Skip to main content
Log in

Laser Speckle Contrast Imaging for Intraoperative Monitoring of Cerebral Blood Flow

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Intraoperative monitoring of cerebral blood flow provides an important information required for clinicians to select optimal tactics during the neurosurgery procedures, including clipping cerebral vessel aneurysms, bypass, and arteriovenous malformation surgery. Presently, robust cost-effective non-invasive optical imaging techniques suitable to assess cerebral blood flow in the operating room do not exist. In current study we report a development of prototype of the Laser Speckle Contrast Imaging (LSCI) system as a complementary tool for non-invasive real-time visualization and quantitative assessment of cerebral blood flow during neurovascular surgery. The LSCI is based on the scattering of coherent laser light within dynamic turbid medium, such as biological tissues, including brain. The speckle patterns appeared due to interference of partial components of the dynamically scattered light are recorded by digital camera. To observe blood flow in large and small vessels as well as in the microcirculatory bed of the cerebral cortex the recorded images are quantitatively analyzed utilizing low-order statistical moment, known as imaging contrast or enhancement of visibility. The purpose of current pilot study is to assess general feasibility of the LSCI approach in terms technical abilities of image acquisition, its quality evaluation and further implication to day-to-day clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Scerrati, A., della Pepa, G.M., Conforti, G., Sabatino, G., Puca, A., Albanese, A., Maira, G., Marchese, E., and Esposito, G., Clin. Neurol. Neurosurg., 2014, vol. 124, p. 106. https://doi.org/10.1016/j.clineuro.2014.06.032

    Article  Google Scholar 

  2. Gerasimenko, A.Yu., Morozova, E.A., Ryabkin, D.I., Fayzullin, A., Tarasenko, S.V., Molodykh, V.V., Pyankov, E.S., Savelyev, M.S., Sorokina, E.A., Rogalsky, A.Y., Shekhter, A., and Telyshev, D.V., Bioengineering, 2022, vol. 9, 238. https://doi.org/10.3390/bioengineering9060238

    Article  Google Scholar 

  3. Kapsalaki, E.Z., Lee, G.P., Robinson, III, J.S., Grigorian, A.A., and Fountas, K.N., J. Clin. Neurosci., 2008, vol. 15, p. 157. https://doi.org/10.1016/j.jocn.2006.11.006

    Article  Google Scholar 

  4. E. Arbit and DiResta, G.R., Clin. N. Am., 1996, vol. 7, no. 7, p. 741. https://doi.org/10.1016/s1042-3680(18)30359-0

    Article  Google Scholar 

  5. Katz, J.M., Gologorsky, Y., Tsiouris, A.J., Wells-Roth, D., Mascitelli, J., Gobin, Y.P., Stieg, P.E., and Riina, H.A., Neurosurgery, 2006, vol. 58, p. 719. https://doi.org/10.1227/01.NEU.0000204316.49796.A3

    Article  Google Scholar 

  6. Kazmi, S.S., Richards, L.M., Schrandt, C.J., Davis, M.A., and Dunn, A.K., J. Cerebral Blood Flow Metabolism, 2015, vol. 35, p. 1076. https://doi.org/10.1038/jcbfm.2015.84

    Article  Google Scholar 

  7. Miller, D.R., Ashour, R., Sullender, C.T., and Dunn, A.K., Neurophotonics, 2022, vol. 9, 21908. https://doi.org/10.1117/1.NPh.9.2.021908

    Article  Google Scholar 

  8. Heeman, W., Steenbergen, W., van Dam, G.M., and Boerma, E.C., J. Biomed. Opt., 2021, vol. 24, e202100216. https://doi.org/10.1117/1.JBO.24.8.080901

    Article  Google Scholar 

  9. Bandyopadhyay, R., Gittings, A.S., Suh, S.S., Dixon, P.K., and Durian, D.J., Rev. Sci. Instrum., 2005, vol. 76, 093110. https://doi.org/10.1063/1.2037987

