D), as desired. Substituting s+ v for v in (2.7) we arrive readily
at the estimate

lul

Hev+5(D)

1/c(s, s+7+8, =0) lull e py < llp°ull o py < s, 547, 8) [ullremy  (2.8)
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for all w € H>V(D).
Thus, when acting as in (2.4)), the map Op (p7) is bounded and invertible with
inverse Op (p~7). O

Lemma 2.8. Assume that p € C*(D\Y) and holds true for |a| < s, where
s € Zso. If 6 > 0, then the space H**+°(D) = H*°(D) is continuously embedded
into H*(D,Y) = H*°(D).

Proof. Indeed, if u € C2°, (D \Y), then

comp

||u||%{s(D) = Z ||aau||%2(73) < Z Haau||3.[o,s+67\a\(z>) = ||UH§{s,s+a(D)»
la|<s la|<s
because ,0_2(5“‘5_‘@') > 1 provided |a| < s and § > 0. This establishes the continu-
ous embedding H**+°(D) — H*(D,Y). O

Lemma 2.9. Suppose that s, s' are non-negative integers with s > s’ and the
function p € C5(D\'Y) satisfies for all multi-indices «, such that |a] < s.
Then

1) the space H*(D) is continuously embedded into H* " (D);

2) the space H*7 (D) is continuously embedded into H* (D).

Proof. Indeed,
el ooy = o llizoo) = cllo™ ull ooy = Nl ooy (29)

for all uw € C*(D,Y), with ¢ a constant which depends only on s and s’. This proves
the part 1).

By Lemma the space H*°(D) is continuously embedded into H®°(D).
Hence, there is a constant ¢ > 0, such that

o™ ull goopy < cllp™ ullme0(p) (2.10)
forallu € Cg5,, S@\Y). Applying Theoremwe see that H*7(D) is continuously
embedded into H*7 (D). O

Lemma 2.10. Let p € C*(D\Y) and hold for |a| < s, where s € Z>¢. Then
any differential operator

A= " aa(z)pl*"(2) 0 (2.11)
jaf<m

of order m < s with coefficients a, of class C*(D) maps H*7V (D) continuously to
HE=™AY="™(D) and H*Y (D) continuously to H*~™7(D).

Proof. Combining Theorem [2.6] and Lemma [2.5] we conclude that the operator
Op (p~!) maps the space H*? (D) continuously to H5~17=1(D). On the other
hand, if u € H*7(D), then

10,0211 (py = /p—Q(’Y—l) S A0l d
P la<s—1
< /,0_27 Z plol|oou|? da
b 1<]al<s
< ull3gen
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for all 1 < j < n. Hence, the derivative d; maps H*7(D) continuously into
H5~17=1(D). As multiplication by a function from C*(D) is a bounded opera-
tor on H*(D), we see that the statement is true for all first order operators of type
(2.11)). For higher order operators one may argue by induction with the use of The-
orem [2.6] and Lemmas 2771 The second statement follows from the definition
of the re-indexed scale. O

Lemma 2.11. Let p € C5(D\Y) and hold true for |o| < s, where s € Z>g.
Then u € H*Y(D) if and only if p* Yu € H*(D). Moreover, if u € H* (D) then
p°Yue H*(D,Y).

Proof. This is a direct consequence of Theorem and Lemma [2.8 O

3. WEIGHTED SOBOLEV SPACES OF FRACTIONAL AND NEGATIVE SMOOTHNESS

Lemma 2. TT]enables us to introduce weighted Sobolev spaces of fractional smooth-
ness s > 0. Namely, for functions u € CS5, (D \ YY), we consider two norms

comp
2 S—v,,112 /2
ulleny = (Il + 0" 0l )
lollgony = I* "ullieo).
Write #*7(D) for the completion of the space C5,,(D \'Y) with respect to the
norm || - [|3+.+(py, and H57 (D) for the completion of Coomp(D\Y) with respect to

the norm || - [z (p)-

A scale similar to H*7 (D) was used in [Kon66] to study boundary value problems
for parabolic equations. However, he restricted the study to resolved singularities
of transversal intersections, cf. Section

for a fixed s > 0 one needs merely that p € C*1T1(D\ Y) and that ( be fulfilled
for |a| < [s] + 1.

Remark 3.1. We emphasise that in order to define the spaces H* (D) and H*" (D)
‘

From Lemma it follows that, for s > s’ > 0, the embeddings

H*35(D) — H>*(D)=H*(D,Y),
H(D) — HE(D), (3.1)
HS’S(D) NN 'HS/’S/(D),

are continuous. As before, we set

H*(D) = H**/(D)
H*(D) = H&+(D)

for all fractional s > 0 and v € R, thus extending the scales H*7(D) and H*7(D)
from s € Z> to all real s > 0.

As the realization of the dual space depends essentially on the pairing (see
Lemma , we should be motivated in the choice of paring to introduce weighted
Sobolev spaces of negative smoothness. In the study of boundary value problems for
second order differential operators in the scale H*7(D) one denotes by H~*7(D)
the dual space of H*7(D), s > 0, with respect to the pairing induced by the scalar
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product in H%7(D). In other words, H~*7(D) is the completion of C55,, (D \'Y)
in the norm
I(U7 U)HUFY(D)|
ull r—sm(py = sUp o
vEHY (D) ||U||st(D)
v#0

By H~*7(D) is meant the dual space of H*7(D), s > 0, with respect to the pairing
induced by the scalar product in H%7(D). Thus, H%7(D) is the completion of
C2..(D\Y) in the norm

comp

|(U7U)H0W(D)|
lullg oy = sup @
vEH?® (D) ||v||H57"r('D)
v#0

This definition leads to a generalised setting of the mixed problem using the
pairing in the space H%7(D). The advantage of the approach is that it allows one
to argue as the classics did in the usual Sobolev spaces. In Lemma we prove
that the definition is actually equivalent to the standard one using the pairing in
HO9(D).

For the initial scales H*7(D), Hs (D) one ought to use another duality. Namely,
H~%7(D) is defined to be the dual of H*~7(D) with respect to the pairing induced
by the scalar product in H%%(D), and similarly for #~*7(D), where s > 0. As
already noted, the representation of the dual space depends essentially on the pair-
ing. While all the realizations coincide as topological spaces, the routine calcula-
tions might be different. Thus the definition H*~7(D) and H*~7(D), s > 0, needs
further clarification (see below).

The scales of function spaces just introduced are still scales of proper weighted
spaces.

Corollary 3.2. Let s € R. Assume that p € CISITY D\ Y)NL>®(D) satisfies
for all a € Z%, with |a] < [|s|] + 1. Then, for any § € R, the operator Op (p°)
induces isometries
H>'(D) — HH(D),  H(D) — HH(D).

Moreover,

lulligonpy = 1" "ullme ),

lull gorpy = o™ ullms(p)
for allu e C, (D\Y).

comp

(3.2)

Proof. Note that for s € Z>g the statement has already been proved, see Theorem
The mappings in question are actually isometries for all real s > 0, for the
equality still holds for any s > 0. Moreover, the first equality of follows
directly from the definition of the space for all real s > 0. If s > 0, then, for each
ueC® (D\Y), we get

comp
|(v,u)L2(D)|
lulig-cnpy = sup T
vEHT V(D) HU”’H&*’Y(’D)
v#0
_ sup [(0° 70, ™Y u) L2(p)|
veH> V(D) HPSJ”UHHS(D)
v#0

= o™ Tullg-s(py),
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i.e. the first equality of (3.2)) is valid for all s € R. Hence it follows that identity

(2.5) holds true for all real s < 0, and so Op (p°) : H*7(D) — H*'*9(D) is an
isometry for s < 0, too.

Similarly, for s > 0, the second equality of (3.2]) is an immediate consequence of
the definition of the space. Using the first equality of (3.2]) we see that

Jull g--. = sup
H=e(D) veH® (D) ”UHHS,’Y(D)
v#0
_ sup |(p™ v, p™ ) 2 ()|
vemer oy P70 He(p)
v#0

= |p7"ullg-+(p)

holds for all u € CZ5,,(D\ V). Therefore, the second equality of (3.2) is still true

and the operator Op (p) : H*7(D) — H*719(D) is an isometry for all real s < 0,
as desired. O

Corollary 3.3. Let s € R and let p € CUsITL(D\ Y) N L>(D) satisfy for
all « € 7%, with || < [|s|] + 1. Then, for any § € R, the operator Op (p°) induces
topological isomorphisms

WD) - WD), HWUD) - HY(D).

Proof. We first notice that, for s € Z>(, the statement is contained in Theorem
2.0l

Further, for 0 < s <1 and § € R, we get

—(v+8 s—(v+0

Ip )06U||2L2(D) + o )P‘;UH%{s(D)

[ull304 0y + 10" ullFre ()

||P5U|‘§-Ls,w+é(p)

||U||3{m(1>)7

and, in general, for non-integral s > 0 and § € R, we obtain

—(y+9) &
||ﬂ§U||§1m+6(D) = \|P§U||3{[s1,w(p)+\|f0$ rt )P U||%15(D)

IN

CHUH’QHSVY(D)

for all w € H*7(D), where c is a constant independent of u. Therefore, the operator
Op (p?) maps H*? (D) continuously to H5+(D) for all s > 0. In particular, it
maps H*7(D) continuously to H*7+°(D) for all s > 0. Our next objective is to
prove this for s < 0.
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Pick s > 0. Since the operator Op (p~°%) : H*>7+®(D) — H*7(D) is bounded, it
follows that

(v, p°w) ro.v+s () |
loully-onismy = suwp = )
vEH (D) ||U||st+6(D)
v#0
(0%, w) oo ()| lp™ 0| o ()
= sup

vEH* 7+ (D) ||P_‘5’U||HM(D) [0]| 57+ (D)
v#0

|(w, u) o~ ()|
¢ sup ———t——

weH*" (D) Hw”st(D)
w#0

IN

= ¢ ||U||§rsw(o)

for all u € C,,,(D\Y), i.e. the operator Op (p?) : H=*Y(D) — H~*79(D) is
bounded, too.

Arguing as in Theorem we easily obtain estimates for all s > 0 and
estimates (2.8) for all real s. This means that the maps H>7 (D) — H*1+(D),
for s > 0, and H>Y(D) — H*7T9(D), for s € R, induced by the multiplication
operator Op (p?), are bounded and invertible and their bounded inverse maps are
induced by Op (p~°).

To settle the question with the maps Op (p°) : H*7 (D) — H>7+(D) we need
to clarify the pairing defining the space H*7(D) for negative indices s. If s > 0
and v > 0 then H*7(D) is continuously embedded into L?(D) and we may realise
the scheme above with H® = H%%(D) = L?(D). According to it, HT = H7(D)
produces the dual space H~ = H~*~7(D) as the completion of C5,,,(D\Y) with
respect to the norm

B (v, u) L2(p)|
||u||H,5,,.,(D)_ sup .
vens () [Vl (D)

v#0

Then, as the operator Op (p°) : H57~9(D) — H*7(D) is bounded for all s > 0, we
have

(v PéU)L2 D)l
”P&u”g-rs,ﬂw(p) = sup Lo P 2D
vEHST (D) HUHHSW*‘S(D)

v#0

|(/35U7U)L2(D)| ||P§U||Hsvw(73)

= sup ;
vEHS YT (D) ||,0 U”HSW(D) HU”HSW*J(D)
v#0
w, U
< ¢ sw [(w,u)p2(p)

wens (D) W]z (D)
w#0

= CHU||’2}-L—Sv—”/(D)

for all u € C°__(D\Y), provided that v > 0 and v — & > 0. Hence, the operator

comp

Op (p?) : H=577(D) — H~*~7+9(D) is bounded. For v < 0 we use the following
trick.
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Lemma 3.4. If s > 0, then the norm in the space H™*"7(D) can be equivalently
described as
(v, p7u) L2(D) |
sup ————

veHO(D) [vll3=0(p)
v#0

Proof. This follows from the fact that Op (p?) : H*%(D) — H*" (D) is a topological
isomorphism for all s > 0 and v € R. This has already been proved above, as
desired. (]

Let us continue the proof of the corollary. By Lemma |3.4

(v, P72 p°u) L2 () |

10Ul e sy~ sup
" ®) veH>O(D) [v][225.0(p)
v#0
|(v, p7u) L2(D)|
sup ——————
vEH*O(D) [0ll342.0(p)
v#0
~ ||U\|3¢—sv—v(p)
for all u € C5,,(D\Y), i.e. the operator Op (p°) : H=* (D) — H~*"7H(D) is
bounded.
Finally, the assertion about the isomorphisms follows by the same arguments as
those in the proof of Theorem O

The re-indexing relation between the scales H*7(D) and H**T7(D) still holds
for negative s.

Lemma 3.5. For each s >0, the norms of the spaces H=*7(D) and H™*>~*+7(D)
are equivalent on C5, (D\Y'). In particular, the spaces are isomorphic as Banach
spaces.

Proof. Let first s > 0 and s — > 0. Then, using Corollary we get

lull gDy = sup
veEH* (D) ”vHHS»W(D)
v#0
[(p™* 0, u) L2 ()|
= sup
e Bamy Tl o)
v#£0
_ sup |(P72707u)L2(D)| H/)_Q’YUHHSJ*W(D)
vl oy T T 0l a0y ol
v#0
727 8,8—
< sup |(w’U)L2(D)| . (T 2mr] | PY2S (D)
e i) Tl @) veroo oy Mol o)
w#0 v#0
< cllully=s -+ (D)
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for all u € C,,,(D\Y), with ¢ a positive constant independent of u. On the other
hand, in this case we have

_ \(”»U)L2(D)|
||U||7-rswfs+w(p) = sup ITRTE
vEH" " 7(D) [0ll345.5= ()

v#0

[(p* 0, u) g0 (D) | |07V 345 544 (D)

= sup 5
verre =1y 1P270llneerrvpy  [[0llaee—v (D)
v#0
w, U) go, 27| 4ys.s
< sup |(w, ) o ()| 0%V 34554+ (D)
wern® (D) [[Wllae () VEH® V(D) [0l}320.5 (D)
w#0 v#0

< cllulla-sm(p)

for all w € C, (D \ Y), which is due to Corollary

comp

If s — < 0 then

|(v, p*7u) L2 (D]

||U\|Hfmfs(p) ~ sup
vEH*O(D) [0ll342.0(p)
v#£0
(P70, w) w0 (D) 110" T Y0 30550 (D)
= sup pors
verso@) 10771 0lgesray  [vllaso(p)
v#0
< sup —KU}’U)HM(D)' sup ||'08+%||HS’””(D)
= ety Twlmem verotom  Tolbeom)
w#0 v#0

< cllullg-s~(p)

for all u € €22 (D \Y), which is due to Corollary [3.3] Similarly,

comp

”u”H*SW(D) = sup
veH*Y (D) ||U||Hm(D)
v#0
_ sup [(p=CH 0, 5= u) L2 py | 1o~ 0] 3400 ()
vensstroy PV lye0(p) [[V]l 3.4+ (D)
v#0
w, p*u =Myl .,
< sup [(w, p*~Tu) 2 ()| sup llp [[3¢5:0 (D)
wernsomy  NWllrsomy  pepstrpy Vllaest (o)
w#0 v#£0
< cllullpg-s-s+v(py

for all u € C5,,(D\'Y) where ¢ is a constant independent of u and different in
various applications.
Hence it follows that the spaces H~*7(D) and H~ %577 (D) coincide as Banach

spaces for all s > 0. (]

It is well known that the Sobolev spaces of fractional smoothness can be defined
with the aid of appropriate interpolation procedure. When the field of scalars is
the real numbers, one uses the so-called (real) trace method [Tri78, 4.3, 4.4] and
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(real) K -method [Tri78) 1.3, 1.18]. The two real interpolation methods are often
equivalent, see Theorem 1.8.2 of [Tri78].

We now wish to test interpolation properties of spaces H*7(D) and 7:1577(’17).
For 0 < 6 < 1, we denote by Hy = [Hy, H1]p the result of interpolation between
Banach spaces Hy and Hj.

Lemma 3.6. Let s € R>( be non-integral. Then

Ho(D) = [HILE(D), HIE L (D)) = [HEN(D,Y), I (D, Y)], 4,
H*7(D) = [HFA(D), HEIH (D)), .
Proof. For non-integral s > 0, the Sobolev space H*(D) can be obtained as a
result of interpolation between the spaces H!*/(D) and HI*'(D) by the (real)
trace method. Since the norm in H**(D) coincides with that in H*(D) for all
5 € Z>g, it follows that the space H**(D) = H*(D,Y) with fractional s > 0 may be
alternatively described as the completion of CS (DY) with respect to the norm

comp

obtained as a result of interpolation between H*+[*/(D) and HIH1E+1(D). Finally,
Corollary 3.2| implies that [[ul[;7..,p) = [P°""ullge.c(p) for all u € C, (DY),
whence we get

ull g (py = lo™ "l (D)

On arguing as above we establish the second interpolation formula of the lemma,
as desired. (]

For the scale H*7(D) the arguments are much subtler.

Theorem 3.7. For any non-integral s > 0, we get

Hoo(D) = [HIHE(D), W (D).
H(D) = [HIW(D), HEH(D)), .

Proof. We begin with an auxiliary result.
Lemma 3.8. Let vy € R and 0 < 0 < 1. Then
HOTH(D) = [HO(D), HO (D)o

Proof. We exploit the (real) K -method mentioned above. According to it, the
norm in the space Hy = [H*7 (D), H*7T1(D)], is given by the integral

o 1/2
e, = ([ o2 K war)
0

where

K(t,u) = inf
(t,u) onE

with ug € H%7(D) and u; € HOYTH(D). It is easily seen that

L (HUOHHOW(D) + tHul ||’}-L0,’Y+1(D))

1/
K(t,u) ~ inf (HUOH%LOW(D) +t2HU1Hf2Ho,-,+1(D))

u=uog+u

1/2
=t (ol Py )
D

u=uo+ui

and so /
1/2
K(t,u) ~ (/ p_27|umin{1,tp_1}\2dx)
D
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forallu € C2, (D\Y), cf. 1.18]. Obviously,

comp
. _ tp(x), if t<p(x),
min{1, tp 1}:{ 1,p( : if t>ZEx;.

Now, by direct calculation with the use of Fubini’s theorem, we obtain

/ =2 K2 (¢ u) dt

0

p(x) S
/p—QV(p—Q/ t1_29dt+/ t_1_29dt)\u|2 di
D 0 p(x)

1 ~2(r40) 2
= d
20(1— 0) /D P ful” dz

lullZ,

i

Hu”i[mwe(p)

for allu € C2, (D\Y). Thus, the norms in Hy and H?7+%(D) are equivalent and

comp
these spaces coincide as Banach spaces. ([

Let us continue the proof of Theorem [3.7] To this end we note that

”qu{O,O(D) ~ Hu||§r¢0,0(p)+|‘u||zm(p),
”u”HLI(D) = HUHHOJ(D)"’HUHHI(D)

whenever u € C25 (D \ Y). Using Lemmas and we readily deduce that,

comp

given any 0 < s < 1,
[l ey ~ Null3g0.e oy + el

forallu e C2, (D\Y).

comp
For arbitrary fractional s > 0 we may argue in much the same way. Indeed, by

Lemma 2.8 we get

||U||3,¢[s],[s](p) = Z ||3au|\§{o,[sJ—\a\(D) + ||U|\§J[s1(p),
o] <[s]
2 _ o 112 2
lull3ger+1142(py) = Z 10%ull3g0.11- 101 () + 1l 710042 ()
| <[s]+1

on functions u € C2, (D \ Y). Again, applying Lemmas and [3.8| we see that

comp
lullppgis 1Dy st vi+1 Dy, = Z ||8au|\?.¢o,s—|a\(p)+||U||%{s(p)
la|<[s]
= ||U||3{s,s(73)

for all u e C,,,(D\Y).

comp

Finally, Corollary implies |[u|lzsv(p) = [|p° Vull3s5(py on functions u of
Coonp(D\Y). In particular, |[ullgs~p) = |lp™"ullgss(p) and so we apply what
has already been proved to establish the second interpolation formula of Theorem

31 O
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Part 2. Embedding theorems
4. EMBEDDING THEOREMS FOR WEIGHTED SOBOLEV SPACES

The proof of embeddings below is especially simple if one applies interpolation
arguments. To begin with, we mention an obvious fact.

Lemma 4.1. Let s be an integral number and let p € C1¥/(D\'Y) satisfy
for all |a| <|s|. If vy >+, then the space H*7 (D) is continuously embedded into

H' (D).

Proof. For integer s > 0, the assertion is contained in Lemma As the embed-
ding H*7(D) — ’HS’”’,(D), v >+, is continuous and has dense range for s € Z>o,
we see that the embedding

H= (D) = (H*T (D)) (H7(D)) = H™>7(D)
is bounded, too, with —v" > —~. O
Theorem 4.2. Let s and s' be real numbers with s > s', and p € CEITH(D\ Y)

satisfy for all multi-indices o with |a] < [s]+ 1. If s > &', then the space
H7 (D) is continuously embedded into H*"7 (D).

Proof. Suppose s > s’ > 0. Using Corollary Lemma (for integer s') and
the definition of the norm in H*"* (D) (for non-integral s'), we obtain

’_ ’_

10" ullgor oy < 197 T ullyger e (py
= |00 " ullyyerr ()
< cllp® Mullys -0 (p)

cllp® ullyger o py

(4.1)
for all Cg5,,,(D\'Y), with ¢ a constant independent of u. On the other hand, as
0 < [¢'] < s], from Lemma Theorem and the Sobolev embedding theorem
it follows that

o>l 2 ) o™l oy + 10" ull Gy )
C(”“Hi{[S’]n(D) + " ullfre (p))

c (HU”?.L[sM(D) + 0 ullFre ()

IN

IN

(4.2)

for all C5,,(D\'Y), where ¢ and ¢ are constants independent on u. Combining

(4.1), (4.2) and the definition of the space H* (D) yields

[ellgsr v py < ellullagen ()

for all (D \ Y), with ¢ a constant independent on u. This establishes the con-
tinuous embedding H*7 (D) < H* V(D) for 0 < s’ < s.



24 A. SHLAPUNOV AND N. TARKHANOV

Assume that —s’ <0 < s and v > 0. Then

|| H _ ‘(U7U)L2(D)|
Ua=stimny = ST e
vEH V(D) M= (D)
v#0
_ sup (0™ 70, pPu) L2 (D)
ven (D) [oll32 ()
v#0
=
ven' oy IVl 2 ()
v#£0

< cllullye (o
for all u € Cgg,p, (D\Y), the last estimate is a consequence of continuous embeddings
H5 V(D) — HO~V(D) and H*' V(D) — HO (D). If still —s’ < 0 < s but v < 0,
then we obtain

(v, pP7u) 12Dy

lully-sr .~ (py = sup
" ven (D) ||U”HS""(D)
v#0
[vllz2(p
= sup W||P7UHL2(D)
UE’}_LS,,U(D) Hs'.0(D)

v#0

A

< cllullys - p)
for all w € C2, (D \Y), the first equality being due to Lemma and the last

comp
estimate to the continuous embedding H* (D) — L2(D).
Finally, let —s’ < —s <0, i.e. ' > s. If v > 0, then
o |(07U)L2(D)|
I L ” i
veH (D) H="7(D)
v#0

(v )2 ()| [[0]l3e ()

= sup
o Mol Tl
v#0

cllullz—s—~(p)

for all w € C2, (D \Y), since H* (D) is continuously embedded into H*7 (D). If

IN

comp
v < 0, then
. \(%PVU)LQ(Dﬂ
lullyrr vy = sup PN
ven oy 0l o)
v#0
(v, pu) L2y [[V][345:0(D)
sup

ver oy N0llaeo@) (vl o)
v#0
¢ ||u||’}:L*817w(D)
for all u € C2,, (D \Y), where the first equality is due to Lemma [3.4/ and the last

comp

estimate due to the continuous embedding H*"0(D) «— H*(D).

IN
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We have thus established the continuous embedding H* (D) — H*' (D) for all
s > s', as desired. O

We are in a position to say more about the re-indexed scales.

Lemma 4.3. If s > 0, then the space H*7(D) is continuously embedded into
H#*Y(D). On the contrary, if s < 0, then the space H*"(D) is continuously embed-
ded into H>7(D).

Proof. For s € Z>g the statement is contained in Lemma For non-integral
s > 0, the lemma follows from inequality (2.10) which is still true in this case by
the definition of spaces in question. If s > 0, then

|(U’U)H0w(v)| |(U7U)H0w(D)|

lullg-sn(py = sup ————— <c sup = llullz--.
(D) vEH® (D) ||U||HS,W(D) ’UEHS”Y(D) HUHFI"’“’(D) H—3:7(D)
v#0 v#0

with ¢ > 0 a constant independent on w, for H*7(D) is continuously embedded
into H*7(D) provided s > 0. It follows that the space H*7(D) is continuously
embedded into H*7 (D) for s < 0. For s = 0 the spaces coincide. O

Theorem 4.4. Suppose that s, s' are real numbers, such that s > s', and p €
CHEFY D\ Y) satisfies for all v € Z%, with |a| < [s] + 1. Then the space
H*7(D) is continuously embedded into H¥ V(D). If s > s, then the embedding is
actually compact.

Proof. To establish the continuous embedding H*7(D) «— H*(D), one can ex-
ploit the same arguments as those in the proof of Lemma (cf. inequality
which is still true for all s > s’ because of Corollary . Now we conclude, by
Corollary that a sequence {u, } is bounded in H*7 (D) if and only if the sequence
{p™7u,} is bounded in H*(D). Then, by Rellich’s theorem, the sequence {p~u, }
is precompact in H¥ (D), and so the sequence {u,} is precompact in FI“”/’V(D),
provided that s > s’. This proves that the embedding H*(D) < H*"(D) is
compact for s > s’ O

Theorem 4.5. Let 5,5’ € R be such that s > s', and let p € CFITYD \'Y)
satisfy for all multi-indices o with || < [s] + 1. Then the space H*7(D) is
continuously embedded into HS'W(D). If moreover s > s', then the embedding is
compact.

Proof. We will divide the proof into several steps.

Lemma 4.6. If s > s, then the space H*7(D) is continuously embedded into
H*'" (D).
Proof. Tt follows immediately from Lemma[3.4 and Theorem O
Lemma 4.7. Suppose s > s'. Then the space H>7(D) is compactly embedded into
H$'7(D).

Proof. First let [s] =[] > 0or 0 <s=[s]+1. If & <sand X is a bounded
subset of H*7(D), then X is bounded in H[*}**7(D) and Op (p~7)(X) is bounded
in H*(D), which is due to Theorem and Lemma By Rellich’s theorem,
Op (p~7)(2) is precompact in H* (D).
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By the weak compactness principle, there is a sequence {u,} in X weakly con-
vergent in H*7(D) to an element ug € H*7(D). Without loss of generality we may
certainly assume that ug = 0. Then the sequence {p~7u, } contains a subsequence
which converges to zero in H s’ (D). Passing to a subsequence, if necessary, we may
actually assume that {p~7u,} converges to zero in H* (D) (and, in particular, in
HI(D)).

Hence it follows that {u,} converges to zero in H!*'17(D). Indeed, by construc-
tion, {p~7u,} converges to zero in L?(D), i.e. {u,} converges to zero in H*7 (D).
This is enough, if [s'] = 0.

Suppose [s'] = 1. As the sequence (p~u, ) = —yp~ ' 1p'u, + p~7ul, converges
to zero in L?(D), we see that the sequence

p(p Muy) = —yp " pluy + p' M,
converges to zero in L?(D), too. This means that {u/} converges to zero in
HO (D).

