) Open Journal of
°°° Mathematical Sciences

=y
Article
A note on JeSmanowicz’ conjecture for non-primitive

Pythagorean triples

Van Thien Nguyen!, Viet Kh. Nguyen? and Pham Hung Quy'*

Department of Mathematics, Hoa Lac High Tech Park, FPT University, Hanoi, Vietnam.
Department of Mathematics and Information Assurance, Hoa Lac High Tech Park, FPT University, Hanoi, Vietnam.
Correspondence: quyph@fe.edu.vn

2

*

Communicated by: Mujahid Abbas
Received: 6 January 2021; Accepted: 2 March 2021; Published: 21 March 2021.

Abstract: Let (a,b,c) be a primitive Pythagorean triple parameterized as a = u?> — v?, b = 2uv, ¢ = u? +v?,
where u > v > 0 are co-prime and not of the same parity. In 1956, L. JeSmanowicz conjectured that for any
positive integer 1, the Diophantine equation (an)* 4 (bn)Y = (cn)* has only the positive integer solution
(x,y,z) = (2,2,2). In this connection we call a positive integer solution (x,y,z) # (2,2,2) withn > 1
exceptional. In 1999 M.-H. Le gave necessary conditions for the existence of exceptional solutions which
were refined recently by H. Yang and R.-Q. Fu. In this paper we give a unified simple proof of the theorem of
Le-Yang-Fu. Next we give necessary conditions for the existence of exceptional solutions in the case v = 2, u
is an odd prime. As an application we show the truth of the JeSmanowicz conjecture for all prime values

u < 100.
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1. Introduction

L et (a,b,c) be a primitive Pythagorean triple. Clearly for such a triple with 2 | b one has the following
parameterization

a=1u%—9% b=2uv, c = u?+ v*

with
u>v>0,ged(u,v) =1, u+v=1(mod 2). 1)

In 1956 L. Jesmanowicz ([1]) made the following conjecture:
Conjecture 1. For any positive integer n, the Diophantine equation
(an)* + (bn)? = (en)* 0]
has only the positive integer solution (x,vy,z) = (2,2,2).

The primitive case of the conjecture (n = 1) was investigated thoroughly. Although the conjecture is still
open, many special cases are shown to be true. We refer to a recent survey [2] for a detailed account.

Much less known about the non-primitive case (n > 1). A positive integer solution (x,y,z,n) of (2) is
called exceptional if (x,y,z) # (2,2,2) and n > 1. For a positive integer t, let P(t) denote the set of distinct
prime factors of t and P(t)— their product. The first known result in this direction was obtained in 1998 by
M.-]. Deng and G.L. Cohen ([3]), namely if u = v + 1, a is a prime power, and either P(b) | n, or P(n) 1 b, then
(2) has only positive integer solution (x,y,z) = (2,2,2). In 1999, M.-H. Le gave necessary conditions for (2) to
have exceptional solutions.

Theorem 1. [4] If (x,y,z,n) is an exceptional solution of (2), then one of the following three conditions is satisfied:

(i) max{x,y} > min{x,y} >z, P(n) & P(c);
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(i) x >z >y, P(n) C P(b);
(iii) y >z > x, P(n) C P(a).

However, as noted in [5] by H. Yang and R.-Q. Fu, the case x = y > z is not completely handled by the
arguments used in [4]. Furthermore they completed the unhandled case ([5], Theorem 1) based on a powerful
result of Zsigmondy ([6], ¢f. [7,8]). In fact one can give a unified simple proof of Theorem of Le-Yang-Fu
(Theorem 1) by using a weaker version of the Zsigmondy theorem as stated in Lemma 3 of [3].

Since many works [3,4] intensively investigated the first interesting family of primitive triples:

v=1u=2k=1,2,.... (3)

Most recently, X.-W. Zhang and W.-P. Zhang [9], and T. Miyazaki [10] independently proved Conjecture 1
for the (infinite) family (3).