    Article  ADS  Google Scholar 

  10. Basak, K., Manjunatha, M., and Dutta, P.K., Med. Biol. Eng. Comput., 2019, vol. 50, p. 547. https://doi.org/10.1007/s11517-012-0902-z

    Article  Google Scholar 

  11. Piavchenko, G., Kozlov, I., Dremin, V., Stavtsev, D., Seryogina, E., Kandurova, K., Shupletsov, V., Lapin, K., Alekseyev, A., Kuznetsov, S., Bykov, A., Dunaev, A., and Meglinski, I., J. Biophotonics, 2021, vol. 14, e202100216. https://doi.org/10.1002/jbio.202100216

    Article  Google Scholar 

  12. Richards, L.M., Towle, E.L., Fox, D.J., and Dunn, A.K., Neurophotonics, 2014, vol. 1, 15006. https://doi.org/10.1117/1.NPh.1.1.015006

    Article  Google Scholar 

  13. Mangraviti, A., Volpin, F., Cha, J., Cunningham, S.I., Raje, K., Brooke, M.J., Brem, H., Olivi, A., Huang, J., Tyler, B.M., and Rege, A., Sci. Rep., 2020, vol. 10, p. 7614. https://doi.org/10.1038/s41598-020-64492-5

    Article  ADS  Google Scholar 

  14. Kalchenko, V., Madar, N., Meglinski, I., and Harmelin, A., J. Biophotonics, 2011, vol. 4, p. 645. https://doi.org/10.1002/jbio.201100033

    Article  Google Scholar 

  15. Kalchenko, V., Ziv, K., Addadi, Y., Madar, N., Meglinski, I., Neeman, M., and Harmelin, A., Laser Phys. Lett., 2010, vol. 7, p. 603. https://doi.org/10.1002/lapl.201010028

    Article  ADS  Google Scholar 

  16. Kalchenko, V., Israeli, D., Kuznetsov, Y.L., Meglinski, I., and Harmelin, A., J. Biophotonics, 2015, vol. 8, p. 897. https://doi.org/10.1002/jbio.201400140

    Article  Google Scholar 

  17. Kalchenko, V., Sdobnov, A., Meglinski, I., Kuznetsov, Y., Molodij, G., and Harmelin, A., Photonics, 2019, vol. 6, 80. https://doi.org/10.3390/photonics6030080

    Article  Google Scholar 

  18. Briers, D., Duncan, D.D., Hirst, E.R., Kirkpatrick, S.J., Larsson, M., Steenbergen, W., Stromberg, T., and Thompson, O.B., J. Biomed. Opt., 2013, vol. 18, 066018. https://doi.org/10.1117/1.JBO.18.6.066018

    Article  ADS  Google Scholar 

  19. Sdobnov, A., Bykov, A., Molodij, G., Kalchenko, V., Jarvinen, T., Popov, A., Kordas, K., and Meglinski, I., J. Phys. D: Appl. Phys., 2018, vol. 51, 155401. https://doi.org/10.1088/1361-6463/aab404

    Article  ADS  Google Scholar 

  20. Chizari, A., Knop, T., Sirmacek, B., van der Heijden, F., and Steenbergen, W., Biomed. Opt. Express, 2020, vol. 11, p. 2352. https://doi.org/10.1364/BOE.387252

    Article  Google Scholar 

  21. Molodij, G., Sdobnov, A., Kuznetsov, Y., Harmelin, A., Meglinski, I., and Kalchenko, V., Phys. Med. Biol., 2020, vol. 65, 075007. https://doi.org/10.1088/1361-6560/ab7631

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 22-65-00096, https://www.rscf.ruproject/22-65-00096/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Stavtsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stavtsev, D.D., Konovalov, A.N., Blinova, E.V. et al. Laser Speckle Contrast Imaging for Intraoperative Monitoring of Cerebral Blood Flow. Bull. Russ. Acad. Sci. Phys. 86 (Suppl 1), S229–S233 (2022). https://doi.org/10.3103/S1062873822700733

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822700733

Keywords:

Navigation