In general, for [s'] > 1, let %u,, converge to zero in H%Y~I*/(D) for all multi-
indices « satisfying 0 < |a| < m, where m < [¢'] — 1. If o is a multi-index of
|a| = m + 1, then the sequence

8a(p_7uy) = p_’YaO"U,V + Z (%) ao‘_ﬁp_’y 8/6Ul,
BLa
BF#a
converges to zero in L?*(D). From Lemma it follows that pl®=fl+792=6p=7 is
uniformly bounded in D. Hence the sequence

Pl o* (p™Tu,) = pl*1=70%,, + Z (%)F,Ia*ﬁHv(aa*Bp*V) plB1=798,,

B

BZa
converges to zero in L?(D), too. This means precisely that {9%u,} converges to
zero in H%7~1el(D). Summarizing we conclude by induction that {9%u, } converges
to zero in HO~lI(D) for all o with |a| < [¢], and hence {u, } converges to zero in
HI1Y (D), as desired.

On the other hand, {u, } is bounded in H[*}**7(D), and so an easy computation

shows that

lusl sy = p ST prerHelgey, gl gy da
D
lo| <[s']
<Y 10Ul a-ta1 () 0%y 340,25 o1 ()

lo|<[s']

IN

C ||UV||'H[S’]‘25—S—7(D)7

which tends to zero, as v — oo, if 26 — s — v < 7 or, equivalently, 6 < (1/2)s + 7.
Now we see that

ol yonspy = /p—% S /el gy, o (/25 Hel g d
D
ler|<[s']
S Z ||aaul/||HO,257(1/2)3777|&\(D)||8auleHO,(l/2)s+'\{f\a|('D)
o <[s']
<

¢ |Juw llggin.arzsen oy
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with ¢ a constant independent of w,,, provided that 2§ — (1/2)s — v < s+ ~ or,
equivalently, if § < (3/4)s 4+ . From what has been proved above it follows that
the right-hand side tends to zero, as v — oco. On repeating the same arguments
once again we obtain

||’LLV||'2H[S/],5(D) - /pfza Z pB/Dstrtlal oy, = (/5= Halgag g
P jal<ls]
< Z 1% [l340,25- /815101 () 0%t [l340. 378144101 (D)
la|<[s']
<

¢ ||UV||H[S’]‘(3/4)S+W(D)7

where ¢ is a constant independent of wu,, provided that 26 — (3/4)s — v < s+
or, equivalently, if 6 < (7/8)s + . By the above, the right-hand tends to zero, as
v — 0.

Now we may argue by the induction. Set

g = 1/2,
4.3
¢ = (1+q-1)/2 (4.3)
for j = 1,2,.... Assume that ||uy|\,2}{[5/]75(p) — 0 for all § satisfying § < ¢;s + 7.
Then
||UVH§-[[S’],5('D) = / p—2§ Z pQJS+’Y+|a|6auV p—qjs—’y+|a\8auudx
D 7
o <[s']
< Z HaauVHH“”*‘ZjS*W(D)HaaUVHH&(qjsﬂ(D)
o <[s']
<

C||UV|‘H[SI]quS+’Y(D)7
the constant ¢ being independent of u,, if 2§ — g;s — v < s + 7 or, equivalently, if
0 < ¢j+15 + . The right-hand side converges to zero, as v — oco.

It is easily seen that {¢;} is a decreasing sequence of positive numbers. Moreover,
it has the limit ¢ = 1, as it follows from recurrent formula ([.3). Hence, {u,}
converges to zero in H['15T7(D), and so in the space H**'T7(D), if s > s’ > 0.
This just amounts to saying that H*7(D) is compactly embedded into HS/’“Y(’D)7 if
s> >0.

Furthermore, if s > [¢'] + 1 > 0, then we have the following line of continuous
embeddings

H*Y(D) « HEH(D) — H¥7(D),
the first one being compact. Hence we conclude that the theorem is true for all
s> 0 and s’ > —1 satisfying s > s’.

If s < 0 < s, then Lemmas m and yield immediately the continuous em-

beddings

H*Y(D) < HE(D) — HYV (D) — H* (D)
The last of these embeddings is compact because of Lemma [I.2] and the discussion
above. Hence the embedding H*7(D) < H*7(D) is compact, too.

Finally, for s’ < s < 0 we may argue by duality. Namely, we have already proved
that the embedding e_y _, : H~*7(D) — H~57(D) is compact (provided that
—s' > —5>0). As the spaces H=*7(D) and H~*7(D) are reflexive (see Remark
, we see that the adjoint e’ , _ : H*7(D) — H*"7(D) is compact, too. If ¥
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is a bounded set in H~%7(D) then, by reflexivity, it contains a weakly convergent
sequence, say, {u,}. We get

|(e—sr,—s0, Uy — uu)HOW(D) |

lew = wullienoy = sup_ ol
V€€, (D\Y) (D)
v#0
— sup |(U7€L8/’7S(UV _uu))Ho,y(Dﬂ
VECT My (D\Y) V]l -+ ()
v#0

|\e’_s/7_s(u,, — uu)||Hs,37(D)

for all 4 and v. Since €’ , __ is compact, it follows that {e’ ., _ u,} is a Cauchy

sequence in H* (D), and so {u,} is a Cauchy sequence in H* (D) Hence, ¥ is

precompact in H* (D). O
Theorem is proved. O

We are now in a position to establish embedding theorems for the initial scales
H7(D) and H>7 (D).
Corollary 4.8. Let s,s' € Z, k = max{|s|, |s'|} and let p € C*(D\Y) satisfy
for all multi-indices o with || < k. If s > s" and vy > ~', then H*V(D) is compactly
embedded into H* "' (D).

Proof. By definition, H*7(D) = H*7~%(D). Under the hypothesis of the corollary
we have s > s’ + 1. But then Theorem yields the compact embedding
'HS’V('D) N Hszs,yfs(D) _ rHszs;yfAs(D)
with any As > 0. Choose As € (0,1) in such a way that 0 < As < v —+/. Then
Theorem [.2] and Lemma [£.1] yield continuous embeddings
sz—As,'y—As(D) AN rHs—l,'y—As(rD) N Hs—l,v’ (D) N Hs/,'y' (D),
showing the corollary. O

Corollary 4.9. Let s € R be non-integral and let p € CUSIH1(D\ Y) satisfy
with |a| < [|s|]] + 1. If v >~ then H*Y(D) is compactly embedded into H¥"' (D).

Proof. As we already mentioned, H*7(D) = H*7~*(D). Under the hypothesis of
the lemma we have [s] +1 > s > [s]. But then Theorem yields the compact
embedding

HS”Y('D) N Hs—Asgy—s(D) — /Hs—Asgy—As(»D)
for all 0 < As < s. Choose now As in such a way that 0 < As < s — [s] and
0 < As < v —+'. Combining Theorem Lemma 2.5 and Lemma [£.1] we get
continuous embeddings

A= A5(D) oy YL As(D) = YA T =49 (DY < sl (D),
establishing the corollary. O
Lemma 4.10. Suppose s € R>q and v > +'. Then the following conditions are
equivalent:

1) H5V(D) is continuously embedded into H*' (D);
2) H*" (D) is continuously embedded into H*>"' (D);
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A

3) There is a constant ¢ > 0, such that ||p7’”,u|\Hs(D) < cllullygs.s(py for all
u € H>*(D).

4) There is a constant ¢ > 0, such that ||p7*7'u\|Hs(D) < cllullgs.opy for all
u € H*O(D).

Proof. The equivalence of 1) and 3) follows immediately from the definition of the
spaces and Lemma [2.5] for

5o oy = Ntll5g.27 oy + 1077 Wl (py = Nl () + 1077 " ulle ()
HUH%LSW(D) = ”qu{[s]w(D) + ||Ps_7u||§{s(D)

because p*~Tu € H**(D) for all u € H>7(D) (see Corollary [3.3).
Similarly, the equivalence of 2) and 4) follows immediately from the definition
of the spaces and Lemma [2.5] Indeed,

el ) = 120 oy + 107 000y = Il + 167 ™l .
[ull e (D) = IIuIIZ[S],M(D) + ol oy

because p~7u € H*%(D) for all u € H*7(D) (see Corollary [3.3).
Finally, the assertions 3) and 4) are equivalent for the spaces H®°(D) and
H**(D) coincide. O

Thus, embeddings allow one to establish natural embedding theorems for
the scales H*7 (D) and H*" (D) with respect to the smoothness index s € R. In
order to get analogous embedding theorems for the scales H*7(D) and H*"(D)
with respect to the weight index « one needs to ensure an estimate

||105U||HS(D) < clull3e.s (D)

for all u € H**(D) with s € R>g and ¢ > 0, where ¢ is a constant depending on
s and & but not on u. For integer s such an estimate follows from Lemma [2.5] and
Theorem immediately. Our task is to derive the estimate for all non-integral s.
However, it may cause the function p to satisfy additional restrictions, cf. Section
[ below.

Lemma 4.11. Assume s € R>q and v > ~'. Then ﬁIs’"’(D) is continuously em-
bedded into H' (D) if and only if there is a constant ¢ > 0, such that

1077 ull s (py < cllulls(p)
for allu e C*(D\Y).

Proof. The lemma follows from the definition of the spaces involved immediately,
for

lull gor oy =l ullFre oy = 10777 07 ullFre ().
[y = o0l
because p~Tu € H*%(D) for all u € H*7(D) (see Corollary . O

To finish the preliminary discussion, let us describe the boundary properties of
functions of the weighted spaces.
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For this purpose we assume that ¥ N dD is situated on an (n — 2)-dimensional
surface in 9D. Define the trace on 9D for functions of H*7(D) and H*7 (D), where
1/2 < s < 3/2. As before, we require

p € C(D\Y),

if1/2<s<1,and
p € C*D\Y),
pl.pp" € L>(D),

if 1 < s < 3/2. These assumptions enable us to keep the definitions of spaces
H5Y (D) and H*7 (D) with 0 < s < 1 and all the statements proved above for
H>Y (D) and H*Y (D), where 0 < 5 < 3/2.

More precisely, let ds stand for the area form on 9D induced by the Lebesgue
measure in R™. We introduce the scalar product

(4.5)

(oo = [ uwds (4.6)

for u,v € Ceomp(0D \ Y). Denote by H®7(9D) the completion of Ceomp(0D \ Y)
with respect to the norm

B 1/2
Jullosomy = ([ 7> lufds)
oD

induced by (4.6]).
For 0 < s < 1, we write H*7(0D) for the completion of C% (9D \ Y) with

comp
respect to the norm

. /
lullyeesom) = (1l omy + 10° ullrecomy ) -

Similarly, let #*7(0D) denote the completion of Coutip(OD\Y') with respect to the
norm

[l ooy = 10° ™ ullFre oy -

Suppose u € H*7(D), where s > 0. From Corollary it follows that the
function v = p* Yu belongs to H**(D). By the above, H**(D) is continuously
embedded into H*(D), which is by the very definition for non-integral s > 0 and
due to Lemma for s € Z>o. Since for the Sobolev spaces H*(D) with s > 1/2
there is well-defined bounded linear trace operator ts : H*(D) — L?(9D) (see for
instance [Tri78), § 4.7]), we define

tsu = p "t (p° Tu) (4.7

to be the trace of a function v € H*7 (D) on the boundary. For the re-indexed scale
H?®7(D) we introduce the trace operator by

tsu:= pVts(p~ u), (4.8)

if we H*Y(D) with s > 1/2.
On arguing in much the same way we define the traces of functions of H*7(9D)
and H*7(9D) at the surface 9D.
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Theorem 4.12. Let Y NID be situated on an (n — 2) -dimensional surface in 0D,

1/2 < s<3/2, and or be fulfilled. Then formulas and (@ induce

bounded trace operators

75[5”7(2)) N /}Z{s—l/2,w—1/2(8rD>7
H*Y(D) — H*Y/*7(9D)

provided s > 1/2. Moreover, these trace operators possess bounded right inverses.

Proof. From the trace theorem for Sobolev spaces it follows that the operator ¢
maps H*(D) continuously to H*~1/2(9D), if 1/2 < s < 3/2 (see for instance
[McL00]). And Corollary yields the desired continuity of the trace operator,
showing the first part of the theorem.

Pick ug € 7:[5_1/2’7_1/2(827). By definition, the function vy = p*~Yug belongs to
H5—1/25-1/2(9D) = H*~'/2(9D). By the trace theorem for Sobolev spaces, there
is a function v € H*(D), such that ts(v) = vg on D and

[vllzspy < cllvollga-1/2(0m)

= C||U0Hﬂs—1/2,s—1/2(ap) (4.9)

= C ||ps_7uo\ 7_”[571/2,571/2(3D)7

where the constant ¢ is independent of ug. Moreover, Corollary implies readily
that

lo*™ o lgze-1/2.0-1/2(0m) = ltt0llgza-1/24-1/2(0m) (4.10)

As the function ug is the limit of a sequence {u,} C C%, (D \Y) in the
He—1/279=1/2(9D) -norm, we see that vy is the limit of v, = p*u, € Cotp(D\Y)
in the H*~1/2(9D)-norm. By , the sequence {v, } converges to v in H*(D). In
particular, v € H*(D,Y).

Now we set u = p?~%v. As H**(D) = H*(D,Y), the function v actually belongs
to H**(D) and

lall ey = 1670l ey = ol 2

which is due to Corollary Combining this equality with (4.9)) and (4.10]) yields
the second part of the theorem. O

Theorem 4.13. Let Y NOD be situated in an (n — 2) -dimensional surface in 0D,

1/2 < s<3/2 and or be fulfilled. Then formulas and @) induce

bounded trace operators

rHs,'y(D) N /Hsfl/2,v71/2(8fD)7
H*Y(D) — H*Y27(oD).

Proof. From the trace theorem for Sobolev spaces we deduce that the operator
t, maps H*(D) continuously to H*~'/2(dD), if 1/2 < s < 3/2 (see for instance
[McLO0))-

Using Theorem [2.6/and Lemma[2.§ we see that p~7u € H'(D) C H'(D), and so
p~ts(u) € HY2(9D) for all u € H"7 (D). According to Lemma [2.8 and Theorem
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[2:6] we obtain

I " ts(Wllgizomy = lts(p " w) |l gr/2om)
cllp™ ull g1 (py
cllp™ull groepy

clull gy

INIAIA

(4.11)

for all uw € CYL,(D\'Y), where ¢ stands for a constant independent of u and
different in diverse applications.

If 1/2 < s < 3/2 is non-integral, i.e. different from 1, then, by definition,
p~Yu € H*(D) for all u € H*Y (D). Hence it follows that p~ 77, (u) € H*~/2(9D).

Furthermore,

It (@)l esreomy = oo™ W) esr20m
cllp™ ullgs (D (4.12)

<
< clullgs o)

for all u € Cg5,,(D\Y), with ¢ a constant independent of u and different in diverse

applications. - B
Let 1 < j < n and ¢ a smooth function in D. For any u € Cgy, (D \'Y), the
GauB-Ostrogradskii formula yields

/ p7(25+2771)|u|2¢1/jds :/aj(p7(25+2'yfl)‘u|2¢)d‘r
oD D
= [ 22y Dl R @) o+ [ (o D00 T o
D D

+ / (p~ ) (p~ TV om) pdar + / ™ T ul?p(0;¢)da.
D D
(4.13)
To continue the proof we need several lemmas.

Lemma 4.14. If1 < s < 3/2, then formula (@ induces a bounded trace operator
ty : H3Y (D) — H*~Y/27(0D).

Proof. Choose a coordinate neighborhood U,, of a boundary point, such that U, "D
is given by 2™ > f,(z'), where f, is a Lipschitz function on R"~1. Then the part
of the surface 9D in U, is given as the graph of the function z" = f,(z'), cf.
the beginning of Section A finite number of such U, cover all of D. Choose
a partition ¢, € Cg5,,,(U,) of unity on 9D which is subordinate to the covering
{U,}.

By the Rademacher theorem, each Lipschitz function is differentiable almost
everywhere and its derivatives are bounded. Hence, using we arrive in a
familiar manner at an estimate

/ pm I uftds = ) / pm D, ds
oD L JoDNU,

CH“H?—[LHW(D) (4.14)

IN

¢ Hu||$-[[s],s+w(p)
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for all u € C (D \Y), with ¢ a constant independent of w.

comp
Combining (4.11f), (4.12) and (4.14) we see that

||ts<u)||§18—1/2,w(ap) = Hts(U)||$_Ls—1/2,s—1/z+w(ap)

Hts(u)||'2,qo,s—1/2+v(ap) + [[ts (w) H?{s—l/'z(ap)

IN

C||U||?qsw(p)
for all u € C2 (D \Y). It follows that |j induces a bounded trace operator

comp

H*Y(D) — H*~/27(9D) for 1 < s < 3/2. O

In order to proceed with 1/2 < s < 1 we need the following lemma similar to
Lemma

Lemma 4.15. If 1/2 < s < 1 then the total derivative operator maps H*7(D)
continuously to H*~%7(D,C").

Proof. By definition, H*~"7(D) is the dual space of H'~*7(D) = H'~*!=5T7(D)
with respect to the pairing in H%Y(D). Therefore, given any u € C°(D\ Y), we
get

‘('U, u/)HO,V(D7C7L)

[0/ fre=1v(p,cny = sup .
UGHI—S,W(DVCn) ||U||H175,'y('D7Cn)
v#0

On the other hand,

(0,0 ) oy (p.eny = (p7 70, p7 7 ) p2p,ony = (770, (p77u) +vp” T ' u) 2 oy
By definition, (p~Yu) € H*(D) for any u € H*7(D). Hence, using Lemma we
see that

(70, (p7 W) ) e2em)l < e 0l (o.emy (77 0) | mrs—1.(p,em)
< cllp™lla-spemllo” T ul me (D)
(4.15)

Moreover, since u € H%*T7(D) for all u € H*7 (D), and p’ € L>°(D), we conclude
that

(o™ 0, p " pu) 2piem | = (07 0, p7 T ) 2o oy |

10|l Lo (p,c) ||Psflﬂ’U||L2(D) ™" ullL2(py

IN

16| Lo (p.cmy 10l 340,155 (D) ] 300,50+ ()
(4.16)

provided that v € H'=%7(D,C") = H==1=t7(D,C").

Finally, (4.15) and (4.16) along with the Schwarz type inequality for the pairing
in H%7(D) imply that

(v, ) o (p,emy| < e [|vll s cmy [l e ()
forallu € C2__(D\Y) and v € H*~17(D,C"), with ¢ a constant independent on

comp
u and v. Hence

HUIHHS—LW(D,CTL) < C”“”st(fp)
for all u € C2, (D \Y), as desired. O

comp

Lemma 4.16. If 1/2 < s < 1, then ({.§) induces a bounded trace operator
H*Y(D) — H*~Y/27(9D).
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Proof. 1t is clear that the first and the last integrals on the right-hand side of
formula (4.13)) are dominated by

¢ HUH%MM(D)

for all u € Cg5,,(D\'Y), with ¢ a constant independent of w.
On the other hand, using Corollary we conclude that the multiplication by
p*72% maps H*7(D) continuously to the space H*1=2577(D) = H1=577(D). As

0<1-—s<1/2< s, Theorem [4.2] yields a continuous embedding
rHs,l—s+’y(D> N le—s,l—s+'y(D) — Hl_s"y(D).

Hence it follows that the multiplication by p*~2¢ maps H*? (D) continuously to the
space H'=%7(D).

It is known that multiplication by a smooth function is a bounded operator in
H*(D) for |s| < 1/2 (see for instance p. 865]). Hence,

||¢U||§Jl—sw(b) = H¢U||%O,1—s+v(p)+||¢(/)7VU)||%11—5(D)

IN

c (||v||${0,1_s+7(p) + IIp’”vll?ql—s(m)

¢ HU”%P*SW(D)

for all v € Cg5,, (D \'Y), where ¢ is a constant independent of v. In particular,

since 0 < 1 — s < s, we get
16(p" 2 W)l 1 (p) < €llp™™ > ull ri-—emv(py < €llull o (p)

for all u € C, (D \Y), the constant ¢ being independent on u and different

comp
in diverse applications. On combining this estimate with Lemma [I.15] we readily

deduce that
| [0 mods| = (0,60 ) e o)

105l sre—1.2 0 l$(0 20 11 o0

A A

> ¢ ||“||%1w(73)
(4.17)

for all u € Cgg,, (D\Y).

Arguing as in the proof of Lemma and using equality (4.13]) and estimate
(4.17), we obtain

| o s < el o (418)

for all u € CZ5,, (D \Y), with ¢ a constant independent of u. From (4.12) and

comp

(4.18) it follows that (4.8) induces a bounded trace operator
ty: HY(D) — H*~/21712(9D) = H*~1/?7(9D),
provided that 1/2 < s < 1. O

Finally, as H*7(D) = H*7~°(D), we derive immediately a bounded trace oper-
ator H* (D) — H~1/27-1/2(9D), thus completing the proof of Theorem as
desired. g
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Remark 4.17. For s > 3/2, one needs to increase the smoothness of 9D \ Y in
order to obtain adequate trace theorems, for, in general, there is no way to define a
bounded trace operator H3/2(D) — H'(9D) for domains with Lipschitz boundary
(see for instance [McL0Q]).

5. REGULAR SINGULARITIES AT THE BOUNDARY

Clearly, the properties of weighted spaces essentially depend on the asymptotic
behavior of the weight function p near Y. Hence, in order to discuss further prop-
erties of the scales #*7 (D) and H*" (D), we need to impose additional conditions
on the function p. Actually this will lead us to typical situations of analysis on
manifolds with singularities.

Assume that there is a neighbourhood U of the set Y in D and smooth functions
P1,---,Pn—1 in U, such that

|[dp1(z) A ... ANdpp_1(z) Ndp(z)| > ¢ (5.1)

for all x € U\Y, where ¢ > 0 is a constant independent of x. Note that the
differential form in has the form (det J(x))dx, where J(z) is the Jacobi matrix
of the functional system pi,...,pn—1,p. Hence, condition means that the
modulus of det .J is bounded away from zero in U \ Y. Thus, p can be completed
to a coordinate system in U.

Theorem 5.1. Let s be a natural number and p € C*(D\'Y) satisfy for all
multi-indices « with |a] < s. If holds then the normed spaces H*"(D) and
H*(D,Y) are isomorphic.

Proof. Using a suitable partition of unity near the boundary, we can restrict our-

selves to those functions u € Cg5,,, (D\'Y) whose supports are contained in a small

neighborhood U of a point g € Y in D. Shrinking U, if necessary, we introduce
the new coordinates

yl = P (Z‘),
yn71 : Pn—1 (l’),
r = p(x)

in U. By assumption, there is a constant ¢ > 0, such that
A(y,r)
dtJ:’dti"> 5.2
det 7] = [ det “2T] > ¢ (52)

inU\Y

The summands involving the derivatives of order s in the norms ||u|z.s(p) and
l|lu|| g7+ (py coincide. To handle lower order terms, we fix a multi-index a € Z%; with
la| <s—1 and set uy(r) = 0%u (y, 7). -

Since u vanishes in a neighbourhood of Y, it follows that the support of u is
contained in a set of the form U’ x (0, R) in the new coordinates (y,r), where U’
is an open set in the hyperplane R®~! of variables y. Then, by Fubini theorem, we
obtain

C/p2(|a\*8)|8°‘u|2dx < /p2('“‘*8>|aau|2|detJ(:p)|dx
U U

R
// 1= 0y (r)|2dr dy.
+Jo
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We next make use of the Hardy-Littlewood inequality for measurable functions
on the half-axis with values in a normed space. Namely,

_ T 1 -1
[|rPt /0 flo)do||Lagrs,) < <q, —p> [ (")l La (o) (5.4)

where 1 < g < o0, 1/g+1/¢' =1, and p < 1/¢’. Take f(r) = (0/0r)uqs(r) and
q=2,p=lal —s+1, and observe that

n a s n
)= |30, (0) 7;: [ <e Y1007, (5.5)
j=1 j=1

which is due to (5.1)). It follows from Hardy-Littlewood inequality (5.4) and (5.2]),
[£3) that

[ e oraas e 3T 10",
U IBl=lal+1

for all v under consideration, with ¢ a constant independent of u.
Repeated application of Hardy-Littlewood inequality (5.4)) and (5.2)), (5.5)) there-

fore yields
Z /UpZ(Ia\*S)|6au|2dx <e Y 0%}

la|<s—1 |Bl=s

for all u supported in U and vanishing in a neighborhood of Y, where c is a constant
independent of w.

Summarizing we conclude that the #**(D)-norm (or, equivalently, H*°(D)-
norm) is majorised by the H*(D)-norm on functions vanishing near Y. This com-
pletes the proof. O

To clarify the geometric nature of regularity condition (5.1)), we consider several
examples.

Example 5.2. Let D be the cube (0,1)™ in R™ and Y be the g-dimensional edge
of the cube given by

Y ={zec[0,1]": 29 =... = 2" =0},

where 0 < ¢ < n — 1. By construction, the set Y contains the origin. Obviously,
the function
n N1/2
o) = (Y @)?)

J=q+1

is continuous in the closure of D and satisfies 0 < p(x) < y/n — ¢ in D.
Furthermore, it is easy to see that

||

Pa.k(7)

9%p(x) = Z ma (5.6)

k=0

where p, (z) are homogeneous polynomials of degree k. Indeed, we argue by
induction with respect to |a|. For |a| = 1 the statement follows from the obvious
formulas 0jp(z) =0, if 1 < j < ¢, and 9;p(z) = x;/p(x), if ¢+ 1 < j < n. Suppose
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. holds for |a| = I. If now |a| = [ + 1, then one can write 9% = 9;0°, where
Bl =1land 1 < j < n. Hence

a _ ppk(
p(z) = JZPIBHk 1
18] 18]
Z jpﬁk Z —18]) T Pp, k()
p\B|+k I p\B|+k+1( )
\al

k()
- Zﬁ*m

k=0

for 0;ps.1(x) and x;pg i (x) are homogeneous polynomials of degrees k—1 and k+1,
respectively.

We have thus proved for all multi-indices .. From it follows immedi-
ately that is fulfilled for all a € ZY,.

Obviously, |p'| =1 holds in D \ Y. Our next objective is to show that there are
smooth functions p1,...,p,—1 in D, such that

|[dp1 A ... Adpn_1 Ndp| > ¢

in D\ Y, where c is a positive constant, cf. 1] We argue by induction in ¢g. For
g =n—1, we get p(z) = z™. On choosing p;(z) = 27, for j = 1,...,n — 1, one
obtains
|[dpy A ... Adpp—1 Adp| =1

in D, as desired. If ¢ = n — 2, then we have dp = (" 'dz"~! + 2"dz™)/p. On
choosing

pi(z) = 2/, forj=1,...,n—2,

pnfl(l) = 2"l — xn’
we get

ldp1 A ... Ndpp_1 Ndp| = (z" 1 +2™)/p>1

in D\ Y. Now, for arbitrary 1 < ¢ < n — 3, one verifies that

n

dpz( Z xjdxj>/p.

Jj=q+1

On choosing

p;(x) = g, forj=1,...,q,
peri(@) = T —ah,
pu-i(z) = a" ! —am,
we get
ldp1 A ... Adpn_1 ANdp| = (z9T + ...+ 2™)/p>1
inD\Y.

Thus, (5.1) holds for the domain D and the function p(x) under consideration,
i.e., Y is a regular singular set in D.
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Example 5.3. Let D be the cube (0,1)% in R3 and Y the boundary of the face
{x €10,13 : 23 = 0} on 9D. In other words, Y is the boundary of the square [0, 1]?
in the plane of variables ' = (2!, 2?) The function

(($2 2 + ($3)2)1/2’ if 2l — 2 >0, 7l _|_x2 <1,
(1 =)+ @))V2, if o' —22>0, 2! +22>1,
pz) = ((1— x2)2 + (x3)2)1/2, if 2l —22<0, 2'+a?>1,
(z")? + ()12, if ' -22<0, z'+22<1,

just amounts to the distance from a point 2 € R? to Y. This function is continuous
in D, takes on its values in the interval [0,/5/2] and vanishes on Y. Moreover, p
is C° in all of D except for Y and the diagonal hyperplanes {z! — 22 = 0} and
{z! + 2% = 1}. The singularities of p at the hyperplanes are caused by the corner
points of Y.