It is natural to treat the next interesting case: v = 2, u is an odd prime which was known recently for few
values u: u = 3 ([3]), u = 5 — by Z. Cheng, C.-F. Sun and X.-N. Du, u = 7 — by C.-F. Sun, Z. Cheng, and by G.
Tang, u = 11 - by W.-Y. Lu, L. Gao and H.-F. Hao (cf. [2] for references). Let’s formulate our main results. We
rewrite (2) as

[(u? = 4)n]* + (4un)? = [(u? + 4)n]*. (4)

An arithmetical argument (given in Lemma 7 below) shows that u?> — 4 admits a proper decomposition
u? —4 = ujuy, ged(ug, up) = 1, so that there are three possibilities to consider: u; = £1,5 (mod 8).

Theorem 2. If (x,y,z,n) is an exceptional solution of (4) and u; = +1 (mod 8), then y is even.

In view of Theorem 2 the possibility u; = —1 (mod 8) is eliminated, because in this case x,y, z are even,
which is in general impossible by an auxiliary argument (Lemma 8 below).

Let v4(t), for a prime g, denote the exponent of g in the prime factorization of ¢, and let (%) denote the
Jacobi quadratic residue symbol.

Theorem 3. If (x,y,z,n) is an exceptional solution of (4), then one of the following cases is satisfied

(1) va(up —1) = 3: (va(x),va(y), v2(2)) = (0, > 2,1); uq admits a proper decomposition u; = t1ty, ged(ty,t2) =1
and t1,t; =5 (mod 8) satisfying certain special Diophantine equations;

(2) u; =5 (mod 8), upy = w?, where s = vy(z — x) — va(x) and either of the following

w

p),Vp|(u2+4)and

(2.1) w = £3 (mod 8): (v2(x), v2(y),12(z)) = (0,>1,0); u = 1 (mod 4); (%) - (

()= (255, v
(2.2) w = =£1 (mod 8): (v2(x),v2(y),v2(z)) = (B,0,B8), B> 1, u = £3 (mod 8); (%) =1,Vp| (W +4)

and (%) = (%), Y p | uy. Moreover, if u = 3 (mod 8), then w can not be a square.

Corollary 1. Conjecture 1 is true for v = 2, u —an odd prime < 100.

Let’s explain the ideas in proving our main results. As for Theorem 2 and Theorem 3 we exploit a
total analysis of Jacobi quadratic and quartic residues. In the case #; = 1 (mod 8) we have a further
proper decomposition u; = t1t;, which leads to certain special Diophantine equations. Theorem 3 helps
us substantially in reducing the verification process, as the possibility #; = 5 (mod 8) occurs quite sparsely.
We demonstrate this for # < 100 in proving Corollary 1.

The paper is organized as follows. In Section 2 we give a unified simple proof of Theorem 1. Section 3
provides some reduction of the problem and preliminary results. Theorem 2 will be proved in Section 4. The
case 17 = 5 (mod 8) and Theorem 3 will be treated in Section 5. The verification for u < 100 in Corollary 1 will
be given in the last Section 6.

2. A Simple Proof of Theorem 1

We shall use the following weaker version of Zsigmondy’s theorem.
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Lemma 1. (cf. [3], Lemma 3) For X > Y > 0 co-prime integers,

(1) if q is a prime, then

X9 — Y1
ng (X — Y, ﬁ) = 1, org;
(2) if qis an odd prime, then
X7+ Y1

ged (X+ Y, ﬂ) =1, org.
Proof. Part (2) is Lemma 3 of [3]. As for part (1) one argues similarly: if ¢ is a common prime power divisor
of X—Yand (X7—-Y7)/(X —Y). Clearly

X7 -yl .
~—v =0 (mod ¢"). )
On the other hand from the fact that X = Y (mod ¢") it follows

X9 — Y1
X-Y

= X7 4 X972y 4+ XY 2 4 YT = Y771 (mod £7). (6)
Since £ 1Y, (5)-(6) imply that { = g,and r =1. O

Remark 1. Part (1) of Lemma 1 is a special case of Theorem IV in [7].

Lemma 2. For a prime divisor q of (X — Y) and positive integer p

vy (X9 —Y") = B+ (X—Y). )

Proof. Applying part (1) of Lemma 1 8 times one has

B B
g _ygpt X YT
ged (X e, Xy q;
X9 — Yq
gcd(X—Y,ix_Y ) =4q.