It is easy to verify that

(0,22, 23)/p(x), if 2! —22>0, 2'+22<1,

, (2! —1,0,23)/p(x), if a'—2%2>0, a'+2%>1,
pla) = (0,22 — 1,23) /p(x), if a'—2%2<0, at+2%>1,
(x1,0,23)/p(x), if o' —22<0, 2'+22<1,

whence |p/(z)| =1 for all x € D at which p is differentiable.

Moreover, let o € Z3 , be an arbitrary multi-index. In the domain z' — 22 > 0,

z' + 22 < 1 the powe; pl®l=1 is a homogenecous function of degree lo| — 1 in 22

and z3, while the derivative 9%p is homogeneous of degree 1 — |a|. It follows that
pl*1=19%p is a homogeneous function of degree zero in z? and z°, and so it is
bounded. The same reasoning shows that pl®=19%p is bounded in the other three
domains of function p. Hence, inequalities are fulfilled for all multi-indices
a€Z3,.

Our next objective is to show that there are smooth functions p;, p2 in D, such
that

|dp1 A dpa N dp| > ¢

in D\Y, where c is a positive constant. To this end, we consider two piecewise
affine functions

xt — 23, if 2t —22>0, 2'+22<1,
1—22—2% if 2'—22>0, z'+22>1,
pi(x) = 1—zt—a3, if z'—2a?2<0, a2t+22>1,
2 — 23, if z'—22<0, z'+22<1,
and
% — 23, if 2t —22>0, 2'4+22<1,
() = 1—at =23 if 2'—22>0, z'+22>1,
1—22—2% if z'—2a?2<0, at+22>1,
xt — 23, if al—22<0, z'+22<1,

for € D. Obviously, they are continuous in the closure of D and smooth away
from the diagonal hyperplanes {z! — 22 = 0} and {z! + 2% = 1}. A straightforward
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calculation shows that
(2% + 23)/p(x))dz, if 2t —22>0, 2'+22<1,
) =@ =2Y) +23)/p(x))dz, if al—22>0, z'4+22>1,
dpv N dpz 1\ dp = (1 =2®) +2%)/p(x))dx, if z'—22<0, zt+22>1,
—((z* + 23)/p(2))dz, if at—22<0, 2t+22<1,

whence |dpy Adpa Adp| > 1 for all z € D except for those in the diagonal hyperplanes
of D.

We thus conclude that the function p possesses the desired properties except for
the differentiability in the complement of Y in D. This function can be certainly
smoothen away from Y in D, however, the smoothing might lead to the violation
of uniform estimate |dp; A dpa A dp| > ¢ with ¢ > 0 at the corner points of Y. This
actually reflects the fact that the corner points are of higher order than the smooth
edges approaching them in the hierarchy of singularities of the stratified manifold
D.

One may ask what singularities of smooth structure of the closure of D survive
under the analytical condition . By the very nature they seem to be a kind
of singularities of transversal intersection like conic points or edges. The function
p(z) enters itself into the new smooth structure of D as a new singular coordinate.
The hypersurface {p(x) = 0} intersects the boundary of D along the closed set Y.
Depending on D the intersection might be a manifold with boundary which bears
singularities itself, cf. Example We restrict our discussion to those Y which
are closed manifolds of dimension 0 < ¢ < n — 1. For ¢ = 0, we think of Y as a
conic point of the surface 0D. For ¢ > 1, we think of Y as an edge which is locally
a cone bundle over R?. Then, near Y, the function p(x) can be thought of as the
distance from z to Y.

In the case where Y is a smooth edge of dimension 0 < ¢ < n—1 on the boundary
of D Theorem is well known, see for instance Theorem 2.1 of [SST03].

Cor0~llary 5.4. Let the hypotheses of Theorem hold. Then the spaces H*7 (D)
and H>Y (D) coincide for all s € R.

Proof. If s is a non-negative integer, then

H*7(D)

|
o
T
b@

5
T
)

where the first and the fifth equalities are consequences of Theorem the second
and the fourth equalities hold by definition, and the third equality is due to Theorem
[.1] For negative integral s the equality follows from what has already been proved
by duality.

For all real s > 0, the assertion follows from Lemma Theorem and what
has been shown for integral s > 0. To complete the proof for real s < 0, it suffices
to exploit duality. |

Under reasonable assumptions on coefficients, partial differential operators act
properly in weighted Sobolev spaces H*7(D) of fractional smoothness, too.
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Theorem 5.5. Let s € Rsg and p € CEITYD\Y) satisfy for |a] < [s] + 1.
If the norms of the spaces H¥*(D) and H*(D,Y) are equivalent for all integer k
with [s] —m < k < [s] + 1, then any differential operator of order m < s of type
maps

1) H*Y(D) continuously to H*~"™7(D);

2) H*(D) continuously to H~"7 (D).

Proof. By Corollary and Theorem the operator p~! maps H*7 (D) continu-
ously to H*~17=1(D). Hence, it maps H*7 (D) continuously to H*~17(D) because
of . Of course, a similar statement holds for the scale H #7(D), for we may
apply Corollary [3.2] and Theorem

Under the hypotheses of the theorem the norms of the spaces H¥7(D) and
H"*7(D) are equivalent for [s] —m < k < [s] + 1, which is due to Corollaries
and 3.3} Then, for s € Z>o, the statement follows from Corollary [5.4] and Lemma
For fractional s, on applying Lemma we conclude immediately that the
operators

;0 HED) - -1 D),

o1 AWHLD) o (D)
are bounded. By Lemma the space H®7(D) can be obtained as the result of
interpolation between H[5+t1)7(D) and H*"(D). Then, familiar interpolation argu-
ments show (see for instance [Tri78]) that the operator 8; : H*Y (D) — H*~17(D)
is bounded.

Since Lemma implies the boundedness of the operator J; acting from
HEY(D) to HEI=17(D), we see that 9; maps H*7(D) continuously to H*~17(D),
too, by the definition of the norms included. This establishes the theorem for the
first order differential operators, for multiplication by a function from Cl}5~[s] (D)
induces a bounded operator on the scale H*(D) of Sobolev space of smoothness
s € RZO'

For higher order partial differential operators one may argue by induction, com-
pleting the proof. O

Corollary 5.6. Suppose that OD be a Lipschitz surface, and p € C1(D\'Y) and
p' € L=(D). If the norms of the spaces H'*(D) and H*(D,Y) are equivalent then
the bounded trace operator t; : HY (D) — HY/?71/2(dD) has a bounded right
muerse.

Proof. Pick ug € H'/?27=1/2(9D). By definition, the function vy = p*~7ug belongs
to HY/21/2(9D) ¢ HY?(9D). By the trace theorem for Sobolev spaces, there is a
function v € H'(D), such that ¢;(v) = vg on 9D and

[vll 1Dy < ellvollgirzopy < cllvollpirzirz o) (5.7)

where the constant ¢ and ¢ is independent of vy and can be different in diverse
applications. The right-hand side of (5.7 is majorised by

”pli’YUoHHl/z‘l/z(aD) <c H’u,o”Hl/Z,w%/?(aD)a (5'8)

which is due to Corollary B
As g is the H'/27=1/2(9D)-limit of a sequence u, € Cosmp(D\Y), it follows
that v is the H'/2(9D)-limit of the sequence v, = p'~Yu, € CZ, (D \Y). By

(5.7), the sequence {v,} converges to v in the space H'(D). Therefore, we get
ve HY(D,Y).
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Set now u = p?~!v. As the norms of the spaces H''!(D) and HY(D,Y) are
equivalent, v belongs to H!'!(D) whence, by Corollary

[ull312(p) < cllvllaray < vl D) (5.9)
with ¢ a constant independent of v.

Combining inequalities (5.7)), (5.8) and (5.9) we arrive readily at the desired

assertion. O

Corollary 5.7. Let 0D be a Lipschitz surface and , be fulfilled. If the
norms of the spaces HV1(D) and HY(D,Y) are equivalent, then the trace operator

HY (D) — H*Y/27-1/2(0D) has a bounded right inverse for 1/2 < s < 1. If,
in addition, the norms of H*?(D) and H*(D,Y) are equivalent then the statement
holds for 1/2 < s < 3/2.

Proof. This follows from Corollary [5.4] and Theorem (]

Remark 5.8. If s > 3/2, then one needs to increase the smoothness of 9D\ 'Y (see

Remark 4.17]).

We finish this section by shortly discussing singularities of non-transversal in-
tersections. Choosing p(z) as a singular coordinate, we regularise the singularity
at the boundary, still making the coefficients of differential operators under consid-
erations singular with respect to the new smooth structure. This motivates hard
analysis of singularities.

Example 5.9. Consider the planar domain D C R? with a cuspidal point at the
origin given by

D= {(z',2%): —(2*)? <z' < (B 0<2? <1}
Thus, Y = {0} and we take p(z) = (22)2, so that |p(z)| = 222 and p fails to satisfy
regularity condition (5.1). The change of variables

— el
y = x5,

2 o= (a2)?

transforms D into the cone D = {(y,4?) : |y'| < ¥?, 0 < y*> < 1} with Lipschitz
boundary. The new function p(y) = y? satisfies |p'(y)| = 1, i.e. regularity condition
(5.1)) is fulfilled. From

1 1
det J(y) = det oz _

9y 2 \/p(y)
we see immediately that the space 'HO’VN(D) = HO D)~ is pulled back under the
change = = z(y) to the space H*71/4(D) = HO7T1/4(D). On the other hand, we
have

Oy = O

yls
aw2 = 2\/y2 8y2
under the change of variables. It is easily verified that the degenerate elliptic
operator

1 1
2+ i L g,
4 p(z)
in D transforms to the degenerate elliptic operator
1 1 1 1
2 2 _ 2 2 2 2 2
O +0 + 550500 = o (W20,)? + °0,2)* = 5(5°0,2))
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in D. This latter is specified within the framework of Fuchs-type operators in D
developed in Section [§] below.

Part 3. Meromorphic families of compact operators

We begin with the discussion of main tools in the study of spectral properties of
compact operators.

6. WEAK PERTURBATIONS OF COMPACT SELFADJOINT OPERATORS

Let H be a separable (complex) Hilbert space and A : H — H a linear operator.
Asusual, A € C is said to be an eigenvalue of A if there is a non-zero element v € H,
such that (A — A)u = 0, where I is the identity operator in H. The element u is
called an eigenvector of A corresponding to the eigenvalue A\. When supplemented
with the zero element, all eigenvectors corresponding to an eigenvalue A form a
vector subspace E(\) in H. It is called an eigenspace of A corresponding to A,
and the dimension of E()) is called the (geometric) multiplicity of A. The famous
spectral theorem of Hilbert and Schmidt asserts that the system of eigenvectors of
a compact selfadjoint operator in H is complete.

Theorem 6.1. Let A: H — H be compact and selfadjoint. Then all eigenvalues
of A are real, each non-zero eigenvalue has finite multiplicity, and the system of
all ergenvalues counted with their multiplicities is countable and has the only accu-
mulation point A = 0. Moreover, there is an orthonormal basis in H consisting of
eigenvectors of A.

As already mentioned, a non-selfadjoint compact operator might have no eigen-
values. However, each non-zero eigenvalue (if exists) is of finite multiplicity, see
for instance [DS63]. Similarly to the Jordan normal form of a linear operator on a
finite-dimensional vector space one uses the more general concept of root functions
of operators.

More precisely, an element v € H is called a root vector of A corresponding to
an eigenvalue A € C if (A — AI)™u = 0 for some natural number m. The set of all
root vectors corresponding to an eigenvalue A form a vector subspace in H whose
dimension is called the (algebraic) multiplicity of A.

If the linear span of the set of all root elements is dense in H one says that
the root elements of A are complete in H. Aside from selfadjoint operators, the
question arises under what conditions on a compact operator A the system of its
root elements is complete.

If the dimension of H is finite then the completeness is equivalent to the possi-
bility of reducing the matrix A to the Jordan normal form. Of course, this is always
the case for linear operators in complex vector spaces, see, for instance, [VdWG67,
§ 88].

In order to formulate the simplest completeness result for Hilbert spaces we need
the definition of the order of a compact operator A. Since A : H — H is compact,
the operator A*A is compact, selfadjoint and non-negative. Hence it follows that
A*A possesses a unique non-negative selfadjoint compact square root (A*A)'/?
often denoted by |A|. By Theorem the operator |A| has countable system of
non-negative eigenvalues s,(A) which are called the s-numbers of A. Tt is clear
that if A is selfadjoint then s, = |A,|, where {\,} is the system of eigenvalues of
A.
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Definition 6.2. The operator A is said to belong to the Schatten class &, with
0<p<oo,if
> Isu(A)F < 0.
Note that &4 is the set of all Hilbert-Schmidt operators while &1 is the ideal of
all trace class operators.

The following lemma will be very useful in the sequel; it is taken from [DS63]
(see also [GK6Y, Ch. 2, § 2]).

Lemma 6.3. Let A be a compact operator of class &,, with 0 < p < o0, in a
Hilbert space H, and B be a bounded operator in H. Then the compositions BA
and AB belong to G,,.

After M.V. Keldysh a compact operator A is said to be of finite order if it belongs
to a Schatten class &,. The infimum of such numbers p is called the order of A.
The following result is usually referred to as theorem on weak perturbations of
compact selfadjoint operators. It was first proved in [Kel51], see also [Kel71]. Here
we present its formulation from [GKG9, Ch. 5, § 8].

Theorem 6.4. Let Ay be a compact selfadjoint operator of finite order in H. If
dA is a compact operator and the operator Ag(I + 0A) is injective, then the system
of root elements of Ag(I+0A) is complete in H and, for any e > 0, all eigenvalues
of Ao(I + 6A) (except for a finite number) belong to the angles |arg\| < ¢ and
|arg A — 7| < e. Moreover,

1) If Ay has only a finite number of negative eigenvalues, then Ag(I + §A) has
at most a finite number of eigenvalues in the angle |arg A — 7| < e.

2) If Ag has only a finite number of positive eigenvalues, then Ao(I + 0A) has
at most a finite number of eigenvalues in the angle |arg \| < e.

As is easy to see, both operators Ag(I + 0A) and Ap are in fact injective under
the hypothesis of Theorem

However there is a more general concept than the notion of a root element of
a linear operator. It is the concept of a characteristic function for a meromorphic
family of linear operators.

7. CHARACTERISTIC VALUES OF MEROMORPHIC FAMILIES

Now let B be a Banach space and £(B) the algebra of all bounded linear oper-
ators acting in B.

Suppose Ag € C and F'()) is a holomorphic function in a punctured neighborhood
of A\p which takes on its values in £(B).

The point A is called a characteristic point of F(\) if there exists a holomorphic
function u(A) in a neighborhood of Ag with values in B, such that u(\g) # 0 but
F(A\)u(X) extends to a holomorphic function near Ag and vanishes at this point.
We call u(X) a root function of F'(A) at Ao.

Assume that \g is a characteristic point of F'(\) and u(A) a root function at Ag.
The order of A\g as a zero of F(A\)u()) is called the multiplicity of u()), and the
vector ug = u(Ag) an eigenvector of FI(\) at A\g. If supplemented by the zero vector,
the eigenvectors of F(\) at Ag form a vector space. The closure of the set of all
eigenvectors of F(\) at Ag is called the kernel of F(A) at Ao, and it is denoted by
ker F'(\p).
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By the rank of an eigenvector ug € B is meant the maximum of the multiplicities
of all root functions u(A) such that u(X\g) = wg, if the set of multiplicities of these
functions is bounded. If this set is unbounded, the rank of uq is taken to be infinity.

Suppose that ker F'()\g) is of finite dimension I and that the ranks of all eigen-
vectors ug € ker F(\g) are finite. By a canonical system of eigenvectors of F'()\)
at Ao we mean any system of eigenvectors ug 1, ..., up,; with the property that the
rank of w1 is maximal among the ranks of all eigenvectors of F'(\) at A\¢ and the
rank of ug; is maximal among the ranks of all eigenvectors of F'(A\) at Ao in any
direct complement in ker F'(X\g) of the linear span of the vectors ug 1, ..., ug 1, for
1=2,...,1.

Let r; be the rank of ug;. It is easy to see that the rank of any eigenvector ug
corresponding to the characteristic point g is equal to one of the r;. Consequently,
the numbers 71, ...,r; are uniquely determined by the function F'(A). Note that
a canonical system of eigenvectors is not uniquely determined in general. The
numbers r; are said to be partial null multiplicities of the characteristic point Ag
of F(A\). Following [GSTI], we call n(F(X\g)) = r1 + ...+ 77 the null multiplicity
of the characteristic point Ag of F'(A). If F(A) has no root functions at Ay, we set
n(F (X)) = 0.

We now apply these arguments again, with F'(\) replaced by the inverse family
F~1()\). Suppose that \g € C is a characteristic point of F~!(\) and the kernel of
F~1()\) at \g is of finite dimension .J. If g1, ..., 0s are the partial null multiplicities
of this characteristic point of F~()\), then we call g1,...,0; the partial polar
multiplicities of the characteristic point Ag of F/(\). Moreover, we call the number
n(F~'(M\o)) = 01 + ... + os the polar multiplicity of the characteristic point Ag
of F()\) and denote it by p(F(X\g)). If F~1()\) has no root functions at \g, we set
p(F(\o)) = 0.

The quantity m(F(Ag)) = n(F (X)) — p(F(Ao)) is called the multiplicity of the
characteristic point Ay of F'(\).

If F(\) is holomorphic at the point Ao and the operator F(\g) is invertible, then
Ao is called a regular point of F'(A). Note that the multiplicity of any regular point
of F()) is equal to zero.

In the scalar case it is evident that the multiplicity of a characteristic point Ag
of a function F'(X) is equal to the multiplicity of the zero if Ao is a zero of F()\),
and is equal to the order of the pole if \g is a pole.

Assume that \g is a pole of the operator-valued function F'(\). In some neigh-
borhood of A\g we get an expansion

[e.°]

FA) = > Fi(A=X), (7.1)

j=—m

where F; € L(B).

If the operators F_q,...,F_,, in are of finite rank, then F()\) is called
finitely meromorphic at Ag.

The operator-valued function F'()) is said to be of Fredholm type at the point A\g
if the operator Fy in the expansion is Fredholm. This is equivalent to saying
that the value of F' at Ay is a Fredholm operator.

A point \g is called a normal point of F(A) if F()\) is finitely meromorphic and
of Fredholm type at A\g and if all points of some punctured neighborhood of Ay are
regular for F'(\).
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By [GSTI], each normal point Ag of F()\) is a normal point of F~1()). If, in
addition, \g is a pole of either F((\) or F'~1()), then it is a characteristic point of
finite multiplicity of the other.

Expanding F(A) and u()) as Laurent series and

o0

u(A) = Zuk (A= Xo)¥,

k=0
respectively, we get

r—1

FOyu(h) = ( 3 Fjuk>()\ o)+ O<|)\ - )\O\T)

n=—-m j+k=n

for A close to Ag. It follows that for u(z) to be a root function of F(X) at Ay of
multiplicity r > 1 it is necessary and sufficient that

n+m

Z Fn_kuk =0
k=0

foralln=-m,...,r—1.

The derivatives

1
U = E

k=1,...,r—1, are said to be associated vectors for the eigenvector ug = u(Ag) of
F(X\) at Ag. Any subsystem ug, uq,...,us with s <r — 1 is called a Jordan chain
of length s + 1 of F'(A) at A = Ag.

Suppose ug 1, - - ., Ug, is a canonical system of eigenvectors of F'(\) at Ag, I being
the dimension of ker F'(A\g). Denote by r; the rank of ug ;. If, for every i =1,...,1,
the vectors g, ..., ur,—1,; form a Jordan chain consisting of an eigenvectors and
associated vectors of F'(\) at Ag, then the system

u(k) ()\O)a

(Uo,u UL iy auri—l,i) )
i=1,...,1

is called a canonical system of Jordan chains corresponding to the characteristic
point Ag of F'(X).

Let F'(M\) be a holomorphic function in a punctured neighborhood of Ag with
values in £(B). Then we define the transposed family F(\) with values in £(B’),
where B’ is the dual of B, by the equality (F'g,u) = (g, Fu) for all ¢ € B’ and
u € B.

The following result is proved by Gokhberg and Sigal [GST1] for meromorphic
operator-valued functions as a consequence of their normal factorisation theorem.
They refer to Keldysh [Kel51] for the case of polynomials with values in operators
on a Hilbert space.

Theorem 7.1. Let Ay be a characteristic point of the operator-valued function
F(X), which is a normal point of F(X). Then there are biorthonormal canonical
systems

(uo,i, ULy - 7Um—1,i)i=1,...,1 ’
(go,i,gl,i, e agm—l,i)i:h..,[
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of eigenvectors and associated vectors of F(A) and F'(\) at Ao, respectively, such
that

-1 ri+j
p.p. F71(\) = Z Z (A= Xo)! Z (Ghir ) Uritj—hsi-
=1 j=—r; k=0

Here, the abbreviation p.p. indicates the principal part of the Laurent expansion
around Ag.

Part 4. Spectral properties of Sturm-Liouville problems

By a Sturm-Liouville problem in R™ we mean any boundary value problem for so-
lutions of second order elliptic partial differential equation with Robin-type bound-
ary condition. The coefficients of the Robin boundary condition are allowed to have
discontinuities of the first kind on the boundary of a connected open subset of D.
The boundary of this domain is assumed to be a subset of Y. Thus, mixed bound-
ary conditions are included as well. We are interested in studying the spectrum
of such problems in weighted Sobolev spaces. For this purpose, we fix a function
p € CL(D\Y)NC(D), such that p’ € L>(D). As before, we define p = 1 if the set
Y is empty.

8. THE STURM-LIOUVILLE PROBLEM

Using Lemma and Theorem we consider a second order partial differ-
ential operator A of divergence form
Az, 0)u = — Z 0i(a; ;j(z)0;u) + Z a;(z)0;u + ap(x)u
ij=1 j=1
in the domain D. The coefficients a; ; are assumed to be complex-valued functions
of class L>(D), and pa; € L>=(D), p*ag € L>(D).

Let v(x) = (v1(z),...,vn(z)) be a vector field in R™ defined at the surface 9D.
The coordinates vy (), ..., v,(x) are assumed to be bounded measurable functions
on 0D.

Denote by 0, the oblique derivative

0y =Y _v;(x)9;

j=1

and introduce a first order boundary operator B = 9, + By. We allow the vector
v(x) to vanish on a closed subset S of 9D. Our focus will be upon the case where S
is the closure of an open connected subset of 0D with piecewise smooth boundary
and Y = 9S. Similar considerations apply to the case where the boundary of S is
a part of Y.

Concerning the summand By we assume that it is a densely defined linear op-
erator in H%7(9D) whose domain contains C5,,, (0D \ Y). Moreover, we require
that

ker By C H"7(9D, S). (8.1)

In the simplest case, the operator By is given by multiplication Byu := byu with a
function by € L2 (0D \ ' Y) which does not vanish on S.
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Consider the following boundary value problem with Robin-type condition on
the surface 9D. Given data f in D and ug on 9D, find a distribution u in D which
satisfies

{A(x,a)u = f in D, (8.2)

B(z,0)u = wup at ID.
In order to get substantial results, we put specific restrictions on the operators
A and B.
Suppose that the matrix

is Hermitian and satisfies

for all (z,w) € D x C", and

Z ai j(z)&& > m€)? (8.4)

4,j=1

for all (z,£) € D x (R™\ {0}), where m is a positive constant independent of x
and £. Estimate is nothing but the statement that the operator A is strongly
elliptic. It should be noted that, since the coefficients of the operator and the
functions under consideration are complex-valued, inequalities and are
weaker than the (strong) coercivity of the Hermitian form, i.e. the existence of a

constant m such that
n

Z a;,j(z) Ww; > m |w|? (8.5)
ij=1
for all (z,w) € D x (C™\ {0}).
To specify the choice of the boundary operator we assume for a moment that
a;,; are continuous up to the boundary of D. Consider the complex vector field ¢
at 9D, whose components are

cj(w) = aij(@)vi(x),
i=1

where v(z) = (v1(2), ..., v,(x)) is the unit outward normal vector of 9D at x € 9D.
From condition it follows that there is a complex-valued function b; (x) on the
boundary with the property that the difference v(x) — b1 (z)e(z) is orthogonal to
v(z) for almost all € 9D. In fact, the pointwise equality (v — bic,v), = 0 just

amounts to

bl(l') — (U(:L')v I/(.’ﬂ))m

(c(x), v(2))a
for x € OD. Obviously, by(x) is a bounded measurable function on 9D and the
vector field ¢(x) = v(x) — by (x)c(x) takes on its values in the complexified tangent
hyperplane T, (9D) of 9D at x. Summarizing we conclude that if 9D is a Lipschitz
surface then
B(Z, 8) = bl(o:)ﬁc + at + Bo,

where t(x) is a tangential vector field on 9D whose components belong to L (9D).
By assumption, both b; and ¢ vanish on S. Concerning the behavior of by in 9D\ S
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we require that by(x) # 0 for almost all z € 9D \ S and 1/b; is integrable away
fromY on 9D\ S.

From now on we drop the continuity assumption for the coefficients a; ;(x) and
we keep the same choice for B. Note that in this case the Shapiro-Lopatinskii
condition can be violated on the smooth part of 9D \ S unless the coefficients
a; j(x) are real-valued.

As we wish to study the spectral properties of problem we will mostly be
concentrated on the case where ug = 0. Then, since on S the boundary operator
reduces to B = By satisfying , the functions of H%7(D), satisfying Bu = 0 at
dD, actually vanish on S.

Since we want to apply standard perturbation arguments, we split the coefficient
ap into two parts

ap = ao,0 + Aag,
where ag o is a non-negative function satisfying p%ago € L°(D). In order to split
the operator By we denote by xgs the characteristic function of the set S on 0D.
Set

By = By,o + ABy,
where

Boou = xsu+bip” O ¥(p~ "u)

with a bounded linear operator ¥ : H" (D) — L*(0D) and —1/2 < r < 1/2. The
range of 7 is motivated by trace and duality arguments, cf. Theorem [£.13] It might
be more natural to think of ¥ as a bounded operator H™"(9D) — H%°(9D), but for
coercive forms and regular singularities it is the same anyway. As but one example
of ¥ we show a pseudodifferential operator of order r on 9D. As by = 0 on S we
conclude that condition is fulfilled for By . Note that the pair {1, 0.} is the
so-called Dirichlet system of order 1 on 9D, and so the pair {xg, d.} is a Dirichlet
system of order one on S. Furthermore, { #* ¥, ..} inherits the surjectivity property
of Dirichlet systems on 9D\ S, at least if the operator ¥* ¥ has an inverse in L?(D)
(cf. Theorem and Example .

For r = 0, a typical operator ¥ is given by Yu = u, where ¢ is a function
on 9D locally bounded away from Y. Then (¥* ¥u)(x) = |[¢p(z)|?u(x) is invertible
provided that [4(x)] > ¢ > 0. If 9D is C?-smooth then a model operator ¥ is
¥ = (1+ App)™? where Agp is the Laplace-Beltrami operator on the boundary
(see Example [8.8).

If the functional

n 1/2
el = (3 (5505 05w} o ) + |y a5ul3go o) + 120~ ) o))
i,j=1
defines a norm on H7 (D, S), we denote by H*7(D) the completion of H (D, S)
with respect to this norm. Obviously, H™7(D) is a Hilbert space with scalar
product
(s 0) 17 = Y (ai;051, 050) oy (p) +(a0,0u, ) o (py + (¥ (p~ ), ¥ (p™70)) 12(0m)-
ij=1

From now on we assume that the space H7(D) is continuously embedded into

the space H%7(D), i.e.,
l[ull o~ Dy < cllull+ (8.6)
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for all u € HY(D,S), where ¢ is a constant independent of u. This condition is
not particularly restrictive.

Lemma 8.1. Let there be § > 0 and ¢(6) > 0, such that
ago > c(8) p=%° (8.7)
in D. Then the space HY (D) is continuously embedded into H*V°(D). In par-
ticular, holds with ¢ = (c(8))~L.
Proof. From ({8.7) it follows that the norm ||,/@o ¢ - || o~ (p) is not weaker than the
norm || - || go.v+s(py on H"7(D, S). This establishes the continuous embedding
H*7(D) — H*"*°(D),
for the norm || - ||+ , is not weaker than ||,/ - || go.+(p)- Now, (8.6) follows from
Lemma [2.5)
Write ¢ for the inclusion
H™ (D) — H*(D), (8.8)

which is continuous by .
The sesquilinear form (-, )4 - is said to be coercive if there is a constant ¢ > 0,

such that

lull v oy < ellull+ (8.9)
for all w € HY7(D,S), that is the space H"7(D) is continuously embedded into
H'7(D,S).

Our next concern will be adequate embedding theorems for the space H+>7(D).
To this end, denote by H~7(D) be the completion of H!(D, S) with respect to

the norm
B |(v, u) o ()|
ull- = sup ——r——
veHT (D) [[v]
v#£0
As explained in Lemma the space H7(D) can be specified as the dual of

H™7(D) with respect to the pairing

+,7

(U, ’LL).y = ylinolo(v, UV)HO""(D)'

According to Lemma the space H%7(D) is continuously embedded into H 7 (D);
we write ¢/ for this embedding.

Since the norm || - || go,~(py majorises the norm || - || — ,, we deduce from Lemma
that Cg,,,, (D) is dense in H (D), too.

The following lemma is contained in [ST12l Lemma 6.1]. It corresponds to
Y =0, ie, p=1. In [ST12], we write Hgy(D) for the space H™7(D) =: H*(D)
and Hg; (D) for H—7(D) =: H~ (D).

Lemma 8.2. Let Y = (). Suppose estimate s fulfilled. Then there are
continuous embeddings
H*(D) — HY(D,S),
H YD) <= H (D)
if at least one of the following conditions holds:
1) S is not empty;

2) / ap,o(z)dz > 0;
D
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9) (1)) 2om) > 0.

In particular, the form (-, )y is coercive and in either of the cases inclusion (8.8)
is compact.

Lemma 8.3. Assume thatY =0 and S = 0D. Then there are continuous embed-
dings
H*(D) < HYD,0D),
(HY(D,0D)) < H~(D).

In particular, the sesquilinear form (-, )4 is coercive and inclusion (8.8) is com-
pact.

Proof. The lemma follows from the Garding inequality. The compactness of inclu-
sion (8.8) is due to the Rellich theorem. g

The following theorem will be used to include into consideration the non-coercive
forms, too.

Theorem 8.4. Suppose Y =, the coefficients a; j are smooth in a neighborhood
of D, and there is r € [~1/2,1/2] and a constant ¢ > 0, such that

| ¥ullr2om) = cl|ull e op) (8.10)

for allu € HY(dD, S). If moreover agg > ¢1 > 0 in D or the operator A is strongly
elliptic in a neighbourhood X of D and

/ S ai0pubudr > m [ull2s x) (8.11)
X ig=1
for all w € CF,,,(X), with m > 0 a constant independent of u, then the space
H* (D) is continuously embedded into H*(D), where s is given by
1/2—ewithe>0, if r=0,
s=1¢ 1/2, if r=0 and 9D € C?, (8.12)
1/2 4, if 0<|r]<1/2.

Proof. By shrinking &, if necessary, we may assume that the coefficients a; ; are
continuous in X. As the operator

A() = — Z ai(ai,jaj)
i,j=1

is strongly elliptic on X, the classical Garding inequality yields the existence of a
Hodge parametrix G for the Dirichlet problem related to Ag in X' (see for instance
[CU73] or [Sch60]). To formulate this more precisely, we define H~1(X) to be the
dual space of H'(X,0X) with respect to the L?(X)-pairing, as discussed above.
Clearly, H='(X) is continuously embedded into H~'(X). As usual, the operator
Ag is given the domain H'(X,dX) to map it to H~*(X). Then there are bounded
linear operators

G: H'YX) — HY.X,0X),
H: HYX) — HX)
satisfying
gA() =

I—-H,
A0G I—% (8.13)
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on HY(X,0X) and H~'(X), respectively, where H(X) C H'(X,0X) N C®(X)
stands for the null space of the Dirichlet problem in X. The dimension of H(X) is
finite and H is actually the L?(X)-orthogonal projection onto H(X'). Moreover, H
maps H*(X) continuously to C>°(X) for all s > —1.

On applying the trace theorem for Sobolev spaces we introduce the so-called
Poisson operator P : H'/2(0X) — H'(X) to satisfy

’POt1+gA():I*H,

where t; stands for the trace operator H'(X) — H'/?(9X). In particular, the range
of P is L?(X)-orthogonal to H(X). If the boundary of X is a Lipschitz surface
then the Green and Poisson operators bear adequate regularity properties. More
precisely,

G: HY(X) — H*T'(X),
0,G : H Y (X) — H(X), (8.14)
P HTY2(0Xx) — HTY(X)

for all 0 < s < 1/2 (see for instance [Agrila) § 12]). If X is C?-smooth, then the
mappings

G: L?(x) — H?*X),

P: H?0X) — H*X)

are continuous, too. We need subtler properties of the operators G and P.

Lemma 8.5. If 0 < r < 1/2 then the operator 0.G extends to map H~""/?(X)
continuously to H~"(0X).

It should be noted that invoking the space H~"~1/2(X) instead of H~"~1/2(X)
is of crucial importance here.

Proof. If f € H-"~/2(X), then G f is known to be a strong solution of the Dirichlet
problem, i.e. there is a sequence {u,} of functions in H?(X) vanishing at the
boundary and satisfying

luy = Gflgr-risrzy — 0,

8.15

||AOUl, — fHH—r—l/Q(X) — 0 ( )

as v — oo, see [Sch60], [ST03]. In particular, using (8.14) we deduce that, for

each 1 < j < n, the operator 9;G maps the space H_T_1/2(X) continuously to
H-+1/2(X) and

1951, — G fllg-r+1/2(2) — 0

when v — oo.
Let u € H?(X) vanish at 9X. From the existence of a continuous right inverse

t;il/z for the trace operator

try1so s HTPY2(X) — H™(0X)



52 A. SHLAPUNOV AND N. TARKHANOV

it follows that
|(Ua acu)Lz(aX)|

Haou”H“‘(aX) = sup
verr(ox)  vllEr@x)
v#0
S ‘(tr+1/2t;i1/27}7acu)L2(3X)|
= up
veH (8X) vl & o)
v#0
B - Uli_{lgo|(tr+1/2guaacu)L2(8X)|
vEH (8X) ”U”HT(BX)
v#0

where {g,} is a sequence of smooth functions on X approximating ¢ := t;_il 2V in
H"+1/2(X). Furthermore,

(tr41/29v, 0ct) L2(0x) = Z a;,j0j 9y, 0iu) 12 (x) + (gu, Aot) L2 (),
1,j=1

which is due to Stokes’ formula and (8.13)). Since r+1/2 > 1/2, for r > 0, it follows
from Lemma, that there is a constant ¢, such that

19590l rr—172(20) < e llgullrs1r20a
for all v, and
Jim, 0j9. = Osg
in H"~Y/2(X). As a; ; € L®(X), formula (8.14) implies that

1Y aii090, )2yl < e Y 10500 e 105wl g -rsaa gy

3,j=1 4,j=1

CZH(?JQVHHT vy lull=rsar2 )
Jj=1

with ¢ a constant independent of u and v and different in diverse applications. On
the other hand,

(g Aot 20y | < Ngll 2 ) | Aol =2 )
and therefore
10ctll -+ o) < ¢ (lull=rson) + 1Aoullsrrrroy), (8:16)

where c¢ is a constant independent of u.
In particular, we get

100 (i = w) o) < € (It = wll 37220y + 1 Ao(t = )| =171y

for all v and p. From ({8.15) it follows readily that the sequence {J.u, } converges in
H~"(0X). We write 0.G f for the limit, which is thus well defined for any function
f € H-""1/2(X). By construction and (8.16]),

1061111+ o) < & (G L5722 + 1 1127200y
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for all f € H-"~Y2(X). Finally, (8.14) with s = —r + 1/2 implies the continuity

of the operator 9.G : H~""1/2(X) — H~"(dX) constructed above, provided that
0<r<1/2 O

Lemma 8.6. If 0 < r < 1/2, then the operator P maps H"(OX) continuously to
HT‘H/Q(X). If, moreover, 0D € C?, then the operator P maps L?(0X) continuously
to HY?(X).

Proof. Indeed, fix 0 < r < 1/2. On arguing as in (8.15|) we obtain

(v, Pu) 2yl

||’PU||H7-+1/2(X) = sup
verrq/g(X) Hv||H—T—1/2(X)
v#0
|(A0Qv =+ H’U, Pu)Lz(X)|
= sup
veH "2 (x) ||’U||H*T*1/2(X)
v#0

B |(AoGv, Pu)r2(x)l
= sup

veH"1/2(x) HUHH**'*1/2(X)
v#0

lim,, o0 ‘(80911’ U)L2(6X) ‘
= sup

wEHTT1/2(X) ”’UHH*T*I/Q(X)
v#0

for all u € H"(0X), where {g,} is a sequence of functions in H2(X) vanishing at
the boundary and satisfying

g — Gollg-r+sr22y — 0,
|Aogy —vllg-—r-12xy — O

as v — co. Applying Lemma [8.5] yields

i [(8egy, uw)r202)| < el[vllg=r—1r202) lull o)

whence
IPull grrr1/2(x) < cllullarox)

with ¢ a constant independent of w. This proves the continuity of the operator
P:H™(0X) — H™/2(X), for 0 < r < 1/2.

Finally, if r = 0 and X € C?, then we can exploit the familiar regularity theorem
for the Dirichlet problem in X. Our task is to show that the Poisson integral P maps
L?*(0X) continuously into H'/2(X). For this purpose, given any u € H~/2(dX),
we choose a sequence {u, } in H'/2(dX) converging to u in H~1/2(0X). Integrating
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by parts we get

1Puy|p2xy = sup
vEL?(X) [vllz2(x)
v#0
|(AoGv + Hv, Puy,) 12 )|
= sup
veL?(X) [0l[L2(x)
v#0
- w |(AoGv, Puy) 12 (x)|
= p
veL?(X) [0llL2(x)
v#0
0.Gv, u,
< sup [(0cGv, uy) r2(0.x)|
veEL?(X) [oll 2 ()
v#0
0.Gv Uy | -
S X ey o v
veL?(X) [vllz2(x)
v#0

< clluvllg-1200x)

for all v, where the constant ¢ does not depend on v. It follows that the sequence
{Pu,} converges in L?(X), and so the Poisson integral P induces a bounded linear
operator H'/2(0X) — L*(X). We now use a familiar interpolations argument
(see [LMT72], [Txi78]). By interpolation, the Poisson integral P induces bounded
linear operators

Py : [HV2(0X), H/?(0X)])g — [L2(X), H (X))o

for all 0 < 6 < 1, where [Hy, Hy|g means the interpolation space for a pair Hy — H;
of Hilbert spaces. As is known,

[L*(X), H(X)] H?(X),
[H-Y2(0X), HY/?(0X)]y = HY?>7?0X),

see for instance Theorems 9.6 and 12.5 of [LM72], Ch. I]. Therefore, choosing 6 = 1/2
we deduce that P induces a bounded linear operator L?(0X) — H'/2(X), as desir-
ed. O

Having disposed of this preliminary step we can now return to the proof of
Theorem Denote by e™ the operator of extension by zero from D to X, and
by rT the restriction from X to the domain D. Obviously, et is a bounded linear
operator from L?(D) to L?(X) and 7+ a bounded linear operator from H*(X) to
H?*(D), for any s € R.

Clearly, H = 0 if is fulfilled. On the other hand, if condition holds
true then H (D) is continuously embedded into L?*(D). Hence the norm || - ||+
is not weaker than the norm || - ||, on H'(D, S) defined by

n . 1/2
fulla = ([ 3 asdyuBiuds + ulfyeomy + [Hetultan) - (57)

4,j=1
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As the coefficients a; j(z) are continuous up to the boundary of D, the Stokes
formula yields

O,uT ds :/ Z (ai,j0;ud;v + 0i(a; j0;u)v) dx. (8.18)
D

op ij=1

for all w € H*(D) and v € H'(D).
Denote by
Gp: H YD) — HY(D,0D),
Hp: H YD) — H(D)

the Green operator and projection onto the null space of the Dirichlet problem for
Ap in the D. The properties of Gp and Hp are similar to those of the operators G
and H considered above for the domain X, cf. . This enables us to introduce
the Poisson operator Pp.

Note that eth € H(X) for each h € H(D), i.e. the image of H(D) by e™ can
be thought of as a closed subspace of H(X). Choose an L?(D)-orthonormal basis
{er} in H(D). Then there is an L?(X) -orthonormal system { f;} in H(X), such that
{eT(er)}U{fi} is an L?(X)-orthonormal basis in #(X). By the very construction
we get

Hetu = Z(U7€k)L2(D)€+(€k) + Z(€+U, T2 fi
k 1
= e (Hpu) + Z(eﬂb, fi)r2 () fi
1
whence
\\H€+U|\2L2(X) = HHDU||2L2(D) + Z (e, fl)Lz(X)\2 (8.19)
1

for all u € L*(D).
On combining formulas (8.13)), (8.18) and (8.19)) one deduces by an easy compu-
tation that

Jullz > Z (ai ;0;Gp Ao, 0;Gp Aou) L2(p) + Z (ai,;0;Ppu, 0;iPpu) r2(p)

i,j=1 i,j=1
+ | Poullfrrop) + IHoull7zp)
(8.20)

whenever u € HY(D, S). As Hp is the projection onto the finite-dimensional sub-
space H(D), we conclude that

[Houll ) < cl[Hpull2(p) (8:21)
for all u € H*(D, S), with ¢ a constant independent of u.
On the other hand, the Garding inequality yields
||gDA0U||%{1(D) S C Z (am@ngAou, 8igpA0u)Lz(D) (8.22)
i,j=1

for all u € HY(D, S).
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Using (8.13)), (8.20]), (8.21) and (8.22) we conclude readily that any sequence
{u,} € HY(D, S) converging to a function u in the space H7(D) can be presented
as

uy, = Hpu, + gDAOUV + PDU’Z/)
where the sequences {Hpu,} and {GpAgu,} converge in H'(D,0D) C H'(D,S)
to elements uy and ug, respectively. Hence it follows that the sequence {Ppu, }
converges to an element up in H™7(D), and so

u=ug +ug +up = Hpu+ GpApu + Ppu, (8.23)

where Ppu is the Poisson integral of the “trace” u [gp€ H"(9D) of u € H7(D).
Thus, the embedding theorem is completely determined by the behavior of the
element up = Ppu at the boundary.

Suppose —1/2 < r < 0. As the coefficients a; ; are smooth in a neighbourhood
of D, we can assume without loss of generality that X is a domain with smooth
boundary. In this case any solution of the Dirichlet problem with Agu € L?(X)
and zero data on dX belongs actually to H2(X). Therefore, by a priori estimates,
G and H give rise to the bounded operators

rtGet: L?*(D) — H?*(D),
rtHet : L?*(D) — H?*(D),

the operators 7 and et being defined above.
Let s > 0. It is clear that any element v € H~*(D) extends to an element
Ue H*(X) by
<Ua U>X = <U, U>D
for all v € H*(X). Since U vanishes in X'\ D, it is natural to denote it by e*u. The
linear operator e™ : H=*(D) — H~*(X) obtained in this way is bounded, provided
that s > 0. o
The distribution e™u is supported in D. So, using the continuity properties
of pseudodifferential operators on compact closed manifolds we deduce that both
rTGet and rTHeT extend to bounded linear operators
rtGet: HYXD) — H-T/2(D),
rtHet . H"V2(D) — H?*(D),
with —1/2 < r < 1/2. Hence, the operators
9; (rtGet)y: H"YX(D) — H YD),
+ Gt re1)2 —r (8.24)
0. (rtGet): H (D) — H (D)

are bounded, too, if —1/2 < r < 0, which is due to the trace theorem for Sobolev
spaces in Lipschitz domains. Notice that for r = 0 the arguments fail, for the
elements of H'/?(D) need not have traces on dD.

Formula (8.18) and continuity properties (8.24) imply that
(v,u)r2p) = (H(etv) + AgG(etv), u)L2(p)
n
= (’H(e+v),u)Lz(D) + Z /Dai,jajg(eﬂ))%daz + (6C(r+ge+)v,u)L2(ap)

i,j=1

(8.25)
for all w € HY(D, S) and v € L?(D).
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We next claim that the norm || - ||, is not weaker than the norm || - || gr+1/2(p)
on HY(D, S). Indeed,
o |(Ua U)L?(D)|
[ullgrrsr2py) = sup
veHﬂ‘*lﬂ(D) ||’UHH*7'*1/2(D)
v#£0
Vli_g)lo |(Ul,, U)Lz(D)|
= sup
vEHT1/2(D) ||7]||H—7‘—1/2(D)
v#£0

(8.26)

for all u € HY(D, S), where {v,} is a sequence of smooth functions on D approx-

imating v in the space H~"~Y/2(D). Using formula (8.25) for v and v = v,, we

evaluate the nominator on the right-hand side of (8.26)) to be

(H(eTv),u)r2(p) + Z / aij0;G(eTv)0udr + (0:(r* Get)v, u)r2(ap)|.
D

i,j=1
As H is an orthogonal projection in L?(X), we get
|(H(€+U)7U)L2(D) = |(H(€+U)’€+U)L2(X)|
[(H(ev), (H(etu)) 2 ()l

< cllollg-r-rrz2ipy |(HeFu)l| L2 ()
(8.27)
and
|(60(r+ge+)v7u)Lz(aD)| < ||66(r+ge+)v||H*T(D)||u||HT(8D)
< clvllg-r-1/20p) lull o)
(8.28)

for all u € H'(D, S) and v € H~"~1/2(D), the last inequality being a consequence
of . Here, ¢ stands for a constant independent of u and v and different in
diverse applications.

As the matrix

(@i j(x))i=1,...,n
j=1,....n

is Hermitian and non-negative, we get a generalised Cauchy inequality

\ Xn: ai,j(x)zicjr < (zn: ai,j(x)zizj) ( zn: aivj(z)zigj) (8.29)

i,j= 1,j=

for all z,¢ € C™. On applying (8.29) we see that

‘Z /Z)ai7j8jg(e+v)ﬂdx‘ SC( Z /Dam@jUde)l/zHUHHT1/2(73) (830)
i,7=1

i,j=1
with ¢ a constant independent of v and v.

Combining (8:26), ([8:27), (8-28) and (8.30) we deduce that there are positive
constants ¢ and C, such that

cllull grerzpy < lulla < Clull+ 4
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for all u € HY(D,S), where —1/2 < r < 0. In particular, this establishes a
continuous embedding H+(D) — H"+/2(D), provided that —1/2 < r < 0, as
desired.

Consider now the case of Lipschitz domain and » = 0. Then is fulfilled for
r = —e with any € > 0, too. Hence, from what has already been proved it follows
immediately that the space H7(D) is continuously embedded into H/2~¢(D) for
all € > 0.

Finally, let 0 <7 < 1/2 or r = 0 and 9D € C2. Since the sequence {u, } behind
converges in HT7(9D) and the norm of this space is not weaker than the
auxiliary norm || - |4, the sequence converges in H"(9D), too. From Lemma [8.6] it
follows that the sequence {Ppu, } converges to an element up in H"+/2(D). Hence,
gives a continuous embedding H*Y (D) < H"+1/2(D) in this case. O

Remark 8.7. Denote by Sa, (D) the space of all generalised solutions to the equation
Aopu = 0 in the sense of distributions in D. As the sequence {Ppu,} of
converges to an element up in H*(D), with s > 0 given by (8.12)), the Stieltjes-
Vitali theorem implies that up satisfies Agup = 0 in the sense of distributions in
D. Thus, it follows from that, under the hypothesis of Theorem there is
a continuous embedding

H*"(D) < H'(D,dD) & (SAO (D) N HS(D)).

Example 8.8. If r = 0 and (Yu)(z) = ¥ (z)u(x) with a function ¢ € L (0D\Y)
then (8.10)) is fulfilled if

[ >e>0 (8.31)

in 9D\ S. For arbitrary r in the interval —1/2 < r < 1/2, an invertible operator
¥ : H"(0D) — L?*(9D) satisfying is specified within the so-called order-
reducing operators. Suppose 9D is a smooth hypersurface in R™. Denote by Asp
the (non-negative) Laplace-Beltrami operator on 9D. Then the pseudodifferential
operator ¥ = (14 App)™/? maps H*(9D) continuously to H*~" (D) for all s € R.
Moreover, the operator ¥ is continuously invertible with inverse (1+ Aap)”/ 2 and
hence holds true. It is clear that the operator ¥* ¥ is continuously invertible,
too. In particular, the operator ABy := ¥ maps H*(0D) compactly to H*(9D)
if r < 2s.

Our next goal is to describe the properties of the space H™7(D) in the case
where Y is a non-empty subset of 9D. We first observe that H™7 (D) is really a
weighted space.

Lemma 8.9. Let Y # 0, p/ € L*°(D) and hold with 6 = 1. Then, for any
§ € R, the correspondence Op (p°) : u +— pu (cf. ) induces bounded linear
operators

HJr,W(D) N H+7’Y+5(D)7

H=(D) — H (D),

which are actually topological isomorphisms.
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Proof. By definition, we have

1%l s
n
= Z (ai,jaj(l)&u), 31'(/)671))1{0%5(@) + ||\/a0,0P5UH§10,7+5(D) +Il W(P_V)U) H%Z(ap)
i,j=1

(8.32)
for all u € H7(D, S). Obviously,

Iv/@o .00 ull o+ (py = llv/@o.0ull o (p)- (8.33)

On the other hand, we get

(aivjaj (péu)a ai(Pau))HO’ws(D)

(ai,30° 051, p° Osu) pro.es (py + 62 (ai 1"~ (D5p)u, p7~H(Dip)u) o+ (p)
+ 0(aigp"(0p)u, 0 0iu) provis iy + 8 (aijp’ (Byu, p°H(Bip)u) rovss ().
(8.34)

Clearly,

(al iP 6 iU, p 8 U)Ho 7+5(’D) (am@ju, 8iu)H0,v(D),

- B 8.35
[(ai ;01 (9jp)u, p°~ 1(8 p)u)oots(py| < CH\/GO,OuH%M(D) (8.35)

for all w € HY(D,S), with ¢ a constant independent on u because p’ € L>(D)
and a; ; € L*(D).

Hence, by (8.29] -,

‘Z a”p 1 ]pupau)Ho»eré(D)’
7,7=1

= ‘Z ai jp~ (9;p)u, aU)HO'y('D)’

4,j=1
< (ZJZ_I aiyjajuv 81“) HOA (D) (Z.;l Qi j (ajp)ua (azp)u) HO+1(D)
S C ( Z aw-ajwBiu)HM(D)|\./a070uHiIo,w(D)

i,j=1
and similarly
- s 5—1 2
‘ > (aip’ s, p (3iP)U)H0w+6(D)‘
i,j=1

2
C( Z aiyjaju,8iu)HM(D)||\/a0,0u||Ho,w(D),

4,j=1
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where c is a constant independent of u and different in diverse applications. Now,

using (8.34)) and (8.35)), we see that

‘ Z (am@j (péu), 0; (péu))H‘)W*‘S(D)‘
i,j=1

n

< C(( Z (am@ju, 8iu)H0w(fD))1/2 i ||\/GT,OU||HO’"’(D))2

ij=1
(8.36)
for all u € H7(D, S), with ¢ a constant independent of .

It follows from (8.32)), (8.33) and (8.36) that

1l s < cllull+.y

for all w € HYY(D,S), where c is a constant independent of w. This shows that
Op (p?) maps H7(D) continuously to HTY*9(D). Then, the bounded inverse
operator is given by Op (p~?%).

Finally, the assertion on the operator Op (p?) : H=7(D) — H~79(D) follows
by duality because

|(v, P(SU)HOWH (D) |

+,7+6

lo%ull - nvs = sup
vEHT (D) [[v]

v#0

-4 -9
_ S (T e I VamC E

veH T (D) ||P_6U||+7’Y ”U‘
v#£0

¢ Jlull- ]

+,7+6

IN

for all u € H'(D, S). Once again the inverse operator is given by Op (p~%) which
is bounded by the above. O

Let us indicate some important cases where there are reasonable embedding
theorems for the spaces H7(D) and H~7(D) with Y # 0.

Lemma 8.10. Suppose Y # 0. If 1s fulfilled and inequality holds with
6 =1, then there are continuous embeddings

H*(D) — HY(D,S9),

H-Y(D) — H (D).
Moreover the embedding H7 (D) < H®7(D) is compact and the form (-,-)4  is
coercive.

Proof. Inequality (8.5)) implies

n
||u/||%IM(D) <c Z (ai,j(x)05u, Ou) go.~ (py, (8.37)
i,j=1
where by u’ is meant the gradient of u. Now it follows from Lemma that
the coercive estimate is fulfilled. This establishes the continuous embedding
H*Y(D) — HY(D,S). Since H"(D,S) — HY“ (D), the second embedding
follows by duality. Finally, on applying Theorem [£.5we get the compact embedding
HY (D) — H%7(D) and hence the compact embedding H+7 (D) — H%7(D), as
desired. (]
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Lemma 8.11. Let Y # 0, S = 0D and inequality hold with 6 = 1. Then
there is continuous embedding

H*™ (D) — H"(D,dD).

Moreover, the embedding H7 (D) — H%Y(D) is compact and the form (-,-)4 ~ is
coercive.

Proof. The Garding inequality for strongly elliptic systems gives

[0/ [|Z2p) < € Z (a0, Opu) r2(p) + [[ullZ:(p) (8.38)
1,j=1

for all w € HL (D). Hence,

comp

n
1™ ) 2y < ¢ Y (aigdi(p~ "), 8ilp™"w)) 2oy + o ulfopy  (8:39)

ij=1

for u € Hypp, (D), with ¢ a constant independent on w.
It is easy to see that
n
Z (a;ij05(p™"u), 0;(p~ "u))L2(D)
et
n

Z (a;,;0ju, Ou) o (py + 7 Z (as,j(0;p)u, (Osp)u) o.v+1 (D)

= 3,7=1

- v Z (am (05p)p~ Lu , Oiu) o (py + (aq,;05u, (Oip)p~ 1u)How(D))

3,7=1

for all w € HL (D). Using the generalised Cauchy inequality we conclude that

comp
there is a constant ¢ > 0, such that

n n

> (@i 0(p7 ), 0i(p ™)) L2(p) < C( > (@i05u, 0u) o (p) + IIUquo,W(D))
ij=1 ij=1
(8.40)
for all u € H},,,(D).
Furthermore,
o™ ey < 2 (1607 0) 320+ 0~V ullfe o)) (8.41)
for all u € Hclomp(D). Combining (8.39), (8.40), (8.41) and estimate (8.7) with

6 = 1, we conclude that

n

||,0_7u'||%2(p) < C( Z (a;,;05u, O5u) o~ (p) + HUH%IOWJH(D))

1,7=1
n
S C( Z (ai,jaju,@u)Ho,w(p) + H\/aopuH%{o,w(D))
1,7=1
< cllullf,

and
Lo~ VullF2py < cllv/aooullion oy
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for allu € H},,,, (D), the constant ¢ does not depend on v and need not be the same

in diverse applications. These two inequalities establish the continuous embedding
H™7(D) < HY(D,S). In particular, the embedding H"7(D) < H%7(D) is
compact due to Theorem O

Corollary 8.12. Assume that is fulfilled with 6 =1 and the coefficients a; ;
are smooth in a neighbourhood of D. If |r| < 1/2 and holds, then the space
H*7(D) is continuously embedded into H*" (D), where s is given by (8.19).