Hence the formula (7). O

In view of Lemma 2 of [3] there are no exceptional solutions with z > max{x, y}, so as in [4] we have to
eliminate the following three cases:

D x>y=z
I y>x=z
I x =y > z.

(I) x > y = z: Dividing both sides of (2) by n¥ one gets
an* Y =¥ —bY. ®)

By considering mod ¢ + b, and taking into account (c + b)(c — b) = a2, one sees that y must be even, say
y =2y;. Now put X = 2, Y = b?,s0 X = Y(mod a?), gcd(Y,a) = 1. Taking mod a and in view of (8)
XY —yhn

0= —~—v = X1y xn=2y ...y xyn2pyn-1= y1Yy1_1 (mod a),

one concludes that a | y1.

For any q € P(a) let B = v4(11), so that y; = gPy, with g 1 yo. Putting U = x1°, V = Y¥ for short, we
have
XV — YV = (U - V)(U 4 U2V ... UV 2 4y, )
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and
uv—tpue2v o uv 2 vl = v £ 0 (mod g). (10)

Lemma 2 and (9), (10) imply that
Vg (XY —=Y) = v, (U = V) = B+ 2v4(a). (11)

In view of (8) the equality (11) means that a*~2 | y; in contradiction withy; = y/2 < a*2asx >y, a > 1.
(II) y > x = z: Similarly dividing both sides of (2) by n* one gets

bYn¥=* = ¢* —a*. (12)

Arguing as above with mod ¢ + a4, one sees that x must be even, say x = 2x;. Put X = ¢?, Y = a°.

Considering mod b and from (12) it follows that b | x;. So vy (X™ — Y1) = v,(x1) + 2v,(b) for any
q € P(b), therefore b¥~2 | x; in contradiction with x; = x/2 < b2 asy > x, b > 1.
(III) x =y > z: Dividing both sides of (2) by n* one gets

(a* + b )n* 7% =~ (13)

First we claim that x must be even. Indeed, if x is odd, then from (13) it follows that there is an odd prime
g €P(a+b)NP(c),s0q € P(ab), as > = a® + b>. A contradiction with gcd(a,b) = 1.

Writing now x = 2x; one sees that x; must be odd. Since otherwise for an odd prime g € P(a* +b*) N P(c)
taking mod q and by (13)
0=a"+b" =a* + (2 —a?)% =24% (mod q),

one gets a contradiction with ged(a,c) = 1.

Now from (13) we see that
(a2)x1 4 (bZ)xl szz

o = 5=z 1. (14)
as x > z > 2. So there is an odd prime g € P(c) dividing ((a?)™ + (b*)*1)/(a? + b?). Considering mod q
and taking into account a> = —b? mod g, q { a one has
2 X1 2 X1
0= (11 ) + (b ) — (a2)x171 _ (a2)x172b2 4= a2(b2)x172 + (bZ)xlfl = xla2x172 (mod q)

a? + b2
Hence q | x1, and so ((a?)7 + (b%)7) | ((a®)* + (b?)*1). Applying part (1) of Lemma 1 we get

()7 + (1)1

2, 2
ged (a” + b7, 2

) =4 (15)

On the other hand from (14) one knows that ((a?)7 + (b*)7)/(a® + b?) is a product of primes in P(c).
It is easy to see that ((a?)7 + (b*)1)/(a® + b*) > q. So either vy (((a?)7 + (b*)7)/(a® + b*)) > 2 and
vg(a* + b%) > 2, or both of them must have another common prime factor in P(c), a contradiction with
(15).

3. Preliminary reduction

We need some reduction of the problem. The following result is due to N. Terai [11].
Lemma 3. Conjecture 1is trueforn =1, v = 2.

Because of Lemma 3 we will assume henceforth n > 1.
M.-]. Deng ([12], from the proof of Lemma 2), and H. Yang, R.-Q. Fu ([5]) showed that we can remove the
condition (i) in Theorem 1.

Lemma 4. If (x,y,z,n) is an exceptional solution, then either x > z >y, ory >z > x.
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Note that the proof of Lemma 4 relies essentially on the condition 7 > 1. It could be interesting to find a
proof of this result for the case n = 1.

Furthermore, in the case when u is an odd prime and v = 2, H. Yang, R.-Q. Fu [13] succeeded to eliminate
the possibility (ii) in Theorem 1.