Proof. Consider the norm u + ||p~"ull, on H»(D,S), see (8.17). According to
Theorem there is ¢ > 0 such that

o™ ull s (py < cllulla (8.42)
for all u € H*7(D,S), where s is given by (8.12). On the other hand, estimate
(8.10) implies

o™ ullrrom\s) < [ ¥ (077 )| 220m)

for all w € H7(D, S) Besides, as ag,o > ¢(1) p~2, we get

[#He* (p w2y < e lull ooy < (D)™ |y/aggullo o)

and

[ > a0 wair s
D j=1

n

1/2 9
< ¢ (( Z (ai,jajU,aiU)Ho,w(D)) + ”\/mUHHO»V(D)>

,j=1

for all u € HY(D,S), the last inequality being the consequence of (8.36)) with
6 = —v. From these estimates it follows that there is a constant ¢ > 0 with the
property that

™ ulla < ¢ llull+

for u € H"(D,S). Now (8.42) implies that the embedding H* (D) < H*7(D)
is continuous.

Finally, for 0 < s < 1, we have

[ 7054 (py < el o1y < (e(1)) 2 |l y/agoull gopy < (e(1) 2 ull4

for u € H»(D,S). This yields the continuous embedding H*7 (D) — H*7(D)
for all s satisfying 0 < s < 1. For s < 0 corresponding to r = 0 and € > 1/2, the
embedding follows by duality. O

From now on we assume that (8.7) is fulfilled with § = 1, provided that Y # 0.
It

AA = Zajaj + agp,
=1

=
AB 0y + ABy
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then integrating by parts with the use of (8.18)) yields readily that

(A'LL, ’l])Ho,»y(D)

= Z (@;,j05u, Ov) gro.~(py — 27/ p_(%’“) Z a; ;0;u(0;p)U dx
ij=1 D ij=1
+ (AAu, U)HO‘”(D) + (¥ (p™ "), W(P_WU))LZ‘(BD) + (bflAB%U)HOw(aD\s)
for all functions u € H»(D, S) and v € H'7(D, S) satisfying the boundary condi-

tion of (8.2]).
It follows from the generalised Cauchy inequality (8.29) (and Lemma if Yis
non-empty) that

n 2 n
LS o] < -5t Wi
P =1 ij=1 (D)
= el ol omss o
< coV) ull2 ol

(8.43)

for all u,v € HY(D, S), where c is a positive constant independent of u and v.
Suppose

(AAu,0) 10y + (07 BB v) o omvs)| < el 1ol 1.5 (8.44)

for all u,v € H»(D, S), with ¢ a constant independent of v and v. Then, for each
fixed u € H™7(D), the sesquilinear form

Q(u,v)
= Z (ai ;0ju, 0;v) go~(py — 27/ p~ 7Y Z a;, ;0;u(0;p)v dz
i,j=1 D ij=1

+ (AAu, ) ooy + (F(p~"w), U(p~ ")) 12(ap) + (b7 " ABu,v) o (ap)\5)

determines a continuous linear functional f on H™7(D) by f(v) := Q(u,v) for
v e HT (D).

In the following lemma by c¢ is meant a constant which is independent on w and
v and may be different in diverse applications.

Lemma 8.13. Suppose Y =0 or holds with § = 1.

1) If p*ag € L*(D) then |(aou,v)mo~py| < cllull4qllvll+, for all functions
u,v € HY(D).

2) If paj € L=(D) then |(a;0;u,v) o~y < c||0jull o~ pyllvll+ 4 is valid for
all u,v € HY (D).

3) If r = 0 and the operators ¥ and ABy are given by multiplication with func-
tions 1 and Abg, respectively, satisfying

by Abo| < ¢ [ih]? (8.45)

on D\ S, then |(b; " ABou, v) o~ op\s)| < cllull44[[v]4,4 for allu,v € HY(D).

4) If is fulfilled and the operator p~7by ' ABopY maps H"(OD,S) con-

tinuously into H="(9D), then |(b; " ABou,v)go~ap\sy| < cllull4 0]+, for all
u,v € HY (D).
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Proof. For p = 1 the lemma follows immediately from the Cauchy inequality. If
Y # 0, the Cauchy inequality should be combined with Lemma For instance,
we get

[(p~ b7 ABop” p™ ", p70) r2(op0\ )
lp= 707 ABop™ (0" u) | - (om) lp ™~ "0l v 0
c[|¥(p~ ") 20p) 19 (P~ "v) || L2(0m)
¢llull4 Toll+y
for all u,v € H»(D, S), as desired. O
Lemm and estimate suggest that under condition with § =1
(8-44]

estimate (8.44]) focuses upon the terms

(b7 " ABou, v) o o\ )|

ININ IA

(ajaju, 'U)HOW(’D) and (bflatu, U)HOW(BD\S)
1

J

n

in the form Q(u, v). In the general case no substantial results are possible. However,
we can say much more under reasonable conditions discussed in Sections [11] and

below.
Thus, if estimate (8.44) holds true, then, by Lemma [L.3] for each u € H7(D)

there is a unique element in A ~7(D), which we denote by Lu, such that

f(v) = (Ua Lu)’Y

for all v € H™7(D). We have thus introduced a linear operator L acting as
H*7(D) — H="(D). From (8.43), it follows that L is bounded.

The bounded linear operator Lqg : HT7(D) — H~7(D) defined in the same way
via the sesquilinear form (-,-)4 4, i.e.

(v,u)4, = (v, Lou)y (8.46)

for all w € H*7(D) and v € H™7(D), corresponds to the case A = Ay, B = By,
where

Ao(,0) = = 0i(ai;05) +27p7 " Y aij(9ip)0; + aoo,
i,j=1 i,j=1
Bo(z,0) = b1 0.+ xs+bip ¥ Tp7.

We are thus lead to a weak formulation of problem (8.2)). Given f € H—7(D),
find w € HT7(D), such that

Q(u,v) = (v, f)y (8.47)
for all v € H™(D).

Now one can handle problem (8.47) by standard techniques of functional analysis,
see for instance [LM72, Ch. 2, § 9], [LUT3, Ch. 3, §§ 4-6]) for the coercive case.

Lemma 8.14. Let A = Ay, B = By. Then for each f € H—V(D) there is a unique
solution w € H*(D) to (8-47), i.e. the operator Lo : H*Y(D) — H~(D) is
continuously invertible. Moreover, the norms of both Lg and its inverse LO_1 are
equal to 1.
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Proof. Under the hypotheses of the lemma, is just a weak formulation of
problem with A and B replaced by Ay, By, respectively. The corresponding
bounded operator in Hilbert spaces just amounts to Lg : H™7(D) — H~(D)
defined by . Its norm equals 1, for, by Lemma we get

(v, Lou), | (v, u)1 4]
[ Loull - = sup ma ==l (848)
veHT (D) HU||+77 veH (D) ||U||+,v
v#0 v#0

whenever u € H7(D).

The existence and uniqueness of solutions to problem follows immediately
from the Riesz theorem on the general form of continuous linear functionals on
Hilbert spaces. From we conclude that Ly is actually an isometry of H 7 (D)
onto HT7(D), as desired. O

Consider the sesquilinear form on H (D) given by
(u,v)— = (Ly  u,v),
for u,v € H—7(D). Since
(Lo u,v)y = (Lo u, LoLg 'v)y = (Lo 'u, Lo '0) 4.4 (8.49)

for all u,v € H™7(D), the last equality being due to (8.46)), this form is Hermitian.
Combining (8.48]) and (8.49)) yields

(u,u)_,7 = ||U||—7

for all w € H—7(D). From now on we endow the space H 7(D) with the scalar
product (-,-)— 4.

Lemma 8.15. Let estimate be fulfilled with constant ¢ < 1. Then, for each
f € H=(D), there ezists a unique solution u € H*(D) to problem (8.47), i.c.
the operator L : HTV(D) — H—7(D) is continuously invertible.

Proof. If holds with ¢ < 1 then the operator L : H7(D)(D) — H (D)
corresponding to problem is easily seen to differ from Ly by a bounded
operator AL : HT7(D) — H (D) whose norm does not exceed ¢ < 1. As Ly
is invertible and the inverse operator L, ! has norm 1, a familiar argument shows
that L is invertible, too. O

Lemma 8.16. Assume thatY = 0 or estimate holds with 6 = 1. Let the map
t: HT7(D) — H%7(D) be compact. If moreover

pag € L*=(D),
aj = 2yp ! Zamaip
i=1

for1 <j<nandt =0, ABy = 0, then the operator AL = L — Lgy acting as
H*™7(D) — H~"(D) is compact.
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Proof. Indeed, in this case the multiplication operator by ag maps the space H7 (D)
continuously to H%7(D), for

T / =20+ g 2| uf? d
D

IN

CHUH%OWJA(D)
< cllulf,,

the last inequality being a consequence of Lemma if Y # (. According to
Lemma if the map ¢ : HT7(D) — H?(D) is compact then the embedding
/' H*Y(D) — H—7(D) is compact, too. As AL = /'ag, the proof is complete. [

N

As mentioned, we can say much more on compact perturbation of the operator
Lo under additional restrictions of Sections [[1] and [T2]

Since Cogp, (D) < HT7(D) — H®7(D), the elements of H~7(D) are distribu-
tions in D and any solution to problem satisfies Au = f in D in the sense
of distributions. Though the boundary conditions are interpreted in a weak sense,
they agree with those in terms of restrictions to 9D if the solution is sufficiently
smooth up to the boundary, e.g. belongs to C*(D). Suppose for instance that
the coefficients a; ; are smooth in D and f € L (D). Since A is elliptic, we de-

duce readily that u € H2 (D) and the equality Au = f is actually satisfied almost
everywhere in D. If, in addition, u € H*7(D) then

((0e + bfl(at + By))u, V) go.v(ap\s) = 0

for all v € H™7(D). As any smooth function v in D whose support does not meet
S belongs to H™7(D), we conclude that (019, + d; + Bo)u = 0 on 9D \ S. Hence,
in this case Bu =0 on 9D, for u =0 and by =0 on S. If Au = f is not sufficiently
regular in the closure of D, then f may behave wildly at the boundary which may
cause Bu = ug in some very implicit sense at 9D, with uy = ug(f) different from
7Zero.

9. COMPLETENESS OF ROOT FUNCTIONS FOR WEAK PERTURBATIONS

We are now in a position to study the completeness of root functions related to
problem . We begin with the selfadjoint operator Ly. To this end we write
i/ for the continuous embedding of H%7(D) into H~Y(D), as it is described by
Lemma,

Lemma 9.1. Suppose that estimate is fulfilled and inclusion 1S con-
tinuous. Then the inverse Lgl of the operator given by induces positive
selfadjoint operators

Q1 = VuLy' + H™(D) — H-(D),
Q = Lyt + H°Y(D) — H(D),
Qs = Ly*/v : H™(D) — HT(D)

which have the same systems of eigenvalues and eigenvectors. If the inclusion
L is compact then the operators are compact and there are orthonormal bases in
H*Y(D), H*V(D) and H="7(D) consisting of the eigenvectors.

Proof. Easily, if ¢ is compact then, as ¢/, Ly 1 are bounded, all the operators @,
Q2, Q3 are compact.
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Recall that we endow the space H 7 (D) with the scalar product (-,-)_ . Then,

by (8.49),
(Qiu,v)— 4 = (v,t/t Lglu)_,nY
= (Ly'v, vt Lytu),

= (LLalu, LLSIU)HO,w(D),

(9.1)
and
(U,Q10)7,7 = (Q1U7’U’)*;"/
= (LLalw LL(YI’U)HO,w(D)
for all u,v € H—7(D), i.e. the operator Q; is selfadjoint and non-negative.
Using (]8.46) we get
(Qau,v)gor(py = (Lo (F'u)),v) o (p)
(Lal(l’,u)7 L/U)’Y
= (L'(Vw), Lo M (V0)) 4
and
(u,Q2v)go~(py = (Q2v,u) o (p)
= (Lo (Yu), L ({0)4
for all u,v € H%7(D), i.e. the operator Qs is selfadjoint and non-negative.
On applying (8.46) once again we obtain
(Qsu,v) 44 = (Lo_l(L/Lu)a V)4,
= (Jiu,v),
= (tu, ) go~(p)
(9.2)

and

(U,Q3U)+,v = (Q3U,U)+,w
= (Lu,w)Ho,«,(D)

for all u,v € H™7(D), which shows that Q3 is a non-negative selfadjoint operator.

Finally, as the operator L 1 is injective, so are the operators Q1, Qs and Qs.
Hence, all these operators are actually positive. Moreover, all their eigenvectors
{u,} belong to the space H7(D), for Ly u, lies in H*7(D). From the injectivity
of + and ¢/ we conclude immediately that the systems of eigenvalues and eigenvectors
of @1, Q2 and Q3 coincide. The last part of the lemma follows from Theorem
[6.1] O

Our next goal is to apply Theorem [6.4] to investigate the completeness of root
functions of weak perturbations of Q);. Lemmas @ Theorem
and Corollary give sufficient conditions for the inclusion (8.8) to be compact.
However, we need to describe typical situations where the operators Q1, Q2, Q3
have finite order. With this purpose, we present a broad class of finite order compact
operators acting in spaces of integrable functions. The following result goes back
at least as far as [Agm62].
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Theorem 9.2. Let s € R and A : H*(D) — H*(D) be a compact operator. If there
is As > 0 such that A maps H*(D) continuously to H**4(D), then it belongs to
Schatten class &,/ as4c for each e > 0.

Proof. For the case s € Z>q see [Agm62]. For the case s € R and Sobolev spaces on
a compact closed manifold D see e.g. Proposition 5.4.1 in [Agr90]. For the general
case we have not been able to find a proper reference and so we refer to our paper
[STT2].
We indicate crucial steps of the proof for the completeness of exposition. Let @
be the cube
Q={zeR": |zj|<m j=1,...,n}

in R™. Given a function u € L?(Q), we consider the Fourier series expansion

u(x) ~ Z e (u) e 35i=1 kii)
kezn

and introduce the norm

lullZeo = lao()? + Y~ [k er(w)[?,
kezZm\ {0}

where s is a non-negative real number. The subspace of functions for which this
norm is finite is denoted by H(*). Obviously, H®) is a Hilbert space which, for
non-negative integral s, can be regarded as a closed subspace of the Sobolev space
H*(Q). We see readily that HS  (Q) — H®). For s < 0, we write H®) for

comp
the dual of H(—%) with respect to the sesquilinear pairing (*,)(0) induced by the
inner product (-, -)g (see Lemma . The norm in H®) is still given by the same
formula, as is easy to check.

Without loss of the generality we can assume that the closure of D is situated
in the cube Q. For s > 0, we denote by 75 p the restriction operator from H?®(Q)
to H°(D). By the above, 75 p acts to the elements of H®)_ too, mapping these
continuously to H*(D). As the boundary of D is Lipschitz, for each s € Zx>g
there is a bounded extension operator es p : H*(D) — HZ,,,,(Q) (see for instance
[Bur98, Ch. 6]). We will think of e, p as bounded linear operator from H*(D) to
H®) | provided that s € Z>g.

Given any non-negative integer s, an interpolation procedure applies to the pair
(H*(D), H**t1(D)), thus giving a family of function spaces in D of fractional smooth-
ness (1 —0)s+6(s+1) = s+ 6 with 0 < # < 1. The Banach spaces obtained in
this way coincide with H*+(D) up to equivalent norms. Thus, we can apply inter-
polation arguments to conclude that there is a bounded linear extension operator
esp : H*(D) — H for all real s > 0. By construction,

Ts,D €5, DU = U (9.3)
holds for each v € H*(D) with s > 0.
For s < 0 we introduce the mappings
rep ¢ H® = H%D),
esp : H*(D) — HO),
using the duality between the spaces H*) and H(=%). Namely, if s < 0 we set

<T5,DU,U>(0) = <U76—S,DU>(0), (9.4)
(es,pu,v)(0) = (U,7—sDV)(0)
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for all u € H®), v € H=*(D) and for all u € H*(D), v € H(=*) respectively. As
[, e—ap0) @) < Il e lle—s Il 10ll-+()

for all w € H®) and v € H ~5(D), which is a consequence of duality between the
spaces H®) and H(=%)| the first identity of defines a bounded linear operator
re.p : H®) — H*(D) indeed. Similarly, by the duality between H*(D) and H~*(D)
(cf. Lemma , the second identity of defines a bounded linear operator
esp: H¥(D) — H®).

On applying equality we get (rs,p es,pU, v) ) = (u,v) (o) for all u € H*(D)
and v € H*(D) with real s < 0. In other words, the operators 7, p and rsp
satisfy for all s € R, i.e.,

Ts,p€s,p = Is(p)- (9.5)
For t > s we denote by

LsD HYD) — H*(D),
e HWO — H®)

the natural inclusion mappings. If ¢ < 0, by this is meant

<Lt,s,DUaU>(O) = <uabfs,7t,D'U>(O); (9.6)
(bt,su,v)0) = (U tos,—£,DV)(0)

for all u € HY (D), v € H=*(D) and u € H®, v € H(=) respectively. It is clear
that

Tsplt,s = Ut s DTt D,
Ls€D = €sDltsDs (9.7)
TsDlt,s€t,D = Llt,s,D
provided ¢t > 0. If ¢ < 0 then combining (9.4]), and yields
<7"s,D L, sU, U)(o) = (U, Ls,—t e—s,7ﬂ>(0)

<U, €—t,D Lfs,ft,D'U>(())

= (Lt,s,D Tt,DU, U>(0)
for all u € H® and v € H=*(D), and

<Lt,s €t,pU, U>(0) = <U7 T—t,D L—s,—tU>(0)
= <’U,7 L_s,—t rfs,D’U>(0)
= (es,D Lt,s,DU, V) (0)

forallu € HY(D) and v € H(%) whence TsDlts €D = Lt s p. Therefore, equalities
(9.7) are valid not only for real ¢ > 0 but also for all ¢ € R.

Lemma 9.3. Let s € R and K : H®) — H®) be a compact operator. If there is
As > 0 such that K maps H) continuously to HY29) | then K is of Schatten
class &,/ pste for each e > 0.

Proof. Put

A () = Y (14 [K[2)7/2 e (u) !5 R5m),
kezn
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Obviously, A, maps H®) continuously to H*~") for all s € R. For each fixed s,
the operator A_, tsyr s is selfadjoint and compact in H (s+7) Its eigenvalues are
(14 |k|?)~"/2 and the corresponding eigenfunctions are '(>=i=1 i) The series

S (k)

kezn

(counting the eigenvalues with their multiplicities) converges for all p > n/r, and
80 A_; tsyr s is of Schatten class &,, /1. for any € > 0.

Obviously, A_,.A,. = I holds for all » > 0. By assumption, the operator K factors
through the embedding 51 Ass : HG+45) 5 HG) e, there is a bounded linear
operator Ko : H®) — H+4%) guch that K = 144 4 sKo. Then

K = A_asApK
- AfAs AAS LerAs,sKO
= A—As ls+As,s AASKO-

Since the operator Aas Ko : H®) — H®) is bounded, Lemma implies that K
belongs to the Schatten class &,,/ 54 for any € > 0. O

We are now in a position to complete the proof of Theorem [9.2] Suppose that
Ap : H¥(D) — H*+t4(D) is a bounded linear operator, such that A = Lot As,sAo.
Set

Ko = esynsp AoTsp,

then K, maps H®) continuously to H+4%). By Lemma the composition
K = 154 15,sKo is of Schatten class &,,)As4. for any € > 0. Besides, we get

TsyAs,p Ko = AoTs D (9.8)

because of ((9.5)).

Let A be a non-zero eigenvalue of A and u € H*(D) a root function corresponding
to A, i.e. (A—AI)™u = 0 for some natural number m. Then, using (9.7) and (9.8),
we conclude that

(K—=X)"espu = esp(A—A)"u

that is each non-zero eigenvalue of A is actually an eigenvalue for K of the same
multiplicity. Therefore, A belongs to the Schatten class &,,/ 454 for any e > 0,
too. (I

Corollary 9.4. Suppose that p' € L (D) and the coercive estimate holds.
Then any compact operator R : H—7(D) — H (D) which maps H (D) con-
tinuously to HT7Y (D) is of Schatten class Snjo4e for any € > 0. In particular, its

order is finite.
Proof. We first observe that Cg5,,,(D) is dense in L*(D) and the norm || - || .2(p)
majorises the norm || - |[g-1(p). Hence, C5,, (D) is dense in H~*(D), too, i.e.
each equivalence class of H~*(D) contains a Cauchy sequence consisting of smooth
functions with compact support in D.

As the coercive estimate holds, the space H7(D) is continuously em-

bedded into H'7(D). On the other hand, it follows from Lemma that the
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embedding t(1,0,1,p : H"'(D) = H"(D) — H'(D) is continuous. Now using
Theorem [2.6| we define the continuous map ST : H*7(D) — H(D) via

+ _ —
STu= L(1,0),1,DP Tu

for any uw € HY7(D). For v € C.. (D), set

comp
S7v=pv.
Then Theorem [2.6] and Lemmas [2.8] and [8:10] yield

(S7v,w) oyl = (v, p” ") L2(p)|

[oll -1y~ " ull g ()
[0l -1 lp™ "l [ 10 )
cllvllg-yllull g1 )

cllvllg—1(pyllul

IANIA A IA

+

for all u € HT7(D), where the constant ¢ does not depend on u and v. Therefore,
we get

1870l < cllvlla-1(p),

i.e. S~ maps H (D) continuously to H~7(D).

Denote by Ry the operator R which is thought of as a bounded map of H7(D)
to HT7(D). Then the composition ST RyS~ maps H (D) continuously to H*(D).
Write i : HY(D) < L?(D) for the natural inclusion and i’ : L?(D) < H (D) for
the corresponding operator induced by duality. It follows from Theorem that
the operator i'i STRyS™ : H~'(D) — H~!(D) is of Schatten class S,, /2. for any
€ > 0. By the very construction,

S7iiST =11
whence R =/t Ry = S73'iST Ry.
Let now A be a non-zero eigenvalue of R and u be a root function of R corre-
sponding to A, i.e. (R — AI)™u = 0 for a natural number m. Then it follows from

the binomial formula that u belongs to the image of the operator S, i.e. u =8 ug
for some ug € H~1(D). Hence

(R—AD)™u = (R—A)™S ug
S~ (Z/Z S+ R087 - )\I)m’l.to
0.

As the operator S~ is obviously injective, each eigenvalue of the operator R is
in fact an eigenvalue of i'i ST RyS~ of the same multiplicity. Therefore, R lies in
S, /24, for any € > 0, too. O

Corollary 9.5. If for some 0 < s < 1 there is a continuous embedding
ts : HP(D) — H*V(D, S), (9.9)

then any compact operator R : H—7(D) — H 7 (D) which maps H7(D) contin-
uously to HY7(D) is of Schatten class Sny2sqe for any € > 0. In particular, its
order is finite.
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Proof. The proof generalises that of Corollary [9.4] in obvious way.

We first observe that Cgg,,,, (D) is dense in L?(D) and the norm ||-|| ,2(py majorises
the norm ||-|| -« (p). Hence, Cg5,,, (D) is dense in H~*(D), too, i.e. each equivalence
class of H~*(D) contains a Cauchy sequence consisting of smooth functions with
compact support in D. Thus, the operator ¢s induces via composition a bounded
inclusion operator ¢/, : H=*7(D) — H>7(D). This latter is actually the transpose
of ¢s.

By definition there is a continuous embedding ¢, 0y,s,p : H*%(D) — H*(D).
Using Corollarywe may define a continuous map 8 : H%7 — H*(D) by means
of

Stu= L(s,O),s,'Dp_’yu
for uw € H*>Y(D). Moreover, set

STv=p
for v € C3,,,(D). Then Corollary 3.3| yields
(S™v,u)gorpy| = (v, p7"u)L2(p)|
< vl lle™ "ull ms (D)
< cllolla-«m@)llp vl o)

cllvllg-s ) lull = (p)
for all w € H*7(D). Therefore, we get
IS~ vl -2 (p) < cllvllm-2(p),
i.e. 8§~ extends to a continuous mapping of H~*(D) to H%7(D).

Let Ry stand for the operator R regarded as a bounded map of HY(D) to
H*7(D). Then the operator STis RS~ maps the space H*(D) continuously to
H*(D).

Write i : H¥(D) — L?(D) for the natural inclusion and i’ : L?(D) — H~*(D)
for the corresponding map induced by duality. It follows from Theorem that
the operator i'i ST, Rot,S™ : H=*(D) — H~*(D) is of Schatten class &,, /5. for
any € > 0. By construction,

LS8 T =1,
and so R =1t Ry = .87 iS5 Ry.

Let now A be a non-zero eigenvalue of R and u be a root function of R cor-
responding to A, i.e. (R — AI)™u = 0 for a natural number m. Then it follows
from the binomial formula that u belongs to the image of the operator /.S, i.e.
u = 1,8 ugp for some uy € H%(D). Hence

(R—X)"u = (R—X)".S up
LS (1118 s Rot,lS™ — AI)™ug
0.

As the operator /S~ is injective, each eigenvalue of the operator R is in fact an
eigenvalue of 7’ i ST1s Ryt,S™ of the same multiplicity. Therefore, R lies in &,, /54
for any € > 0, as desired. O
Corollary 9.6. If for some 0 < s < 1 there is a continuous embedding

is: HY(D) — H*Y(D, S), (9.10)
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then any compact operator R : H—7(D) — H 7 (D) which maps H7(D) contin-
uously to HY7(D) is of Schatten class Sny2sqe for any € > 0. In particular, its
order is finite.

Corollary 9.7. Suppose p' € L>°(D) and the coercive estimate holds. Then
the operators Q1, Q2 and Q3 are of Schatten class &,, /54 for any ¢ > 0 (and so
they are of finite order).

Proof. Since Q = 't Ly' and Ly maps H~*?(D) continuously to H7(D), the
operator ()1 is of Schatten class &,, /2. for any € > 0, which is due to Corollary
On the other hand, Lemma [9.1] shows that the operators @1, Q2 and Q3 have the
same eigenvalues. Hence, all these operators belong to the Schatten class &,, /24
for any € > 0, as desired. ([

Corollary 9.8. Suppose there is a continuous embedding with some s > 0.
Then the operators Q1, Q2 and Q3 are of Schatten class &, /254 for any e > 0
(and so they are of finite order).

Proof. Since Q = ¢/t Ly* and Ly' maps H_ (D) continuously to H*7(D), the
operator ()1 is of Schatten class &,, /2,1 for any € > 0, which is due to Corollary
On the other hand, Lemma [0.I] shows that the operators @i, Q2 and Qs
have the same eigenvalues. Hence, all these operators belong to the Schatten class
Gh/254e for any € > 0, as desired. O

Corollary 9.9. Suppose there is a continuous embedding with some s > 0.
Then the operators Q1, Q2 and Q3 are of Schatten class &, /251 for any e > 0
(and so they are of finite order).

Lemmas Theorem [8.4] and Corollary provide sufficient
conditions for a continuous embedding to be true with s =1 and 0 < s < 1/2,

respectively.

Theorem 9.10. If the operator Q1 : H—Y(D) — H~7(D) is of finite order then,
for any invertible operator of the type Lo + AL : H™7 (D) — H—7(D) with a
compact operator AL : H™ (D) — H (D), the system of root functions of the
compact operator
Py =1/1(Lo+ AL)" ' : H(D) - H(D)
is complete in the spaces H—7 (D), H*V(D) and H7 (D).
Proof. By assumption, there is a bounded inverse
(Lo + ALYt : H=(D) — H™ (D).
Since
I— LO(LO + AL)71 = AL (Lo + AL)il,

we conclude that

Lyt = (Lo+AL)™r = Lg'(AL(Lo+ AL)™Y),

Q1—P = @ (AL (LO + AL>_1) .

From the compactness of AL and boundedness of (Lo + AL)™! it follows that the
operator

(9.11)

AL (Lo + AL)™' : H=(D) — H (D)

is compact.
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Hence, P; is an injective weak perturbation of the compact selfadjoint operator
Q1. If in addition the order of ()1 is finite then Theorem implies that the
countable system {u,} of root functions related to the operator P is complete in
the Hilbert space H (D).

Pick a root function u, of the operator P; corresponding to an eigenvalue A\, .
Note that )\, # 0, for the operator (Lo + AL)™! is injective. By definition there
is a natural number m, such that (P; — A, I)™u, = 0. Using the binomial formula

yields

3 (Z”) A3 Ply,, = 0.

7=0
In particular, since A, # 0, we get

w =3 ()N (e (Lo + AL,
j=1

Hence, u,, € H7(D) because the range of the operator (Lo + AL)~! lies in the
space HT7(D).

We have thus proved that {u,} C H™7(D). Our next concern will be to show
that the linear span £({u,}) of the system {u,} is dense in H7(D) (cf. Propo-
sition 6.1 of [Agrila] and [Agriid, p. 12]). For this purpose, pick v € H™7 (D).
As Lo + AL maps H™7(D) continuously onto H™7(D), we get (Lo + AL)u €
H~7(D). Hence, there is a sequence {fr} C L({u,}) converging to (Lo + AL)u in
H~7(D). On the other hand, the inverse (Lo + AL)~! maps H?(D) continuously
to H7(D), and so the sequence

(Lo + ALY fr, = (Lo + AL) Y0 fy,

converges to u in H7 (D).
If now u,, € L({u,}) corresponds to an eigenvalue Ao of multiplicity mg, then
the vector v,, = Pju,, satisfies

(Py — XoI)™wv,, = (Py — Ao)™ u,, + Ao(Py — NoI)™u,, = 0.

Thus, the operator P; maps L({u,}) to L({u,}) itself. Therefore, the sequence
{t/v(Lo+ AL)~ fi} still belongs to £({u,}) and we can think of {(Lo+ AL)~!f;}
as sequence of linear combinations of root functions of P; converging to u. These
arguments show that the subsystem (Lo + AL)™! L({u,}) C L({u,}) is dense in

H*Y(D).

Finally, since Cg5,,,(D) € H™(D) and CZ,,,(D) is dense in the weighted
Lebesgue space H%7(D), the space H7(D) is dense in H%Y(D) as well. This
proves the completeness of the system of root functions in H%7(D). O

Similar assertions are also true for the weak perturbations of the operators Qo
and Q3.

The operator Lo+ AL : HY7 (D) — H~7(D) with a compact operator AL fails
to be injective in general, and so Theorem [9.10] does not apply. However, as Ly is
continuously invertible, we conclude that L = Ly + AL is Fredholm. In particular,
there is a constant ¢, such that

lullyy < e (1Lull- 5 + llull-5) (9.12)
for all u € H*7(D).
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We next extend Theorem [9.10] to Fredholm operators. To this end denote by T
the unbounded linear operator H (D) — H>7(D) with domain Dy = H™7(D)
which maps an element v € D to Lu. The operator T is clearly closed because
of inequality . It is densely defined as H'(D,S) C H™7(D) is dense in
H~7(D). Tt is well known that the null space of T is finite dimensional in H 17 (D)
and its range is closed in H (D).

When speaking on eigen- and root functions uw of the operator T we always
assume that u € Dy and (T — A)7u € Dy for all j =1,...,m — 1.

Let Ty : H=7(D) — H~7(D) correspond to the selfadjoint operator Ly. The
operator Tj is obviously continuously invertible and the inverse operator coincides
with L/LLal = Q1.

Lemma 9.11. The spectrum of the operator Ty consists of the points u, = X\ in
R<q, where A, are the eigenvalues of Q1.

Proof. Recall that all A\, are positive, which is due to Lemma [9.1] and so s, > 0.
If A # 0 then

1
(To — M)u= (I - \t'e L) Tou = fA(Ql - XI) Tou
for all w € H™7(D), showing the lemma. O

If the spectrum of T is different from the whole complex plane, i.e., if the resolvent
R(\T) = (T — M)~ exists for some A\ = Ag, then it follows from the resolvent
equation (since R(Ag;T) is compact) that R(A; T) exists for all A € C except for a
discrete sequence of points {A, } which are the eigenvalues of T' (see [Kel71l, p. 17].
In the general case, however, one cannot exclude the situation where the spectrum
of T is all of C.

Theorem 9.12. Assume that AL : H™7 (D) — H~7(D) is a compact operator
and Q1 : H—Y(D) — H—Y(D) is of finite order. Then the spectrum of the closed
operator T : H—Y(D) — H—Y(D) corresponding to L = Lo+ AL, is different from
C and the system of root functions of T is complete in the spaces H7 (D), H*Y (D)
and HT7(D). Moreover, for any € > 0, all eigenvalues of T (except for a finite
number) belong to the corner |arg A\| < e.

Proof. First we note that
T—-M=L-\1 (9.13)

on Ht7(D)) for all A € C. Let us prove that there is a natural number N, such
that Ag = —N is a resolvent point of T'. For this purpose, using (9.13]) and Lemma

[O.17] we get
T+ kI = (I4+ AL(Ly+ ko)™ (Ty + kI) (9.14)
for all kK € N.
We will show that the operator I + AL(Lg+k¢/t)~! is injective for some k € N.

Indeed, we argue by contradiction. Suppose for any k € N there is fi, € H7(D),
such that ||fx]|—. =1 and

(I 4+ AL(Lo+ k)™ Y fr = 0. (9.15)
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Given any u € HY7(D) and k € N, an easy computation shows that

I(Zo + k/e)ul2 lu+ & Lg M ull?

Il + 2k [ulldo ) + K Lo ull}

%

2
lull3 -

Hence, the sequence uy := (Lo + k¢/t) ™1 fx is bounded in H 7 (D). Now the weak
compactness principle for Hilbert spaces yields that there is a subsequence {f%,}
with the property that both { fx, } and {u, } converge weakly in the spaces H~7(D)
and HT7(D) to limits f and u, respectively. Since AL is compact, it follows that
the sequence { ALuy, } converges to ALu in H~7(D), and so { fx,} converges to f

because of (9.15). Obviously,
LAll- = 1.

In particular, we conclude that the sequence {AL(Lqg + k;'t)™" fi,} converges to
—f whence

f=-ALu. (9.16)

Further, on passing to the weak limit in the equality fr, = (Lo + k; ' o t)ug, we
obtain

f=Lou— lim k;ivuy,,
k)j—)OO

for the continuous operator Lo : H7(D) — H~7(D) maps weakly convergent
sequences to weakly convergent sequences. As the operator /¢ is compact, the
sequence {¢'tug; } converges to +’su in the space H~7(D) and ¢'tu # 0 which is a
consequence of and the injectivity of +/t. This shows readily that the weak
limit

kjhgnoo kjde ug; = Lou — f
does not exist, a contradiction.

We have proved more, namely that the operator I+ AL(Lg+k/t)~! is injective
for all but a finitely many natural numbers k. Since this is a Fredholm operator of
index zero, it is continuously invertible. Hence, and Lemma imply that
(T — XoI)~! exists for some \g = —N with N € N.

As )¢ is a resolvent point of T,

(T —XoD)™ = (L —Xot/t)™ !

on H=Y(D). Since L : H™ (D) — H (D) is a Fredholm operator and the
inclusion ¢ compact, the operator L — \gt/v : HT7(D) — H (D) is Fredholm.
So (L — Ao ¢/t)~! maps H—7(D) continuously to H*(D). Similarly to (9.11)) we
obtain

Lyt = (L —Xod) ' =Lg" (AL =X t)(L— X d't)7 ).

Then, Theoremyields that the root functions {u, } of the operator (L—\g ¢/t)~*
are complete in the spaces H7 (D), H*Y (D) and H (D).

From it follows that the systems of root functions related to the operators
(L —Xot/t)~t and T — X\ I coincide.

Finally, as the operators T'— gl and T" have the same root functions, we conclude
that £({u,}) is dense in the spaces H"? (D), H*Y(D) and H—7(D). O
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The equality (T — A)u = 0 for a function u € H™7(D) may be equivalently
reformulated by saying that u is a solution in a weak sense to the boundary value
problem

Au = Mu in D,
{ Bu = 0 at 0D,

where the pair (A, B) corresponds to the perturbation Lo + AL. For n = 1 such
problems are known as Sturm-Liouville boundary problems for second order ordi-
nary differential equations (see for instance [Har64, Ch. XI, § 4]). Thus, we may
still refer to as the Sturm-Liouville problem in many dimensions.

Now we want to study the completeness of root functions of “small” perturba-
tions of compact selfadjoint operators instead of the weak ones. To this end we
apply the so-called method of rays of minimal growth of resolvent which leads to
more general results than Theorem [6.4] This idea seems to go back at least as far
as [Agm62].

(9.17)

10. RAYS OF MINIMAL GROWTH

We first describe briefly the method of minimal growth rays following [DS63]
and Theorem 6.1 of [GKGY9, p. 302].

Let L : H™Y (D) — H~"(D) be the bounded linear operator constructed in
Section We still assume that estimates and hold and that the op-
erator L is Fredholm. In the sequel we confine ourselves to those Sturm-Liouville
problems for which the spectrum of the corresponding unbounded closed operator
T : H(D) - H (D) is discrete, cf. [Agm62]. We denote by R(\;T) the
resolvent of the operator 7.

Definition 10.1. A ray arg A = ¥ in the complex plane C is called a ray of minimal
growth of the resolvent R(\;T) : H—V(D) — H (D) if the resolvent exists for
all A of sufficiently large modulus on this ray, and if, moreover, for all such A an
estimate

IR D)l 2= (py) < A (10.1)
holds with a constant C' > 0.

Theorem 10.2. Let HT(D) be continuously embedded into H>Y (D) or H* (D),
for some 0 < s < 1. Suppose there are rays of minimal growth of the resolvent
arg A = ¥y, where j = 1,...,J, in the complex plane, such that the angles between
any two neighbouring rays are less than 2ws/n. Then the spectrum of the operator

T is discrete and the root functions form a complete system in the spaces H=7(D),
H%Y(D) and H*7 (D).

Proof. The proof actually follows by the same method as that in Theorem 3.2 of
[Agm62].

Since the spectrum of the operator T is different from the whole complex plane
it is actually discrete. It remains to show that if g € H (D) is orthogonal to all
eigen- and associated functions of the operator T' then g is identically zero. By the
Hahn-Banach theorem, this implies that the root functions of T are complete in
H=7(D).

Since the operators T and T — Aol have the same root functions, we may assume
without loss of generality that the origin is not in the spectrum of 7. Choosing
X =0in R= (T — XoI)™!, weset R=T""1.
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Consider now the function

f) = (R(A/XR)u, g) - 4, (10.2)
where w € H7(D) and (-, -)_ - stands for the scalar product in H~>7(D). Since the
resolvent of R is a meromorphic function with poles at the points of the spectrum of
R, the function f is analytic for A # ), where {\,} is the sequence of eigenvalues
of R~' = T. We shall use a familiar relation between the resolvents of the operators
T and T, namely

ROA/NT™H) = =M - NP*R(\T). (10.3)
Consider the expansion
f-n f-nt1 f-1 - k
AT u = e A—A)7,
R( ) )U ()\_)\U)N+()\_)\U)N_1+ +)\_)\u+kzzofk( )

in a neighborhood of the point A = \,, where A, is a pole of R(\;T). Here N > 1
and f_ny # 0, the functions f_n,...,f-1 € H™7(D) form a chain of associated
functions of T, and fr € H 7 (D) for k > 0. This expansion implies that A, is a
regular point of f(\), for g is orthogonal to all f_n,..., f_1. Therefore, f(}\) is an
entire function.

Relations ([10.1)), (10.2)) and (10.3]) imply that f is of exponential type, i.e., there
is a constant ¢ > 0, such that

[f(N)] < cexplA| (10.4)

for |A| — oo, provided that arg A = ¥; for some j =1,...,J. We use the following
lemma taken from [DSG63].

Lemma 10.3. Assume that R is a compact linear operator of Schatten class &y,
with 0 < p < oo, in a Hilbert space H. Then there exists a sequence p; satisfying
pj — 0, such that

R(A; R)|| ¢y < const exp(c|A[7P)
for Al = pj.

According to Corollaries 9.6} the operator R belongs to &,, /9, for any
€ > 0. Then it follows from Lemma [10.3|that for any € > 0 there exists a sequence

p; — 0, such that

FO] < exp (A7) (10.5)

for all A € C satisfying |A\| = 1/p;.
Consider f(\) in the closed corner between the rays arg A = 9, and arg A = 9,41.
Its angle is less than 27s/n. Since

R(1/X\R) = =M — N>R(\T)

and each ray arg A = 1, is a ray of minimal growth, inequality is fulfilled on
the sides of the corner and inequality on a sequence of arcs which tends to
infinity.

Choosing € > 0 in sufficiently small and applying the Fragmen-Lindelof
theorem we conclude that |f(A)| = O(|A|) as |A] = oo in the whole complex plane.
Therefore, f(A) is an affine function, i.e., f(\) = ag + c;A. On the other hand, we
have

R(A/NR)=-AI - N R+...,
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and so
FO) = =A(u,9)—r — N (Ru,g) -y + ...
Since f(A) is affine, we get
(Ru,9)—~ =0

for all w € H—Y(D). Hence it follows that g = 0, for the range of the operator R is
dense in H7(D). Thus, the system of root functions of the operator T is complete
in H—7(D).

As the operators T, (T — A\oI) and (T — \oI)~! have the same root functions, it
suffices to repeat the arguments of the proof of Theorem[9.10]to see the completeness
in the spaces H%Y(D) and H (D). O

This theorem raises the question under what conditions neighboring rays of min-
imal growth are close enough. We now indicate some conditions for a ray arg A = ¢
in the complex plane to be a ray of minimal growth for the resolvent of T

Lemma 10.4. Each ray arg\ = ¥ with 9 # 0 is a ray of minimal growth for
R\ Tp) and
-l (IAl[sin(arg \)[)~*, if [argA| € (0,7/2),
1T~ Ao < { Y11 N2 0

Moreover, the operator Lo — X/t : HY7(D) — H~7 (D) is continuously invertible
and

_ r\—1 |Sin(arg /\)‘7 Zf |arg>\| € (0771-/2)7
(Lo = Ad'0) "l e=m (), (D)) < { 1, if |arg)| € [r/2,7].

(10.7)
Proof. According to Lemma the resolvent
(To — AXI)™' : H=7(D) — H~7(D)

exists for all A € C away from the positive real axis. As the operator Q3 = L Ly

is selfadjoint, the operator Ty is symmetric, i.e.,

(TOuvg)*,’Y =

(
(
= (leu’ 9+
(
(
for all u,v € H™7(D). If |arg(\)| € (0,7/2), then
I(To = ADull2, = [(To = RADulZ , +[SA? [Jul2,
> |AP|sin(arg ) [lul2

for all functions u € H7(D), which establishes the first estimate of (10.6). If
|arg A| € [7/2, 7], then RA < 0 whence

I(To = ADul|Z ., = M u)2,
and so the second estimate of (|10.6]) holds.

Now it follows from ((9.13]) that the operator Lo — A ¢/t is injective for A € C away
from the positive real axis. As this operator is Fredholm and its index is zero, it is
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continuously invertible. Finally, as the operator Q3 = L Ly, is positive, we deduce

readily that

(Lo = Adv)ull- I = ALg " ' o)ull+
IAHSATH [full+,
| sin(arg )| [[ull + .5,

if |arg A| € (0,7/2), i.e. the second estimate of (10.7)) is fulfilled. Similar arguments
lead to the second estimate of ((10.7)). O

Y

Theorem 10.5. Let H7(D) be continuously embedded into H*" (D) or H*"(D)
for some s > 0 and estimate be fulfilled with a constant ¢ < |sin(ws/n)|.
Then all eigenvalues of the closed operator T : H—Y(D) — H—7(D) belong to
the corner |arg A\| < arcsinc, each ray arg\ = ¢ with |9 > arcsinc is a ray of

minimal growth for R(A\;T) and the system of root functions is complete in the
spaces H=Y (D), H*V(D) and H™7(D).

Proof. First we note that, by Lemma [8.15 the operator L : HT7(D) — H—7(D)
is invertible. Indeed, L = Lo + AL where AL : H™7 (D) — H~7(D) is a bounded
operator with the norm

IAL|| g (mr+ov Dy, - (pyy < 1= |1 Lg |7

In particular, by , the spectrum of the corresponding operator T does not
coincide with the whole complex plane.

Fix ¢ # 0 and set my = |sind|, if |9| € (0,7/2), and my = 1, if |9| € [7/2, 7). If
my > ¢ then

IAL g(a+(py, - (py) < € <mg < [[(Lo = X' M 2o (py -2y

Hence it follows that the operator L — X/t : HYY(D) — H (D) is continuously
invertible and

(L — )\L,b)_l||L(H+,’Y(D)7H—,w(p)) < (my — C)_l. (10.8)
In order to establish estimate ([10.1) we have to show that there is a constant
C > 0, such that
CINTHIT = Mull-y 2 [Jull- 4
for all w € HT7(D).
If arg A = ¥ with my > ¢, then, by (9.13)), we get
(T = ADull- = [(L=Av)ull— 4
(mo — ) [lull 4.5

(my =) |lull -~

(AVARYS

for all w € H™7(D). Therefore, given any A on the ray arg A = ¢ with my > ¢, it
follows that

1) The range of the operator T — A\l : H>7(D) — H>7(D) is a closed subspace
of H=7(D).

2) The null space of the operator T'— A\l : H7(D) — H7(D) is trivial.

By , the range of T'— AI coincides with the range of L — A/t which is the
whole space H7(D). Hence, the resolvent (T — A\I)~! exists for all A\ away from
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the corner |arg A| < arcsin ¢ in the complex plane. On applying (9.13]) and Lemma
[10.4] we obtain

T—MN=Ly+ AL -\t = (I + AL(Ly — X\'t) 1) (Tp — M) (10.9)
on H™7(D) and
(I + AL(Lg — X/t) " )l
> Nlull-y = 1ALl cea+ 7Dy, -0y 1(Lo = A0) " Hully
> (1=c/my)|lull- 5.

Therefore the operator I + AL(Ly — A+/t)~! is continuously invertible as Fredholm
operator of zero index and trivial null space. Moreover,

I(1 + AL(Lo = A't) ™)l z—mpy) < (1—¢/mg) ™"
Now (|10.9) implies
(T = XD~ 2 py)
< T+ AL(Lo = X)) e opll(To = XDl ea-o (o))
< (L=e/mg) tmy N7

-7

(10.10)

for all A satisfying arg A = 9 with my > c.

Thus, all rays outside of the corner | arg A| < arcsin ¢ are rays of minimal growth.
By the hypothesis of the theorem, the angles between the pairs of neighboring rays
arg A\ = ¢ are less than 27s/n, and so the completeness of root functions follows
from Theorem ([l

We are now in a position to prove the main result of this section. When compared
with [Agrilc] our contribution consists in developing dual function spaces which fit
the problem.

Theorem 10.6. Let the space HY7 (D) be continuously embedded into H*7 (D) or
into H* (D) for some s > 0, the operator AL : HT (D) — H~7(D) be bounded
with norm less then |sin(ws/n)|, and C : H™Y(D) — H~7(D) be compact. Then
the following is true:

1) The spectrum of the operator T in HY(D) corresponding to Lo+ AL+ C is
discrete.

2) For any € > 0, all eigenvalues of the operator T' (except for a finite number)
belong to the corner |arg \)| < arcsin || AL|| + €.

3) Each ray arg X = 9 with

|’l9| > aI"CSiIl||ALH£(H+,~,(D)7H7,~,(D)) (10.11)

is a ray of minimal growth for R(\;T).
4) The system of root functions is complete in the spaces H=7 (D), H*Y(D) and
H*T(D).

Proof. First we note that the operator Lg + AL : HY7(D) — H—7(D) is contin-
uously invertible and hence the operator Ly + AL + C : HT7(D) — H~7(D) is
actually Fredholm.

Theorem implies that all rays satisfying are rays of minimal growth
for R(A\; Ty + AT') with the closed operator Ty + AT in H—7(D) corresponding to
Lo+ AL : HY (D) — H=(D).
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Fix an arbitrary € > 0. Then estimates (10.8)) and (10.10) imply that there are
constants ¢; and ¢y depending on €, such that

(Lo + AL = X'0) -y ey < 1 (10.12)
(To + AT = M) "Ml e-py) < e AT (10.13)
for all A satisfying
|arg A| > arcsin || AL 2+~ (D), 1 (D)) + €. (10.14)
Then, using , and Theorem we obtain
T—X = (I+C(Lo+ AL —X/v)™Y) (To + AT — ) (10.15)

on H*7(D) for all rays satisfying (10.14)).
We now prove that there is a constant M. > 0 depending on ¢, such that the

operator I + C(Lg + AL — Xt/1)~! is injective for all \ satisfying both and
|A| > M.. To do this, we argue by contradiction in the same way as in the proof
of Theorem Suppose for each natural number k there are f, € H—7(D),
satisfying || fx|| -, = 1, and A, satisfying and |Ag| > k, such that

(I4+C(Lo+ AL =X 'v)™") fir = 0. (10.16)

It follows from that the sequence uj, = (Lo + AL — \yt/t) ™1 fx is bounded
in H™7(D). By the weak compactness principle for Hilbert spaces one can assume
without restriction of generality that the sequences { fi} and {uy} converge weakly
in the spaces H~"7(D) and H7(D) to functions f and u, respectively. Since C
is compact, it follows that the sequence {Cuy} converges to Cu in H>7(D) and
so {fr} converges to f, which is due to . Obviously, the H™>7(D) -norm of
f just amounts to 1. In particular, we conclude that {C (Lo + AL — A\ t/t)™ 1) fr}
converges to —f whence

f=-Cu. (10.17)

Further, as fr = (Lo + AL — A\ /1) ug, letting k — oo in this formula yields
readily
f= Lo+ AL)u — lim g/t ug.
k—o00

As the operator ¢/t is compact, the sequence {¢/tuy} converges to +'tu in the space
H~=7(D), and /tu # 0 because of (10.17) and the injectivity of ¢'¢. Therefore, the
weak limit

lim A, teup = (Lo + AL)u — f

k—o00
fails to exist, for {A;} is unbounded. A contradiction.
As the operator I + C(Lo + AL — X¢/t)™! is Fredholm and it has index zero,
this operator is continuously invertible for all A € C satisfying both (10.14) and
|A| > M. Set

N. =inf |(I +C(Lo+ AL —X/0)™ N f|l-, >0,

the infimum being over all f € H™>7(D) of norm 1 and all A € C satisfying ((10.14))
and |[A| > M.. We claim that N. > 0. To show this, we argue by contradiction. If
N. = 0 then there are sequences {fi} in H 7 (D), each fy being of norm 1, and

{A\x} satisfying (10.14) and |A| > M., such that
lim [|(I +C(Lo+ AL — M\ /o)™ Y fil—, = 0. (10.18)
k—o00
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Again, by , the sequence uy = (Lo+AL— M\ /)7t fi is bounded in H (D).
By the weak compactness principle for Hilbert spaces we may assume that the se-
quences {fi} and {uy} are weakly convergent in the spaces H7(D) and H™7 (D)
to functions f and wu, respectively. Since C is compact, the sequence {Cuy} con-
verges to Cu in H7(D) and so {fi} converges to f because of ; obviously,
|l fll-.~ = 1. In particular, we deduce that the sequence C (Lo + AL — A, /1)) fx
converges to —f whence
f=-Cu (10.19)
with u # 0.
If the sequence {A} is bounded in C, then using the weak compactness principle
and passing to a subsequence, if necessary, we may assume that {\;} converges to

Ao € C which satisfies and |A| > M,. Since
(Lo + AL — M\ /)7 fy — (Lo + AL — Mo /)72 f

= (Lo+AL=X; /) ) (fs—f) + (Lo+AL=Xp /o) ™" — (Lo+AL—Xo o)1) f
and

| (Lo+ AL = A /t) ™" = (Lo + AL — Xo/0) 1) fll-
< = ol Lo+ AL=X /o) M I(Lo+AL=Xo ') L f]I- s
estimate implies that in this case the sequence {(Lo + AL — A\ t/t) 1 fx}
converges to (Lo + AL — \g/t)"1f, and so
(I+C(Lo+AL—Xo/1)™ ") f=0

because of . But A\ satisfies and |A| > M., and hence the injectivity
of the operator I + C(Lg + AL — \g¢/t)! established above yields f = 0. This
contradicts || f]| = 1.

If {\;} is unbounded in C we can repeat the arguments above. Indeed, then
fr = (Lo+AL— ) V/t)ug, and on passing to the weak limit with respect to k — oo
we get

f=(Lo+ AL)u — klir{:O A UL ug.

As the operator ¢/t is compact, the sequence {¢tuy} converges to ¢t u in the space
H—7(D). Moreover, 'tu # 0 because of (10.19) and the injectivity of +/¢c. This
shows that the weak limit

lim A\ ttup = (Lo + AL)u — f

n—00

fails to exist if {\t} is unbounded in C, a contradiction. Therefore, N. > 0 and for
all A € C satisfying (10.14]) and |\| > M. we obtain

_1\—1
| (I+C(Lo+ AL=XV0)™") ey < 1/Ne. (10.20)

From estimates ((10.12)), (10.20)) and formula (10.15)) it follows that, given any
A € C satisfying (10.14)) and |A| > M., the resolvent R(A;T) exists and

IR T)| (71— (py) < const (g) [A] 7

As C' is compact, there are only finitely many A € C with |A\| < N, such that
the operator (I + C(Lg — A¢'t)) is not injective. Therefore, it follows from formula
that all eigenvalues of the operator T' corresponding to Lo+ AL+C (except
for a finite number) belong to the corner |arg A| < arcsin ||AL|| + . Finally, since
€ > 0 is arbitrary, all rays are rays of minimal growth. By the hypothesis of
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the theorem, the angles between the pairs of neighboring rays arg A = ¥ satisfying
(10.11)) are less than 27s/n, and so the statement of the theorem follows from
Theorem [[0.21 O

Part 5. Non-coercive problems
11. THE COERCIVE CASE
We first consider coercive boundary value problems, i.e. we assume that estimate

is fulfilled. The sufficient conditions for to be true are indicated in
Lemmas and

Lemma 11.1. Assume that estimate 18 fulfilled.