Lemma 5. Suppose that u is an odd prime and v = 2. Then equation (2) has no exceptional solutions (x,y,z,n) with
x>z>.

Lemma 6. For a positive integer w
(1) ifvp(w) > 2, then va[(1 4+ w)* — 1] = va(w) + v2(x);
(2) ifvp(w) = 1and x is odd, then vo[(1 + w)* — 1] = 1;
(3) ifva(w) = 1and x is even, then vo[(1 + w)* — 1] = (2 + w) + va(x).

In particular va[(1 + w)* — 1] = 2+ 1p(x), if w = 4 (mod 8); or if w = 2 (mod 8) and x is even.
Proof. (1) The conclusions of Lemma 6 are true trivially for x = 1. Assuming now x > 2 we have
(1+w)* —1=w(Cl+Cow+ -+ C¥ w2 4 Clw* 1), (16)
Clearly 1,(j) <j—1forj=2,---,x,and so
vz(Ciwjfl) = 1/2(§Ci7_11wj*1) >vp(x) +j—1>v(x),

as 12 (w) > 2. Hence the conclusion follows from taking v;(-) on both sides of (16).
(2) Obvious from (16), since CL + C2w + - - - + CX1w*~2 4+ C¥w* ! is odd in this case.
(3) Writing x = 2x; we have

(1+w)* =1=[1+w)" =11 +w)" +1]. 17)

If x1 is odd, i.e., vo(x) = 1, then 1p[(1 + w)* — 1] = 1 by the part (2) above, and v,[(1 + w)*1 +1] =
(24 w), as

(I+w)1+1=24+w)[A+w)" 1 —Q+w) "1 2+... —(14+w)+1]
and (1+w)% 1 — (14+w)? 24— (1+w)+ 1is odd.
If xq is even, then v5[(1 4 w)*1 + 1] = 1, since
(1+w)™ +1=2+CLw+Clw?+ -+ Ci w1 4w

Therefore v,[(1 + w)* — 1] = 1p[(1 + w)* — 1] + 1 by (17). Now the descending argument yields the
conclusion.
O

The following claims play a central role in the next sections.

Lemma 7. If (x,y,z,n) is an exceptional solution of (4), then u®> — 4 admits a proper decomposition u> —4 =
uyuy, ged(uq, up) = 1 and with one of the following conditions satisfied:

(1) uy =1 (mod 8) and vy(z) = va(u; — 1) +vp(x) — 2;
(2) u3 =7 (mod 8), v2(z) = va(u1 +1) +va(x) — 2, and vo(x) > 1;
(3) up =5 (mod 8), uy is a square and and vo(z) = v, (x).

Proof. In view of Lemmas 4, 5 we may assume the existence of an exceptional solution with y > z > x (the
case (iii) of Theorem 1). Dividing both sides of (4) by n* one gets

(12 — 4)% = [(u2 + 4)7 — (4u)/n¥ =0~ (18)
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It is easy to see that ged(u? +4,n) = 1. So (18) is equivalent to the following system

(u? +4)7 — (4u)Vn¥=% = uf 19
nE—xX — X (19)
2
with u? — 4 = uju,, ged(uy, uz) = 1. The system (19) can be rewritten as
(u? +4)* = 2%u¥n¥ =% = uf, (20)
or equivalently
[(u?44)* — 1] — (uf —1) = 2%u¥n¥ >, (21)

with k(z — x) = mx, and n" = u§.

Clearly up > 1. Assume now u1 = 1. As u?> = 1 (mod 8), by comparing v, (-) both sides of (20) and by (1)
of Lemma 6 we have v5[(u? +4)* — 1] =2+ 15(z) < 2y. So (21) is inconsistent. So u; > 1 and

va(z) =vp(up —1) — 2. (22)

If 41 = 1 mod 8, then by (1) of Lemma 6 we get v5(z) = va(u3 — 1) + va(x) — 2.

If u; = 7 mod 8 and x is odd, then by (2) of Lemma 6: 15(uj — 1) = 1, impossible by (22). Thus (21) is
inconsistent.

If u1 = 7 mod 8 and x is even, then by (3) of Lemma 6: vo(uj — 1) = vp(uq + 1) + v2(x). Hence by (22) one
gets v2(z) = va(ug +1) +va(x) — 2.

For u; = 3 mod 8, we have v, (uf — 1) = 1, if x is odd (by (2) of Lemma 6), and 1, (uj — 1) = 2+ 1,(x), if
x is even (by (3) of Lemma 6). Hence for (20) to be consistent one has necessarily v,(z) = v»(x), which implies
v2(z — x) > 1p(x) 4 1. So from the second equation of (19): n*~* = w3 it follows that 1, must be a square, hence
uy = 1 mod 8. Thus u1u; =3 mod 8, a contradiction with u1u; = u? —4 = 5 mod 8.

Similarly, for u; = 5 mod 8, by using (1) of Lemma 6 we have v5(uf — 1) = 2+ 12(x), and by the same
reason 1;(z) = v(x). Hence the system (19) is inconsistent, if u; is not a square. [

Lemma 8. In the notations above if x,y, z are even, then (20) is inconsistent.
Proof. In this case we can rewrite (20) in the form of Pythagorian equation
(u3/2)? + [2Yuy/ 200222 = [(u? + 4)*/2)%.
Hence (cf. (1)) there are integers X, Y, say with 2 | Y such that
(1 +4)72 = x>+ Y2, (23)
W/ 2p=2/2 = oxy. (24)
In view of Lemma 2.2 of [9], Equation (23) has solutions
u> +4=A%>4+B2% 2|B, (25)

1 (Y) =v(z/2) + v2(B). (26)

Since u? +4 = 5 mod 8 it follows from (25) that v2(B) = 1. From (24) we have v,(Y) = y — 1 which
together with (26) implies
y=w(z)+1,

a contradiction withy > z. O

Corollary 2. In the notations above if y, z are even and (20) is consistent, then x is odd and u; = 1 (mod 8). Moreover
uq admits a proper decomposition uy = t1ty such that ged(t1,tp) = 1 and

5+ 1 =2(u® +4)*2, 27)
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ty — 1] = Yy 2, (y=2)/2, (28)
vt —1)=wnt;—1) =wnuj —1) -1 (29)
Proof. By Lemma 8 x is odd. In fact one can rewrite (20) as
A-B = uj with ged(A,B) =1,
where
A= (12 +4)¥2 vy 2n=2/2 B — (42 4 4)7/2 4 2¥yy¥/2p(4-2)/2,

Hence
A= tx, B = t% with Uy = ity and ng(tl,tz) =1 (30)

If t; = 1, then by (1) of Lemma 6: 15[(u2 +4)%/2 —1] = 2+ 15(2/2) < y = 1n(2Yu¥/2n¥=2/2) S0 A =1
is impossible.
Now from (30) we have two possibilities:

(1) z/2isodd: t; =t =5 (mod 8);
(2) z/2iseven: t; = t, =1 (mod 8);

both of them imply u; =1 (mod 8).
Also (27)-(29) follow immediately from (30). O

Corollary 3. In the situation of Corollary 2 we have t1,t; =5 (mod 8) and vo(u; — 1) = 3.

Proof. We will show that z/2 must be odd, from which the conclusion immediately follows by the proof above,
noting that vp (11 — 1) = vp(uf —1) =1(A—-1) +1=3.

Assume on the contrary that v5(z) > 2. In view of (30) one has x > 3,as f; < t; < u? — 4. We claim that
x > 3. Indeed, if x = 3, then n = u3 by (19), noting that z = 4 by B = t} of (30),soy = 6as A = t{ > 0. Now
from the equation tf = A in (30) we see that (t,4uuy, u*> 4 4) is a primitive solution of

X3 +v3 =22 (31)

Euler ([14], pp. 578-579) indicated a primitive parameterization for the Diophantine Equation (31) with
3t1Z,2]Y as follows
X = (s—1t)(3s — t)(3s> +2), Y =4st(3s> —3st + 2),

with s, f co-prime, 3 { t and s # t (mod 2). Hence 8 | Y which shows that ] = A in (30) is impossible.
Furthermore, if x > 4, then by Theorem 1.1 of [15], (27) is again impossible. [

4. Proof of Theorem 2

The aim of this section is to show that the case u1 = 7 (mod 8) in Lemma 7 is not realized. We refer the
reader to [16] for basic properties of Jacobi quadratic and quartic residue symbols (a) , (a) e shall use in

the following lemmas.