1) If r = 0 and the operator ¥ is given by multiplication with a function
satisfying p||* € L>°(9D\S), then the norms ||-||+ and ||-|| g1~ (py are equivalent,
and so the Banach spaces HT7(D) and H7 (D, S) are isomorphic.

2) The conclusion is the same if the operator ¥ maps H'/?° (9D, S) continuously
to L2(0D).

Note that there are continuous embeddings
H'Y/2%(9D) — H'/?(dD) — H"(dD),

if |r| < 1/2. Hence, the hypothesis of the continuity of ¥ is natural, for the
domain of ¥ is intended to belong to H"(0D). In the transversal case we get
H'/?9(9D) = H'/?(9D).

Proof. From estimate it follows that the norm || - ||;+ , is not weaker than
the norm || - || g1+ (py on HY(D, S). Furthermore, since the coefficients a; ; are
bounded in D, we obtain

L3 o asondude < 3 1oyl < clulfin o

ij=1 =
for all u € H*(D, 9).
Obviously
lao.oull ooy < ¢ llull i)

because p*ago € L>(D).
As plyp|* € L=(9D\ S),

/ 2 (@) Plu(e) P ds = / plib()[2 20D () ds
aD\S OD\S

< C”“Hg{o,wﬂ/z(ap)
< c ”um{l/?,v(ap)
< cllullFa )

(11.1)

for all u € HYY(D, S), the last inequality being a consequence of Theorem m
Here, by c is meant a constant independent of u, which can be diverse in different
applications.



STURM-LIOUVILLE PROBLEMS 85

On combining the above estimates we deduce immediately that there is a con-
stant ¢ with the property that

el < el
for all u € H(D, S), as desired.

If ue HY(D,S), then p~Yu € H*%(D, S) and so the restriction of p~7u to the
boundary belongs to H1/2’0(8'D, S). Under the coercive estimate , the space
H*7(D) is continuously embedded into HY(D). Now, if ¥ maps H'/%°(dD, S)
continuously to L?(9D), then, by Corollary and Theorem we get

17 (p~ " u)||2(am)

A

< cllpullgrr00p)
< cllullgiszqop)
< cllullgrypy
(11.2)
for all u € H'(D, S), with ¢ a constant independent of u and different in diverse
applications.
Thus, using (11.2)) instead of (11.1)) in the above arguments we again obtain the
desired statement. ]

Let us discuss the estimate (8.44)).

Lemma 11.2. Let hold. In each case of 1)-8) there is a constant ¢ with the
property that
1) If pa; € L>°(D) for all 1 < j <n, then

[(a;05u,v)go~(py| < cllulls yllvll+4 (11.3)
for all u,v € HY(D).
2) If the operator ABy is given by multiplication with a function Aby satisfying

pAby /by € L*(0D\ S), then
(b1 ABou, v) o (om\s)| < ¢ llull4 A lv]

for all u,v € HY7(D).
3) If the operator by ABy maps H'/?7(0D,S) continuously to H~'/?7(0D)
then

o (11.4)

(67 ABou, v) o am\s)| < ellull+q [10]
for all u,v € H(D).

+7

In the transversal case 3) just amounts to saying that the operator p”*bf1 AByp™"
maps H/2(9D, S) continuously to H~'/2(9D) (cf. Lemma with r = 1/2).

Proof. Inequality (11.3)) follows from estimates and Lemma in an obvious

way.

Furthermore, (8.9)) implies the continuous embedding H*7(D) — H7(D). For
u,v € H*(D), the traces on the surface D belong to H'/?7(9D), which is due
to Lemma[£.14] Hence, using Lemmas [8.10] and [4.14] we obtain

(b7 ' ABou, v) poomvs)l = |(pby P ABow, v) go.si1s2(om )|

c ||U||H1/2w(az>) ||U||H1/2w(aD)

VARVAN

cllull gy lvll s )
for all u,v € H(D), i.e. (11.4)) holds true.
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Finally, if by ABy maps H'/%7(9D, S) continuously to H~1/27(9D), then, by
duality and Theorem 4.13

(b7 ABow, v) povomrs)l < b1 ABoull g1z om) 1V 1720 0m0 )
< cHu||H1/2W(3D)H'U”Hl/lw(ap\s)
< clullaro@llvlla o)
for all u,v € H*(D, 9). 0

Lemma and estimate (8.43)) show readily that in the coercive case estimate
(8.44) concerns for the most part the mere summand

(b7 0y, v) o (om0 9)

in the sesquilinear form Q(u,v).
Let t1(x),...,th—1(x) be a basis of tangential vectors of the boundary surface at
a point z € 0D. Then we can write

n—1
6,5 = Z kj (CC) atj
7j=1

where k1, ..., k,—1 are bounded functions on the boundary vanishing at S.

Lemma 11.3. Suppose is fulfilled. If k;/by is of Hélder class CO* in the
closure of 9D\ S for all 1 < j <n—1, with A > 1/2, then

|(b1 0, v) o apvs) | < e Jlull o [[0]l44 (11.5)

for all u,v € HY7(D, S).

Proof. By assumption, dD is a compact closed Lipschitz manifold and 0, first
order differential operators with bounded coefficients on 9D. Such operators map
HY?7(9D) = H'/?1/2+7(9D) continuously to H—1/27(dD) = H~1/2~1/2+7(9D),
the dual of H!/%1/2=7(9D).

Recall that for each Hélder continuous function f € C%*(K) on a compact set
K C R, with 0 < A < 1, there is an explicit extension F' to all of R, which is
given by

Fw) = inf (f(y) + I fllcoa gyl —yl*) (11.6)

and satisfies || F||cox gy < || fllcoa(x) for any larger compact K.

Applying this result to each function k;/b; on the compact set 0D\ S with
1/2 < X < 1, we find functions F; € C%*(9D) satisfying F; = k; /by in 0D\ S and
such that

[1Ejllcox@py < 1K;/b1ll gon am7s)-
It follows that
n—1
(b ' Byu, v)Hoap\s)l < Z |(6tjuabl_lij)HO*”f(c')D\S)l
j=1
n—1

Z 10, ull er-1/24 (o) | E50 || 211/2.4 (9
j=1

IN

(11.7)
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for all u,v € HY(D,S), the last estimate being due to the generalised Schwarz
inequality.

It is well known that multiplication by functions of Holder class C%*(9D) with
1/2 < A < 1is a bounded linear operator in H/2(9D) (see for instance [So58, § 3],
[Pal96, Lemma 2.1] and elsewhere). Hence, there is a constant ¢ with the property
that

IFj0ll tr1/20m) < vl gz (op)

for all v € HY/2(9D). If now v € H'/?7(9D), then p~"v € HY/?>0(9D) = H'/?(9D)
whence

A

[E5vllgzvepy < N (07 0) e om)

cllp™"vllg1/20m)

INIA

¢ HU”HI/M(aD)-

We have thus proved that multiplication by a function of class C%*(9D \ S) is
a bounded linear operator on H!/?7(9D, S). Summarising we estimate the right-

hand side of (11.7)) by
C||U||H1/2w(a73)||U||H1/2w(a73) < C||“||H1=7(D)||U||H1W(D)
< cllullvalvll+n,

where the constant ¢ does not depend on w and v and may be different in diverse
applications. O

Remark 11.4. Lemma [I1.3] is actually true under weaker assumptions. We need
not require than k;/by € C%*(0D \ S). These quotients must be just multipliers

for the space H'/2(9D, S). For example, this is the case for a measurable function
mon 0D\ S if

_ 2
sup |m(:ﬂ)|2 + sup / —\m(:ﬂ) m(y)| ds
©€dD\S 2€9D\5 JoD\s |z —y|™

is finite, see [SIoh8| § 3], [Pal96, Lemma 2.1]) and elsewhere.

Our next concern will be to describe those perturbations of a; and Aby/b; and
t which preserve the completeness property of root functions of the operator L !

under condition (8.9).

Lemma 11.5. Let estimate hold and t = 0. Suppose there is a number € > 0
such that

p'e (aj —2yp' ) ai,j(aip)) € L>(D),
i=1
p’ a9 € L>®(D)
and either the operator ABy is given by multiplication with a function Aby satisfying
p' ¢ Aby /by € L>®(dD\S) or by ' ABy maps HY/?7 (D) compactly to H=/>7(dD).
Then the operator
AL=L~-Lo: H""(D) - H (D)

18 compact.
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In the case of regular singularities the last condition means that the operator
b ABop™ maps H'Y/?(0D) compactly to H-'/2(dD). Tt is the case, e.g., if
p'b L ABop~" maps H'/?(9D) continuously to H /257 (9D) with some £ > 0.

Proof. Fix v € H"(D) and consider the function w = p*~!v. By Corollary[3.3] we
get w € HY+e=1(D) = H17+2(D). The embedding e : H*T¢~1(D) — HOY(D) is
compact because of Corollary
Fix a bounded sequence {u,} in H*7(D). Estimate implies that H*7 (D)
is continuously embedded into H'¥(D). Hence, the sequence
n n
F,=p">" (aj —2yp > ai,j(aip))ajuv +p* Cao(p” w)
i=1

j=1
is bounded in H%Y(D). According to the weak compactness principle we may
assume without restriction of generality that the sequence converges weakly to zero
in H(D).
On the other side, if ABy = 0 then
(ALuy, )y = (Fy,€0p (p'~)0) 30 () = ((€Op (01 7%)) " Foy v) g1 ()
whence

(ALuy,v)| < [1(€Op (0" Fullario oy ol o

cll(e0p (0" =) Full 1y [0l -+ (),

IA A

where
(€Op (p'79))" : H* (D) — H"'1H7(D)
is the Hilbert space adjoint for eOp (p! =) and the constant ¢ does not depend on
u and v.
The operator eOp (p'~¢) is compact, for Op (p*~¢) is bounded and e is compact.
Hence
[ALuy |- < clle"Fy |32+ (D) = 0
as v — oo, i.e. AL: HT7(D) — H~-7(D) is compact, too.
Let
n
a;=2vp" Y ai;(ip),
i=1
for 0 < j < mn, and let the operator ABj be given by multiplication with a function
Abg satisfying p'=Abg/by € L>®(9D \ S). According to Lemma the trace
operator t; : HY(D) — H'/27(9D) is bounded. Hence it follows that the sequence

U — p' b  Abg tiu, on 9D\ S,
Y10 on S

is bounded in H%Y+1/2(9D). Again we may assume that it converges weakly to
zero in HOY+1/2(9D). Then

(ALuy,v)y, = (b7 Abg t1uy, t10) o oD\ 8)
= (pl_abflﬂbotl’u,,/,patlv)Ho,a,+1/2(3D\S).

By Corollary the operator Op (p°) maps the space H'/%7(9D) continuously
to HY/?27+2(9D) = HY/>1/2H7+2(9D). Furthermore, Corollary |4.9| implies that the
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embedding e : H1/21/247+€(9D) — HO1/2+7(9D) is compact. Therefore,

(ALUW ’U),Y = (Uv,,7 eOp (pa) tlU)H1/2,1/2+'y(8’D)
= (e* U,,Op (pe) tlv)H1/2=1/2+7+5(6D)

where e* : HO1/2H7(9D) — H/21/2H7+2(9D) is the Hilbert space adjoint for e. As
the operator

Op (pa)tl . HL’y(rD) _ H1/2,1/2+7+£(8rD)
is bounded (see Lemma and Corollary we see that

[(ALuy,v)y| < clle"Usllyaszaseerie @) [0l 7 (D)
< C\|€*Uu||yl/2vl/2+v+s(ap)HUHHM(D)
with ¢ a constant independent of u and v. It follows that
JALu |-y < 11" Uslgr/2 2105+ om) = O,

as v — 00, i.e. AL is compact in this case, too.
Finally, suppose that

a; =2vp "> a;i;(9p),
i=1
for 0 < j < n, and b; *ABy maps H'/?7(9D) compactly to H~/27(9D). Then
the sequence
U, = b; *AByu,
is precompact in H 1/ 27(0D). We may assume that {u,} converges weakly to zero
in H'/27(9D), and then {U,} converges to zero in H~/27(9D). By duality and
Theorem [4.13
((ALuy,v),| = |(b7'ABouy,v)0p]
10U =172 o) 10 111722 (0

N =172 0m) 10| 217 (D)

ININ TN

U llg-1720m) 1V ll4 75
where c¢ is a constant independent of v and v. Therefore,
[ALuy ||~ < c||Upll-1/245p) = 0,

as v — 00, i.e. AL is compact in this case, as desired. [

Typical compact mappings from H'Y/2(dD) to H~'/2(9D) are discussed in Ex-
ample 8.8
We now split

aj = 2’yp_1 Z ai,jaip + Acaj + Asaj
=1
and
Aa(] = ACCLO + ASCL(),
ABO ACBO + AsBO7
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where the terms A.aj, Acag and A By induce compact operators and the terms
Asaj, Asag and AgBy “small” operators,

J

(Asajoju+ Asagu, v) o~ py+ (0 + As Bo)u, v) go.vap\s)y | < M ||u]
1

+llvll+
(11.8)
for all u,v € H*7(D), with M > 0 a constant independent of u and wv.

Corollary 11.6. Suppose that estimate is fulfilled, k;/by € CO*(OD\ S)
forall1 < j <n—1, with X\ > 1/2, A,By maps H'/?>7(dD,S) continuously to
H=Y27(9D), and the constant M in is less than one. If there is a num-
ber € > 0, such that p*~¢Aca; € L>®(D), for 1 < j < n, p**Acay € L>®°(D),
and either the operator A.Bqy is given by multiplication with a function A by sat-
isfying p' == Acbo/by € L=®(OD \ S) or by'A.By maps H'/?7(9D) compactly to
H~1/27(0D), then problem is Fredholm of index zero. Besides, if Aca; =0
foralll < j < n, Acag = 0, and A.By = 0, then, in fact, problem 18
uniquely solvable and the inverse operator L= : H—7(D) — HT(D) c H*(D, S)
is bounded.

Proof. Tt follows from Lemmas|8.13} [11.2} [11.3|and [11.5|that (8.44])) is fulfilled under
the hypothesis of the corollary.

Denote by AL : H"7(D) — H (D) the operator defined by the terms Asa;,
Agag, O, and AgBy, as described in Section[8] As the constant M in is less
than one, we deduce that

VALl g+ D), - (D)) < 1 = I1Lg | (- (D), 11+ (D))

and so a familiar argument shows that the operator Lo+ AL : H™Y(D) — H~"(D)
is invertible.

According to Lemma[T1.5] the operator C' = L— Lo — AL is compact. Therefore,
problem is equivalent to the Fredholm-type operator equation

(I 4+ (Lo+AL) " 'C)u = (Lo+AL)"'f

in H™7(D) with compact operator (Lo+AL)~'C : H* (D) — H™7(D). This
establishes the corollary. O

Corollary 11.7. Under the hypotheses of Corollary if M < sinm/n, with
M being the constant from , then the system of root functions of the corre-
sponding closed operator T in H—7(D) is complete in the spaces H—7 (D), H*" (D)
and HY(D, S), and, for any § > 0, all eigenvalues of T (except for a finite num-
ber) lie in the corner |arg A| < § + arcsin M in C. If moreover Aca; = 0 for all
1<j<n, Acag =0, and A.By = 0, then all eigenvalues of T' belong to the corner
|arg A\| < arcsin M in C.

Proof. This is a straightforward consequence of Theorem [10.6] and Corollary
As the constant M in (L1.8)) is less than one, it suffices to apply Theorem
combined with Corollary The last statement follows from Theorem [10.5| and

Corollary O

We now discuss several examples. The most illustrative of them is of perhaps
the Dirichlet problem.
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Example 11.8. Let S = 0D and hold with § = 1. By Lemmas and
we get HY7(D) = HY(D,dD). We thus arrive at the Dirichlet problem

Au = f in D,
{ u = 0 at 90D (11.9)

for a complex-valued function v € H7(D), with a given distribution f € H~7(D).
By Lemma [I1.5] the problem is Fredholm provided there is € > 0 such that

p' e (aj —2yp~! Z ai,j(@'/’)) € L>(D),
i—1

p>fag € L*¥(D)

for all 1 < 57 < n. The spectral properties of such a problem in weighted Sobolev
spaces are similar to those in the usual Sobolev spaces (corresponding to the case
p = 1), see for instance [Kel51], [Mik76]. However, we note that if p vanishes on
D then the summand Aag induces a bounded operator from H*7 (D) to H™>7(D)
only in the case p?Aag € L>°(D). This means that in weighted spaces the Dirichlet
problem for the Laplace equation might be non-Fredholm for certain weight indices
~. In the case of regular singularities our techniques allows one to we consider the
Dirichlet problem also with non-zero boundary data. Indeed, let the norms of the
spaces HY9(D) and H!(D) be equivalent. Consider the inhomogeneous Dirichlet
problem
Au = f in D,
{ u = wug at 0D
for a function u € H' (D), where f € H~7(D) and ug € H'/?7(dD) are given
data. Using spectral synthesis in Sobolev spaces (see [HWS83]) we verify that the
case ug = 0 corresponds to the Dirichlet problem . By Corollary there is
a bounded inverse t;* : H'/?7(9D) — H"“ (D). Therefore, is a Fredholm
problem, for it is solvable if and only if problem is solvable with f replaced
by f — Lt]'ug, and its solution is given by u = u(f) + t; ug, where u(f) is a
solution to the corresponding problem . Here, by L: HTY(D) — H=7(D) is
meant the operator induced by , as explained above.

(11.10)

After Zaremba [Zarl0], the following mixed boundary value problem was sug-
gested to him by W. Wirtinger.

Example 11.9. Consider the mixed problem

n

—Apu+p ! Z(psaj +270;p)0u+ p 2(p°ag+1)u = f in D,
j=1
u = 0 at S
Ou = wu; at 9D\ S
(11.11)
for a real-valued function u, where 4, is the Laplace operator in R"™, the coefficients
ai,...,a, and ag are assumed to be bounded functions in D, and 9, = 9, + O

with a tangential vector field ¢(z) on 9D whose coefficients are functions of class
C%*(9D \ S) vanishing on S, and ¢ > 0. In this case a;; = 0;;, bo = Xxs is the
characteristic function of the boundary set S, and b1 = xsp\g is that of 0D\ S.
From the results of the previous section it follows that the root functions related
to problem in the space H*(D) = H' (D, S) are complete in H (D),
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H%Y(D) and H™7(D,S) for all t(z) of sufficiently small length. If p = 1 then
H*Y(D) = HY(D, S) and H%Y(D) = L?(D), i.e. the results are applicable to usual
Sobolev spaces over Lipschitz domains. In this case is a mixed problem
of Zaremba type for the Helmholtz equation in Sobolev spaces. It becomes the
classical problem of Zaremba for the Laplace operator provided ag = —1 and a; =0
for 1 < j <n (cf. [Zarl0Q]).

Weight functions p enable to enlarge the class of function spaces which are used
to find adequate function-theoretic setting of the boundary value problem. Al-
though such functions p may be quite whimsical, merely property is of crucial
importance.

We finish the section by showing a second order elliptic differential operator in
the plane for which no Zaremba-type problem is Fredholm (see [ST12]). The idea
is traced back to a familiar example of A. V. Bitsadze (1948).

Example 11.10. Let A = 9% be the square of the Cauchy-Riemann operator in
the plane of complex variable z. We choose D to be the upper half-disk of radius
1, i.e. the set of all z € C satisfying |z| < 1 and Sz > 0. As S we take the upper
half-circle, i.e. the part of 9D lying in the upper half-plane. Consider the function
sequence

sin(vz)

w(2) = (2 = 1) 228

for v = 1,2,..., where s is a fixed positive number. Each function u, satisfies
Au,, = 0 in the plane and vanishes on S. Moreover, for any differential operator
B of order < s with bounded coefficients, the sequence {Bu, } converges to zero
uniformly on 9D\ S = [—1,1]. Since |u,(z)| = oo for all z € D, we deduce that no
reasonable setting of Zaremba-type problem is possible.

12. THE NON-COERCIVE CASE

To the best of our knowledge the completeness of root functions has been stud-
ied for elliptic boundary value problems, i.e. for those satisfying the Shapiro-
Lopatinskii condition. If the boundary is non-smooth, by the Shapiro-Lopatinskii
condition is meant any generalisation of this condition in the context of operator
algebras with symbolic structure. In this section we consider an example where the
Shapiro-Lopatinskii condition is violated (cf. [ST12] for the case of usual Sobolev
spaces).

Our focus will be upon the case where embedding is fulfilled for some
0<s<l

Lemma [I1.3] shows that there is no hope for the tangential operator d; to be
bounded in the non-coercive situation. But as in the non-coercive case the conormal
derivative 0. contains already an essential tangential part, it is natural to assume
in this section that ¢t = 0.

It should be also noted that in the absence of coercivity the cases 1/2 < s < 1
and 0 < s < 1/2 may differ drastically because the functions from H®*7Y(D) no
longer need possess traces on 9D, if 0 < s < 1/2. In particular, the significance of
boundary terms in the norm || - ||+  increases for 0 < s < 1/2.

Lemma 12.1. Suppose that there is a continuous embedding for some index
s satisfying 1/2 < s < 1.
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1) If p** =1 Aby /by € L*°(OD\ S) then there is a constant ¢ > 0 with the property
that
(b7 Abou, v) o (am\s)| < € llull [0+
for all u,v € HY (D).
2) If the operator by ABy maps H*~Y/27(9D, S) continuously to H'/?>=57(9D)
then

(b7 ABou, v) o omr\s)| < ¢ l|ull4 4 [|v]
for all u,v € H'(D).

+.

In the case of regular singularities the condition 2) just amounts to saying that
the operator pYb; ' AByp~" maps H*~/2(9D, S) continuously to H/?~%(9D).

Proof. In this case, for u,v € H*7(D), the traces tsu and t,v belong to H*~/27(9D)
(see Lemma . Hence, using Lemma we get
|(by ' Abou, v) ovopvsyl = (077101 Abo, v) ro.s—1/244 (910 9|
< clltsull go.s—1/24v o) [[Es0]] gro.a=1/244 (o)
< cllullgea vl aeo (D)
< cllull4 s

for all u,v € H' (D), where c is a constant independent on u and v and different
in diverse applications. This proves part 1) of the lemma.

Finally, if b7 ' ABy maps H*~'/27(9D, S) continuously to H/2~7(9D), then,
by duality and Theorem we obtain

[oll+.

|(by ' ABou, v) o+ om0\ 9)| 167 ABou|| g11/2-x (o) 101 pre=1/2 (91 8)
c ||U||H571/2w(81>\5) ”'U”HS*/ZW(BD\S)
cllullyllvll+y
for all u,v € H»7(D, S), showing part 2). O
For 0 < s < 1/2, we no longer can exploit Lemma In this case we have to
use Lemma in order to guarantee inequality (8.44)).
Moreover, in the absence of coercivity we ought to assume additionally that the
estimate

(30,2707 iaimp»@-u, %) o o] < €10

=1

ININ A

+llvll+ (12.1)

holds for all u,v € H"7(D) with a constant ¢ > 0 independent on u and v.
To cope with this condition we need the following lemma.

Lemma 12.2. The matriz

A(z) = (a;,;(2))

admits a factorisation, i.e. there is an (m x n) -matriz X (x) of bounded functions
in D, such that

1,...,n
1,....,n

%
J

(X(2))" X (z) = A(z) (12.2)
for almost all x € D.
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Proof. By (8.3), the matrix A(x) induces a non-negative map of C", for each fixed
x € D. As is well known, this map possesses a unique non-negative square root in
L(C™) presented by an (n x n)-matrix X (z) = y/A(x) whose entries are complex-
valued functions in D. Write

X(x) = (Xi,j(m));ii,.‘.‘.,z.

Since X* = X and X2 = A, it follows that
a;i(r) = Z |Xi,j($)|2
j=1

for almost all z € D, where 1 <4 < n. This shows, in particular, that X; ; € L>(D)
forall i,j =1,...,n, as desired. (I

Let
X(r) = (X 5(2))i=1,....m

Jj=1,..., n
be an arbitrary factorisation of A(x), where X; ; € L>(D). Then

Zai,j(m)aju@v = (Vu)"A(z) Vu

i,7=1

= (X(2)Vv)"(X(z)Vu)

= zm:XkU Xku,
k=1

(12.3)

for all smooth functions u and v in D, where Vu is thought of as n-column with
entries O1u, . . ., Opu, and

Xku = Z XkJ(J?)alu,
=1

k=1,...,m. If v has compact support in D, then, by (12.3]), we get

Z(X;Xku,v)m(p) = Z(XkU,ka)m(D)
k=1 k=1
= Zka Xrudx
D=1
= / Z ai j(z) Ojud;v dx
D j=1

- ( Z 81‘(&1'73‘ ($) (93'11,), U)LQ(’D)

ij=1

whence

=3 Oilaij (@) 05) =Y Xi Xy (12.4)
k=1

ij=1
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Remark 12.3. The matrix X (z) need not possess any left inverse with entries in
L*>(D), i.e. no decomposition

o) = ZYL}C(.I)X;C, (12.5)
k=1

Il =1,...,n, with L>°(D)-coefficients is available in general. In fact, (12.3) and
(12.5) yield (strong) coercive estimate (8.5]).

Second order differential operators of the form were considered in [Hor67].
This paper gave rise to a property of vector fields X, ..., X, that, if satisfied,
has many useful consequences in the theory of partial and stochastic differential
equations. In many interesting cases the matrix X (z) is surjective, see a model
example in Section This is precisely a reason for non-coercive effects. The
standard factorisation A = v/A /A leads to a boundary condition under which the
form is coercive.

Lemma and Remark suggest to confine ourselves with first order per-
turbations of the form

i )X, (12.6)

k=1
where pay € L (D), instead of Z a;(x)0;, where pa; € L>(D).

Integrating by parts as in ylelds
(Au, v)HOv“f(D)

= (u,v)y, 7272 Xpu, p~H(Xpp)v V) oy (D) + Z ap Xru + Aapu, v) o~ (p)
k=1 k=1

+ (bl_l ABu, ’U)HO"V((’?D\S)

for all u € HY(D,S) and v € HY (D, S) satisfying the boundary condition of
(8.2). In much the same way as in formulas (8.43)) and (8.46) we deduce that the

term
m

> (X, p~ (Xpp)o) 1o ()
k=1
induces a bounded perturbation of the operator Ay.

Lemma 12.4. If pay, € L>=(D) for all 1 < k < m, then there is a consant ¢ > 0,
such that

m

for all u,v € HIW(D). Moreover, if there exists an € > 0 with the property that
pr(ag —2vp 1 Xyp) € L%°(D) for 1 < k < m, then the corresponding perturbation
AL : HY(D) — H—7(D) is compact.

Proof. The proof is similar to those of Lemmas and O

From now on we will consider in the non-coercive case first order perturbations
of the form ([12.6) only. In this way one can also describe the class of tangential
vectors admissible for small perturbations.
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Our next concern will be to specify other compact perturbations of the problem
if the form fails to be coercive.

Lemma 12.5. Let for some 0 < s < 1 there be a continuous embedding , If
a =2y p~ Xpp
for1 <k <m,t=0, ABy = 0 and there is a number ¢ > 0 with the property

that p*>=¢Aag € L°°(D), then the operator AL = L — Lo : H™7(D) — H~7(D) is
compact.

Proof. Fix an arbitrary v € HT7(D). Then ;v € H*>7(D). Consider the function
w = p* %1ev. It follows from Corollary [3.3| that w € H®YT75(D) = H57T¢(D).
But then Corollary 4.9| yields compact embedding e : H*7+¢=5(D) — H%7(D).

Let {u,} be a bounded sequence in H7(D). The continuous embedding
guarantees that it is bounded in H*7(D), too. Then the sequence

F, = p*~ Aag(p~"u,)

is bounded in H*?(D) and so in H%7(D). According to the weak compactness
principle we may assume that it converges weakly to zero in H%7 (D).