Lemma 9. Fora prime p | (u* + 4) one has p = 1 (mod 4) and (%) =1

-1
Proof. Since u?> = —4 (mod p), so (—) = 1,ie, p = 1 (mod 4). Furthermore we include the following

simple argument due to the referee instead of ours in the original version:

() () (557 - (52 o

O

Lemma 10. If (20) is consistent and u; = 1 (mod 8), then (%) = (%) for any prime p.
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Proof. Indeed, in this case by Lemma 7 v5(z) > v5(x). Hence v2(z — x) = v2(x), so we have in (21) n™ = u}§

with k, m odd, and therefore the conclusion of Lemma 10. [

We are ready now to prove Theorem 2. Let p | (u? +4). By taking (5) on (20) and using Lemmas 9, 10

()= (- () (2" o2

(as z is even). Now taking the product of (32) over all (not necessarily distinct) prime divisors p | (1% + 4) we

have U \* U\ Us\ Y Up \Y
(eiz) = I () = I () = (ara) (33)

pl(u2-+4) pl(u?+4)

one sees that

By the quadratic reciprocity law

2

() = (5 1:4) = (%) =1 (34)
2

(2ra) - (uu—;4) - (%) =1 (35)

as u; = £1 (mod 8), up = £5 (mod 8). Altogether (33)-(35) imply that (%)y = (—1)Y =1, ie, y must be

even.
Corollary 4. The possibility u1 = 7 (mod 8) in Lemma 7 is not realized.
Proof. Indeed, in this case v2(z) > v2(x) > 1, so (20) is inconsistent by Lemma 8. [
Corollary 5. In the case u1 = 1 (mod 8) of Lemma 7 we have
(v2(x), v2(y), v2(2)) = (0,2 2,1).

Proof. By Lemma 7 and Theorem 2: , z are even, hence x is odd by Lemma 8. From the proof of Corollary 3 it
follows that v5(z) = 1. For a prime p | (u? + 4) by taking (%) on A = t{ of (30) and using Lemma 9 one gets

(y=2)/2
=G )
p p
By the same reason of (35) we have (ﬁ) = —1,as t; =5 (mod 8) by Corollary 3. Hence there exists
a prime py | (4% + 4) such that

ty
— ) =-1 37
( po) (37)

From (36), (37) one concludes that (y — z) /2 must be odd (and (;) = —1), so the conclusion of Corollary
0
5 follows. O

Remark 2. One can have another proof of Lemma 8 as shown in several steps below. Assuming v, z even, and
arguing as in the proof of Corollary 2 one gets Equation (30) together with (27)-(29).

1) If u; =5 (mod 8) we have four possibilities for (¢, f):
(i) t =1 (mod 8), t, =5 (mod 8);
(ii) t1 =5 (mod 8), t, =1 (mod 8);
(iii) t; =3 (mod 8), tp =7 (mod 8);
(iv) 1 =7 (mod 8), t, = 3 (mod 8);

all of them violate (29).
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(2) Assume now u; = £1 (mod 8) and x even, hence v5(z) > 2 by Lemma 7. We will shows that v(y) = 1.
Indeed, considering p | (u? +4) and taking (;)4 on (20) one has by using Lemmas 9, 10

x/ - (y—2)/ (&)m' p =1 (mod 8)
()" = (5,5 = (JZ

p

o2 (38)
) , p =5 (mod 8)

as z/2 is even. Let r denote the number of prime divisors p | (u? +4), p = 5 (mod 8). Clearly r is odd,
as u> +4 =5 (mod 8). In a similar way as in (33)-(35), taking the product of (38) over all (not necessarily
distinct) prime divisors p | (4% + 4) we get

— (uzuiél)ﬂz _ (71)r(u2ui4)y/2 _ 7(71)y/2.