On the other hand, if a, = nyp’le.p foralll1 <k <m,t=0and ABy =0,
then

(ALuy,v)y = (Fy,ep" *150) oy (py = (€"Fyy p° *150) grovte—s(p)-
Using embedding and Corollary we conclude that
[(ALuy,v)y| < clle*Fyllgevte—syllesvll mom D)
< clleFyllgssre=s vl v (m)
with ¢ a constant independent on v and v. Hence
[ALuy |- 5 < clle"F | geate-sp) = 0,

as v — 00, i.e. AL is compact. O

Lemma 12.6. Let for some 1/2 < s < 1 there be a continuous embedding .
Suppose
a =2y p~ ' Xpp
for 1 < k < m, t =0 and there is a number ¢ > 0 such that either ABy is
given by multiplication with a function Abg satisfying p** =175 Abg /by € L>=°(0D\ S)
or by " ABy maps the space H*~'/27(9D) compactly to H/?>=*7(dD). Then the
operator
AL=L—Ly: H™(D) - H (D)

is compact.

Proof. Let the operator ABy be given by multiplication with a function Abg satis-
fying p?*=17¢ Aby /by € L>(dD\ S).

Pick a bounded sequence {u,} in H+7(D). By Lemma the trace operator
ty : H*Y (D) — H*~Y/27(9D) is bounded. Then the sequence

U — pzsfl’abflAbotsuV on 0D\ S,
Y710 on S
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is bounded in H%+5~1/2(9D). Again we may assume that it converges weakly to
zero in HO+Hs=Y/2(9D \ S). Write
(ALu,,, U)’Y = (bflﬂbo sy, tsU)HO’“/(aD\S)
= (st_l_EbIIAbO LLS’U,W pEtS'U)HO,Fers—l/Z(a'D\S).
According to Corollary the operator Op (p°) maps H*~1/27(9D) continuously
to Hs~1/27+(9D) = {5~ 1/27+s=1/245(9D). But Corollary implies that the
embedding
e Hsfl/2,7+sfl/2+a(arp) AN ’HO’V+871/2(3D)
is compact. We thus get

(ALuy,v), = (UV,6p€tsU)Hs—1/2,7+s—1/2(ap)
= (e*Ul,,pEtS'U)Hsfl/Q,—yﬁ»sfl/ZJra(a'D),

where e* : HOTFTSTY/2(9D) — H1/27+571/242(9D) is the Hilbert space adjoint
of e. As the operator

Op (p°)ts : H*V(D) — H*~ /207124 (D)
is bounded (see Lemma and Corollary [3.3)), it follows that

[(ALuy,v),| clle*Unllags-1r2v+5-1/2+2 o) [0 o7 (D)

<
< c He*UVH’}.Ls—1/2,-y+sfl/2+a(ap) ||'UHH+,’y(’D),

where ¢ stands for a constant independent on uw and v and different in diverse
applications. Summarising we get

||AL’U,,,||,’,Y < ||6*UV||Hsfl/2,w+sfl/2+s(ap) — 0,

as v — 00, i.e. AL is compact in this case.

Finally, assume that the operator b; *ABy maps H*~/27(9D) compactly to
H'/277(9D). As the trace operator t, : H*Y(D) — H*~'/27(9dD) is bounded,
the sequence

U, = by ' ABy tsu,

is precompact in H%'/2=%(9D). Hence, as the sequence {u,} converges weakly to
zero in H*~1/27(9D), we deduce that {U,} converges to zero in H'/2=%7(9D). By
duality and Theorem

[(ALuy,v),|

|(bf1ABO sy, tsv) |

Hb;l ABO tSuV”Hl/z*S,"/(ﬁD) ”tSUHHS’l/QW([)D)

c Ul g1/2-550m) l10]| o7 (0D)

ININ TN

U grar2-svopy lv]1 4 4
with ¢ a constant independent of v and v. Therefore,
JALuy -y < €Ul sa-s/20 o) — O,

as v — 00, i.e. AL is compact, as desired. ([

We can not use Lemma for 0 < s < 1/2. However, we may extract the
compactness property of the operator AL, related to the boundary term ABy,

from estimate (8.10)).
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Lemma 12.7. Let

a =2y p~ " Xpp
for1 <k <m,t=0 and hold for some r € [—1/2,1/2]. If p~ b7 AByp”
maps H" (0D, S) compactly to H-"(9D), then AL =L—Lo: H" (D) — H (D)
is compact.

In the case of regular singularities the condition on bl_lABo may be equivalently
reformulated by saying that b, ' ABy maps H™Y (9D, S) compactly to H~"7(dD).
By the Rellich theorem, the operator p_'ybflABopV maps H" (0D, S) compactly to
H~"(0D) provided it maps the space H"(0D, S) continuously to H~"¢(9D) for
some € > 0.

Proof. Fix a bounded sequence {u,} in HT7(D). It follows from (8.31)) that the
sequence {p~7u,} is bounded in H"(9D). Then the sequence

U, = p by " AByu, = p~ by ' ABop” p~ Mu,,

is precompact in H~"(90D). We may assume without restriction of generality that
{u,} converges weakly to zero in H"(0D) and then {U,} converges to zero in
H~"(9D). By duality, we obtain

|(ALU,,,U)V‘ = ‘(bl_lABO UV)’U)HU«W(BD)‘
= \(p*”bl_lABopVp”umpﬂ?f)w(fmﬂ

< c|lUllg-r@om) vl Hrm op)
whence
[ALuy| - 5 < c||Uy || z-r@op) = O,
as v — 00, i.e. AL is compact, as desired. ([l

As before, we split
ar = 2yp" ' Xup + Aclr, + Astn

and

Aay = Acag+ Asao,

ABy = A.Bo+ AsBo,
where the terms A.ag, Ac.ag and A.By induce compact operators and the terms
Agag, Asag and AgBy “small” operators,

| Z(As&kau + Asaot, v) oo py + (AsBow, v) o apvsy | < M [|ul|4 40|
=k

+

(12.7)
for all u,v € H*7(D), with M > 0 a constant independent of u and wv.

Corollary 12.8. Under the hypotheses of Corollary let estimate hold
with some —1/2 < r < 1/2 and let t = 0. Let p~"A;Bop” map H" (0D, S) contin-
uously to H"(9D) and the constant M in be less than one. If there is a
number € > 0 such that p ¢ A ar € L®(D), for 1 <k < m, p* ¢Acap € L=(D)
and either the operator A.By is given by the multiplication with a function A by sat-
isfying p?" "€ Acbo /by € L®(dD\ S) or p~ by ' A.Bop? maps H" (0D, S) compactly
to H="(0D), then problem s Fredholm of index zero. Moreover, if Acap =0,
for 1 <k <m, Acag =0, A.By = 0, then problem is uniquely solvable and
the inverse operator L= : H=Y (D) — H*Y (D) C H*V(D, S) is bounded (where s
is given by .
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Proof. Corollary yields that H™7(D) is continuously embedded into H*(D)
with s > 0 given by (8.12)). Besides, the index s satisfies 1/2 < s=r+1/2 < 1if
0<r<l1/2

It follows from Lemmas [8.13] [12.1| and [12.4] that is fulfilled under the
hypotheses of the corollary.

Write AL : H™7Y (D) — H~"(D) for the operator determined by the terms A,ay,
Agag, and AgBy, as is described in Section From estimate we conclude
that

VALl z(rr+ D), - (D)) < 1= I1Lg | 21— (D), 51+ (D))

and so a familiar argument shows that the operator Lo+ AL : HT7Y(D) — H~"(D)
is invertible.

According to Lemmas [12.4] [12.5 and [12.6] (for 0 < r < 1/2) and (for
—1/2 < r < 1/2), the operator C = L — Ly — AL is compact. Therefore, problem
is equivalent to the Fredholm-type operator equation

(I4(Lo+ AL 'C)u= (Lo + AL)"'f

in H7(D) with compact operator (Lg + AL)~*C : H"V(D) — H™7(D). This
establishes the corollary. (I

Corollary 12.9. Under the hypotheses of Corollary[12-8, if moreover the constant
M from satisfies M < sinw(2r 4+ 1)/2n, then the system of root functions of

the corresponding closed operator T in H ™7 (D) is complete in the spaces H=7(D),
H%7(D) and H*Y (D, S) (with s given by , and, for any 0 > 0, all eigenvalues
of T (except for a finite number) lie in the corner |arg | < &§ 4 arcsin M in C.
Besides, if Acap =0, for 1 <k <m, Acag =0, A.By =0, then all eigenvalues of
T belong to the corner |arg A| < arcsin M in C.

Proof. This is a consequence of Theorem and Corollary For M = 0 it
suffices to apply Theorem [9.10] combined with Corollary [I2.8] The last statement
follows from Theorem [I0.5] and Corollary [12.8] O

13. AN EXAMPLE OF NON-COERCIVE PROBLEMS

We now wish to consider a typical non-coercive problem in weighted Sobolev
spaces in a bounded Lipschitz domain D C R?". The space R?" bears an additional
complex structure.

Let the complex structure in R?” = C” be given by 27 = 27 + /12", for
j = 1,...,n. Denote by 0 the Cauchy-Riemann operator corresponding to this
structure in C™, i.e. the column of n complex derivatives

0 1,0 0
55 = 2w +V g
for1 <j<n. - -
The formal adjoint 0* of 0 with respect to the standard Hermitian structure of
the space L*(C™) is the line of n operators

J(if\gi) _._9

2\ 9 Oxnti 077
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An easy computation shows that 0*0 just amounts to the —1/4 multiple of the
(non-positive) Laplace operator
2n

A= Z aij
j=1

in R?",

We take A to be .
0
A= —A—i-;aj@ + ao,

where pai,...,pa, and p?ay are assumed to be bounded functions in D. The
complex matrix
(ai,j(2))i=1,...2n
j=1,....2n

has the form
E, vV—1E,
—v-1E, E,
where F,, is the unity (n x n)-matrix. Obviously, the matrix is Hermitian, and the
corresponding conormal derivative is

Ox™ti "I

which is known as (the 2 multiple of) complex normal derivative d, at the boundary
of D.
Consider the following boundary value problem. Given a function f in D, find
a function u in D satisfying
n+d 9u
—A —— = in D
u+;a382] + agu f in D,

deu+ Bou = 0 at OD.

(13.1)

In this case S is empty, by = 1 and t = 0. Set ago(z) := ap~2 in D with a real
constant a which is assumed to be positive, if Y # 0, and non-negative, if Y = (.
Then the corresponding Hermitian form (-, )4 , is given by

(U, 0) 1y = 4 (9w, OV) o (py + a (u, V) gom+1(py + (Y(p~Tu), ¥(p~ ")) 12(om)

and the space H7(D) is defined to be the completion of Cog,,(D\Y) with respect
to the norm

||UH+,7 =/ (u, U)Jm'

Denote by H(D) the subspace of L?(D) consisting of those functions u which are

holomorphic, i.e. satisfy du =0 in D.

Lemma 13.1. The inclusion v : H™Y (D) — H%Y(D) is continuous. If holds
for some —1/2 <r < 1/2, then it is compact. More precisely,

1) If holds for some —1/2 < r < 1/2, then there are continuous embed-
dings H' (D) < H™Y(D) < H*7(D), where s > 0 is given by .

2) In particular, if ¥ is given by multiplication with a non-zero constant, then
there are continuous embeddings H'V (D) — HtY(D) — HY?=57(D) for any
e > 0.
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3)Ifp=1, ¥ =0 and D is a strictly pseudoconver domain with C* boundary,
then there are continuous embeddings

HY(D) — HY7(D) < H(D) & (H(D)* n H/?(D)).

Proof. The continuity of the embedding ¢ has been proved in Lemma[8:1} The part
1) and 2) of the lemma follow from Corollary

The proof of 3) can be given within the framework of complex analysis. Indeed,
as a > 0, the space H™7(D) is continuously embedded into L?(D), which just
amounts to H%7(D) in the case under study. If D is a strictly pseudoconvex
domain in C", then holomorphic functions in a neighborhood of D are dense in
H(D). Since ¥ = 0, we conclude that H(D) C H™7(D). Besides, if D is a strictly
pseudoconvex domain with C'* boundary, then there is a constant ¢ > 0 with the
property that

10ull L2y > ¢ llullirz(p)

for all u € L?(D) orthogonal to the subspace H(D) of L?*(D) (see [KohT9]). Using
the orthogonal decomposition

L*(D) = H(D) & H(D)*

we conclude that the completion H 7 (D) of H!(D) with respect to the norm |||+
lies in H(D) @ (H(D)* N H'/2(D)), as desired. O

Example 13.2. Let p = 1 and ¥ be given by multiplication with a non-zero
constant. By Lemma the space H™7(D) is continuously embedded into
H'/?7¢(D) for any ¢ > 0 or even into H'/?(D), if 9D € C?. However, what-
ever € > 0 is, there is no continuous embedding H* (D) « H'/?*¢(D). Indeed, if
D is the unit disc in C then a direct computation using Lemma 1.4 of [ShI96] shows
that the series

o0 k

z
u(z):z 11e)/2
Pt (k +1)(+e)/

converges in the space Ht7(D) but diverges in H'/2¢(D). This means that the
coercive estimate does not hold for problem (13.I). In particular, the form
(+,*)+,y is not coercive in this case, and so the Shapiro-Lopatinskii condition fails
to hold for problem . Besides, as the monomials z* are L? -orthogonal on the
circles |z| = r, we see that in this case the term induced by multiplication with
constant ABj € C fails to be a compact operator from H17(D) to H (D) (cf.
[PS13)]).

Example 13.3. Let D be the unit ball around the origin in C”, the boundary of D
being the unit sphere S?»~!. The Laplace-Beltrami operator Agz.—1 on the sphere
is non-negative and gives rise to the family

v, = (]. + ASQW,—l)T/2

of invertible pseudodifferential operators of order r on S?”~!, parametrised by real
r € R. By the invertibility is meant that is fulfilled for ¥ = /By o ¥,, where
By,o is a non-negative constant. Then, the selfadjoint version of problem
reads

f in D,
0 at 0OD.

(13.2)

- —Au+ agu
B,u+ Bo,op™ U W, (p~ )
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For any r € [—1/2,1/2], the operator ABy := p” ¥sp~" maps H"(S>"~1) contin-
uously to H™9(S?"~1). Hence, it maps H"(S?*"~') compactly to H~"(S?"~1), if
6 < 2r. In particular, if ¥ is given by multiplication with a non-zero constant,
then 7 = 0 and p~YAByp? = ¥s is a compact selfmapping of L?(S?"~1), if § < 0.
We may use the so-called spherical harmonics to make the action of ¥, more illus-
trative. Namely, spherical harmonics hy are eigenfunctions of Age2n-1 of degree k,
ie.

Agen—1hy =k (2n + k- 2) hp. (13.3)

The harmonic extension of hj into the unit ball gives a harmonic homogeneous
polynomial of degree k. The number of linearly independent spherical harmonics
of degree k is finite and equals

2n + 2k —2)(2n + k — 3)!
(2n — 2)1 k!

Ik =

Thus, we may build an orthonormal basis {hfg )} of them in L2(S?"~1). It is easy
to check that, for > 0, the operator ¥, is given by

oo J(k)
(14 Agonms)Pu =3 "(1+ k(20 +k = 2))72 > (u, i) o gon1) b
k=0 j=1

for u € L?(S?"~1). By duality, this formula extends to all r € R while the functions
u € H¥(S?"~!) with arbitrary s € R are specified within the framework of series
expansions

o J(k) _ .
u = Z Z c,gqj)hl(gj)ﬂ
k=0 j=1

where c,(cj Jec satisfy

J (k)
(L+k@n+k—2)° Y [ ? < oo,
j=1

M8

b
Il

0

cf. [Pla86, Ch. 1, § 5] or [Shl96]. In particular, under this identification, we get
readily

Urw = BO70(1 + AS271.71>T. (134)

Recall that estimate (8.44]) in the particular case under considerations becomes
explicitly

"~ Ou
’(;ajazj + Aaou,v) o (D) + (AByu, ”U)Ho,w(a'p)‘ < cllull+4llvl+.4

for all u,v € H7 (D), with ¢ a constant independent of v and v. As b; = 1, it follows
from the definition of || - || 5 that and are valid if the functions p? Aag
and pa;, for 1 < j < n, are of class L>(D) and either the operator ABy is given by
multiplication with a function Abg satisfying p*" Aby € L>(9D), for 0 < r < 1/2,
or p~YAByp" maps H"(0D) continuously to H~"(9D), for —1/2 < r < 1/2 (see
Lemma .
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Now, if @ > 0, we deduce that estimate (8.44]) is true under the conditions above
with constant

T 2 V2 o e /

c=a (Z ”paj”LOO(D)) +a™||p Aagl| L (py + ¢ (13.5)
j=1
where ¢/ = ||p?" Abg|| L= (ap) or ¢ = ||p~7 AByp?|| depending upon the case under
discussion.
The operator Lg corresponds to the boundary value problem
"L dp Ou
—Au+8ypt L tapu = in D,

e ;1 9,00 T f (13.6)

(’)Cu + B()’() u = 0 at OD.

Corollary 13.4. Let hold with some —1/2 < r < 1/2. Then the inverse
Lal of the operator Lo induces compact positive selfadjoint operators

Q1 = WLyt H-Y(D) — H(D),
Q = 'Lyt + H°Y (D) — HY(D),
Qs = Ly'/v : HY(D) — H™ (D)

which have the same systems of eigenvalues and eigenvectors. Besides, all eigenval-
ues are positive and there are orthonormal bases in HT7 (D), H*Y (D) and H~" (D)
consisting of the eigenvectors.

Proof. For the proof it suffices to combine Lemmas and with Theorem
5] U

We are in a position to evaluate the eigenfunctions and eigenvalues of selfadjoint

problem ([13.2)).

Example 13.5. Let D be the unit ball around the origin in C*, p =1, ago > 0
and a(Q),O + B&O # 0. We pass to spherical coordinates z = rS(y) in R?", where
r = |z| and ¢ are coordinates on the unit sphere S?"~1. The Laplace operator A
takes the form
1
A= ﬁ((raﬁ + (2n — 2)(r0,) — Agan-1), (13.7)

where Ag2»-1 is the Laplace-Beltrami operator on the unit sphere. Furthermore,

since 0D = S?"~ 1, we get
9]
v

_ "9
= R —— =
0, ;z 55

where Bg2n-1 depends on the coordinates on the unit sphere only. If for instance
n =1, then

= Tara

((rd,) + Bszur)

N | =

0, == ((r,) + V—=10,)

1

2

in polar coordinates in the plane.
To solve the homogeneous equation (—A+a)u = 0 we apply the Fourier method

of separation of variables with a € R. Writing u(r,¢) = g(r)h(p) we get two
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separate equations for g and h, namely
(—(7"&)2 +(2—2n)(rd,) + arz) g = cg
Agen—1h = ch,
where c is an arbitrary constant. The second equation possesses non-zero solutions

if and only if ¢ = k(2n + k — 2) and h = hy, a spherical harmonic of degree k.
It is known that we may choose the harmonics hj in accordance with complex

structure. Namely, there is an orthonormal basis {AY)} in L2(S2"~!) consisting of
polynomials of the form
hia(:%) = 3 el

|e|=p
|Bl=a

with complex coefficients cg)ﬁ (see for instance [AK9I]). Let J(p,q) stand for the
number of polynomials of bidegree (p, q) in the basis; of course J(p,q) < J(p + q).
Clearly,

Ay = ol s
BS2"—1th¢)1 = (q_p)hp],q

and
U, b)) = (1+ Agen—1)"hY)) = (1 + (p+ @) (2n + p + g — 2)) A,
which is due to (13.4]).

Consider the Sturm-Liouville problem for the ordinary differential equation with
respect to the variable 7 in the interval (0, 1),

1

= (—(r&)2 +(2—2n)(ro,) + ar® + (p+q)(2n+p+q—2)) g = Mg in (0,1)
g is bounded at 0,

((ror) + (g—p) +2Bo o (14+(p+q)(2n+p+qg—2))")g = 0 at (1 |

13.9

see [TS72, Suppl. II, P. 1, § 2]. Actually, if ag and A are real numbers then is
a particular case of the Bessel equation. Its (real-valued) solution g(r) is a Bessel
function defined on (0, 4+00), and the space of all solutions is two-dimensional. For
example, if A = ag then g(r) = arPT4 4 pr2=P=9=" with arbitrary constants a and
[ is a general solution to ‘ In the general case the space of solutions to ((13.9))
contains a one-dimensional subspace of functions bounded at the point » = 0, cf.
[TS72].

For any p, ¢ and j, fix a non-trivial solution g,(,{glk)(r) of problem corre-
sponding to an eigenvalue )\g ;Ik). Then the function

ugly? = g () H{) (¢)

satisfies

(-a+@=2M) e = 0 i cn, (15.10)
(B, + Boo(1+ Agze )" ) ully) = 0 at oD.
Indeed, by (13.3)), (13.7), (13.9) and the discussion above we conclude that this

equality holds in C™\ {0}. We now use the fact that uj(gj ;Jk) is bounded at the origin
to see that the differential equation of (13.10)) holds in all of C™. On the other
hand, boundary equation of ([13.10)) follows from ([13.8) immediately, as already
mentioned.
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Let us show that the system

{up,q } P,9€ZL>0
j=1,... 2J(p »q)

coincides with the system of all eigenvectors of Sturm-Liouville problem ((13.2) in
the unit ball B?” around the origin in C™. In particular, it is an orthogonal basis
in H+7(B*"), H*7(B*") and H~7(B*"). Really, as af, + Bj, # 0, Theorem

implies that H™7(B*) is continuously embedded into L?(B?"). From it
follows that the system {u(J 4} consists of eigenvectors of Sturm-Liouville problem
in the ball. Moreover, by Lemma 7.1 of [ST03], the system {u(J’ )} is or-
thogonal with respect to each of the Hermitian forms (-, -)z2(s2n-1), (-, ) L2(g2n) and
(0-, 5')L2(32n). In particular, it is orthogonal in H++7(B2?"). On the other hand, the
orthogonality of the system in H 7 (B2?") is fulfilled because and Lemma

imply

. -/’k:/ ,k}
(WfP Wl AN = G L R )
Ny Ny
= )\]()/ q/ ) (UI()‘Z;Zk),U]()/7q/ ))L2(B2n).

By construction, the system {h(j }, where p,q € Z>p and 1 < j < J(p,q), is an

orthonormal basis in L?(S?>"~1!). For any fixed p, ¢ and j, we have )\(] k) > ap,0

and the countable system {91(7],;1 )}keN of eigenfunctions is an orthogonal basis in

the weighted space L?((0,1),7) of complex-valued functions with scalar product
(V- v/T") 20,1y (see [TST2, Suppl. IT, P. 1, § 2]). Hence, a familiar argument now

shows that the system {u(j k)} is an orthogonal basis in L?(B?"). As {uz(){;f)} is
an orthogonal basis in L?(B2?"), there are no other eigenvalues of problem
but the already mentioned )\,(,]7 ;Zk). Hence, there are no eigenvectors corresponding
to an eigenvalue A which fail to be finite linear combinations of the eigenfunctions
already constructed.

By the above, the space L?(B?") is dense in H 7 (B"). It follows that the system
{ul(,];;]k)} is complete in H~7(B?"), too. Finally, let a function v € H+7(B?") be
orthogonal to each vector ul(,],;]k) with respect to (-, )+ . Then, using Lemma
and we conclude that

(u,uz(qu))g(an) = (u, LalL/LuI()j;lk))+77
= AGP (w0

i.e. u is orthogonal to each vector ul;¥) in L2(B2"). Therefore, u = 0 in L2(B2")
and so in the space H 7 (B*"), too. This means precisely that the system {ué{}lk)}
is complete in H 7 (B?").

Corollary and Lemma actually show that the operators @1, Q2 and Q3
are of Schatten class &,,1. for any € > 0, and so their orders are finite. Moreover,
in this case any eigenvalue has finite multiplicity. From this point of view the case
where ¥ = 0 is of certain interest.

Theorem 13.6. Let p=1 and ¥ = 0. If D is strictly pseudoconver domain with
C boundary then the inverse LJl of the operator Lg induces positive selfadjoint
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operators
Q = Lyt . H-(D) — H™(D),
Qs = Lyt L*(D) — L*(D),
Qs = Ly'/v : HY(D) — HTY(D)

which have the same systems of eigenvalues and eigenvectors. Moreover, all eigen-
values are larger than or equal to 1 and there are orthonormal bases in the spaces
HTY(D), L?*(D) and H~"(D) consisting of the eigenvectors. Besides, the eigen-
value A\ = 1 has infinite multiplicity and the multiplicities of all other eigenvalues
are finite.

Proof. The fact that the operators @Q1, Q2 and @3 are selfadjoint and non-negative
follows from Lemma

Consider the operator equation (Q2 — A )u = 0 with A € C. The corresponding
weak identity has the form

4 (gu, év)Lz(D) + (u, 'U)LZ('D) = A(u, ’U)Lz(D)
for all v € HY7(D). In particular, we get
410ull 2y = (A = 1) [[ull72(p)
for its solution. Hence, non-trivial solutions are only possible if A > 1.

A function u € H1T7(D) satisfies this equation for A = 1 if and only if u is
holomorphic in D. As such functions constitute H(D), we see that the eigenvalue
A =1 has infinite multiplicity.

Write H(D)+ = L?(D) © H(D) for the subspace of L?(D) consisting of all func-
tions which orthogonal to H(D). Clearly, if u € H(D)* then

(Q2u,v)r2(p)y = (U, Q2v)r2(p)y = (U, v)2(py =0
for all v € H(D). Therefore, Q2 maps H(D)* to H(D)* .

According to Lemma the restriction of the operator Q5 to H(D)* is com-
pact and selfadjoint. By the Hilbert-Schmidt theorem, there is an orthonormal
basis {b,} in H(D)L which consists of eigenvectors of this operator. On choosing
an orthonormal basis {h,} in H(D) we obtain the orthonormal basis {h,} U {b,}
in L2(D) consisting of the eigenvectors of Q5.

Finally, the fact that the operators @1, Q2, @3 have the same systems of eigen-
values and eigenvectors follows from Lemma 9.1 O

The Fredholm property and theorem on the completeness of root functions of

problem ([13.1)) read as follows.

Corollary 13.7. Let apy = p 2, ¥ = v/ Boo¥, with Bpg > 0 and t = 0. If
there is a number € > 0 such that p'~¢ (a; — 8y p~10.,p) € L=(D), for 1 < j <mn,
p*~¢Aag € L>®(D) and either the operator ABy is given by multiplication with a
function Abg satisfying p*" =€ Aby € L*(9D), for 0 <r < 1/2, or p~Y AByp” maps
H"™(0D, S) compactly to H-"(9D), for —1/2 < r < 1/2, then problem 18
Fredholm. If moreover the constant ¢ given by s less than 1, then problem
is uniquely solvable and the inverse L' : H= (D) — H*"(D) C H*"(D, S)

is bounded, where s is given by .

Corollary 13.8. Let apo = p 2, W= /Bo,o ¥, with By > 0 and t = 0. If the
constant ¢ of is less than sin(r+1/2)w/2n, then the system of root functions
of the closed operator T in H—7(D) corresponding to problem m s complete in
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the spaces H=7 (D), H>Y (D) and H*" (D, S), and, for any § > 0, all eigenvalues of
T (except for a finite number) lie in the corner |arg A| < arcsinc+ 9 in C. Besides,
ifaj = 87,0’182].;), for1 <j <n, Aay =0 and ABy = 0, then all eigenvalues of
T belong to the corner |arg A| < arcsin c.
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