Hence y/2 must be odd, so (y — z) /2 is odd. For any prime p | (u? + 4) taking (E) on equation A = t]

(%) =1 (: (%) by Lemma 10) (39)

On the other hand from (35) it follows that there exists a prime pg | (#? + 4) such that (%) =-1,a
0

from (30) now gives us

contradiction with (39). Thus (30) (and hence (20)) is inconsistent.

5. The case u; =5 (mod 8)

In this case by (3) of Lemma 7 we have v5(z) = 1,(x), hence from (19) it follows that uy = w?, where
s = 1p(z — x) — 1p(x). The following lemma can be proved similarly as Lemma 10.

Lemma 11. If (20) is consistent and u; =5 (mod 8), then (%) = (%) for any prime p.

Proof. Indeed, in this case n™ = wk with k, m odd by the above argument, and therefore the conclusion of
Lemma 11. O

Lemma 12. Ifx, z are even and (20) is consistent, then y is odd and u1 = 5 (mod 8). Moreover n admits a decomposition
n = nyny such that ged(nq,np) = 1 and

T e, V. o P
{ 1 2 1 (40)

_ Ly Yz 2, Y-z
(U2 +4)7/2 = wn} = 2% "2p] ",
Proof. By Lemma 8 y is odd. In view of Lemma 7 and Theorem 2 we are in the situation (3) of Lemma 7. Now

one rewrites (20) as
Cy - Dy = 2% uYnY % with ged(Cy, Dy) = 2, 2||Dy,

where
C1= (WP +4)2 —u}/?, Dy = (u® +4)*2 + u}/?.

As 2||D; we obtain either
Cl — 22]/*1”]1/_2’ D1 = Zuyng_z, (41)

or
C1=2%"1n!"%, Dy=2n) 7, (42)

where n = nyny, ged(n1,n2) =1 and

w = wywy, n = wk, nft = wh, (43)
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with k,m odd from Lemma 11. Note that this is not used in the proof here, we label it for convenience in
proving Proposition 1 below.
Clearly (41) is equivalent to (40). It remains to show that (42) can’t happen by rewriting it as

w2 =T 02y
{ 1 2 1 (44)

(u? +4)*/% = n) = + 22 2u¥n %,
which is impossible, since (12 4 4)*/2 < 22/=2yy. [
uy .
Lemma 13. If (7) = 1and uy is a square, then u = 1 (mod 4).

Proof. We have obviously

so the conclusion of the lemma. O

Lemma 14. In the notations of Lemma 11 we have

(1) ifw = £3 (mod 8), then x,z are 0dd, y is even;
(2) ifw = £1 (mod 8), then x,z are even, y is odd.

Proof. For a prime p | (u? + 4) by taking (E) on (20) and using Lemmas 9, 11 one sees that

() - G- (2 w

By taking the product of both sides of (45) over all (not necessarily distinct) prime divisors p | (1% + 4)
and using the reciprocity law we have

x x 2 4\ x X N
p\(grzi) (%) - <u2uqlL4) B (”L: ) B (u%> = (=1% o
. —z 2 —z —z (—1)¥-%, = 43 (mod 8),
p&l}) (%)y - (uziziz;)y - (u ;4)y - (%)y - {1, ZZZE +1 (zzd 8). @)

Hence if w = £3 (mod 8), then by equalizing (46), (47): (—1)* = (—1)Y"%. Thus y must be even, as
12(z) = 12(x). In view of Lemma 8 x, z are odd.

In the case w = £1 (mod 8), again equalizing (46), (47) we see that (—1)* = 1, therefore x is even, and so
is z. By Lemma 8 y must be odd. [

Proposition 1. In the situation of Lemma 14 we have

(1) ifw = £3 (mod 8), then u = 1 (mod 4);
(2) ifw = £1 (mod 8), then u = +3 (mod 8). Moreover, if u = 3 (mod 8), then w can not be a square.

Proof. (1) If w = £3 (mod 8), then x,z are odd in view of Lemma 14. So by taking (H) on (20) one gets
(%) =1, hence u = 1 (mod 4) by Lemma 13.
(2) Inthe case w = 1 (mod 8): x, z are even, y is odd by Lemma 14. There are two subcases to consider.

I. x/2,z/2 are odd. For a prime p | (1% + 4) by taking <E) on Dy = 2u¥n}~ from (41), (43) and using

Lemmas 9, 11 one sees that

-0 -0\, e, @
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Recall that the number of (not necessarily distinct) prime divisors p | (u?> +4), p = 5 (mod 8) is

2
odd,so ] (7) = —1. Now taking the product of both sides of (48) over all (not necessarily
pl+4) P
distinct) prime divisors p | (u? +4) and using the reciprocity law one has

I, () - () - (54 - (2) - ®

pl(u2+4)

G- I, () () () ()

pl(u2+4) p pl(u2+4)

and

Equalizing (49), (50) we get wp, = +1 (mod 8), so in view of (43): n, = +1 (mod 8). From this and
(40) it follows that u = £3 (mod 8). Moreover, if u = 3 (mod 8), then w, = —1 (mod 8), hence by
(43) w can not be a square. .

II. x/2,z/2 are even. If one takes (;) on the second equation of (40), then (f) = 1. Now taking

(;) on the first equation of (40) we get 1 = (_71) (%) Thus u = 1 (mod 4).

The proof of Proposition 1 is completed. [
As for Theorem 3 notice that the case u; = +1 (mod 8) follows from Corollaries 2, 3, 4 and 5. The rest of

Theorem 3, i.e., the case u; = 5 (mod 8), follows from Lemma 14 and Proposition 1.
The equalities for Jacobi symbols are immediate from (20) and Lemma 11.

6. Proof of Corollary 1

In this section we shall apply results of previous parts for establishing the truth of JeSmanowicz’ conjecture
for u < 100 and v = 2. In view of Theorem 3 one has to consider only two cases: u; = 1 (mod 8) and
11 =5 (mod 8).

Observation 1. If u; = 1 (mod 8) and (20) is consistent, then u > 183.

Proof. Indeed, it was noted that x > 3 by (30). On the other hand from the proof of Corollary 3 we have
v2(z) = 1,50z > 6, hence y > 8. From (28) it follows that 2Y*1 | t, — t;, as x is odd. Since t, u, are co-prime
and = 5 (mod 8), so tjup > 5-13. Therefore u > /t1fou; > /(22 +5)-65 > 183. O

Observation 2. If u; = 1 (mod 8) and (20) is consistent, then in fact u > 729.

Proof. By Corollary 5 one knows 4 | y. We claim that y > 12. Assuming on the contrary y = 8, then by the
above z = 6. In view of (27) and [17] we must have x > 3, so x = 5, which gives us a non-trivial solution of
X® + Y5 =273, This is impossible by [18] (Theorem 1.5).

Therefore y > 12, and by the argument above u > /(213 +5) - 65 > 729. O

It remains to consider the case u; = 5 (mod 8). In the range of odd primes < 100 there are ten possibilities
with u?2 —4 = ujuy and up is a square, namely u = 7,11,23,43,47,61,73,79,83,97. In view of Proposition 1 we
shall exclude the possibilities u = 7,23,47,79.

Observation 3. For (u,uq,uy) = (11,13, 32), (43,5 - 41, 32), (83,5-17, 34) we have w = £3 (mod 8), hence u =
1 (mod 4) by Proposition 1, a contradiction. Note that in the original version to eliminate the possibility (83,5 - 17,3%)

and w = 9 we used implicitly the fact that if u = 3 (mod 8), then w can not be a square, which we include a proof in the
revised version (cf. Proposition 1 above). The referee provides another arqument by choosing p =5 | uy which leads also

to a contradiction as follows . .
=)= ()4 ) (D

Observation 4. For (u,uy,us) = (61,7 -59,3%) one has w = 3, so

=(5) (5 =y
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a contradiction with (2.1) of Theorem 3.

Observation 5. For (u,uy,uy) = (73,3 - 71,5%) we have w = 5, hence x, z are odd and y is even by (2.1) of Theorem
3. Taking modulo 73 on (20) one gets
4* = (—6)* (mod 73). (51)

Working in 5, we have
ord(4) =9, ord(—6) = 36. (52)

Therefore from (51), (52) it follows that 36 | 9x, so 4 | x, a contradiction.

Observation 6. For (u,uy,us) = (97,5-11-19,3%) one has w = 3, so

2
= () (55 -

again a contradiction with (2.1) of Theorem 3.
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