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A note on Jeśmanowicz’ conjecture for non-primitive
Pythagorean triples

Van Thien Nguyen1, Viet Kh. Nguyen2 and Pham Hung Quy1,∗

1 Department of Mathematics, Hoa Lac High Tech Park, FPT University, Hanoi, Vietnam.
2 Department of Mathematics and Information Assurance, Hoa Lac High Tech Park, FPT University, Hanoi, Vietnam.
* Correspondence: quyph@fe.edu.vn

Communicated by: Mujahid Abbas
Received: 6 January 2021; Accepted: 2 March 2021; Published: 21 March 2021.

Abstract: Let (a, b, c) be a primitive Pythagorean triple parameterized as a = u2 − v2, b = 2uv, c = u2 + v2,
where u > v > 0 are co-prime and not of the same parity. In 1956, L. Jeśmanowicz conjectured that for any
positive integer n, the Diophantine equation (an)x + (bn)y = (cn)z has only the positive integer solution
(x, y, z) = (2, 2, 2). In this connection we call a positive integer solution (x, y, z) 6= (2, 2, 2) with n > 1
exceptional. In 1999 M.-H. Le gave necessary conditions for the existence of exceptional solutions which
were refined recently by H. Yang and R.-Q. Fu. In this paper we give a unified simple proof of the theorem of
Le-Yang-Fu. Next we give necessary conditions for the existence of exceptional solutions in the case v = 2, u
is an odd prime. As an application we show the truth of the Jeśmanowicz conjecture for all prime values
u < 100.
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1. Introduction

L et (a, b, c) be a primitive Pythagorean triple. Clearly for such a triple with 2 | b one has the following
parameterization

a = u2 − v2, b = 2uv, c = u2 + v2

with
u > v > 0, gcd(u, v) = 1, u + v ≡ 1 (mod 2). (1)

In 1956 L. Jeśmanowicz ([1]) made the following conjecture:

Conjecture 1. For any positive integer n, the Diophantine equation

(an)x + (bn)y = (cn)z (2)

has only the positive integer solution (x, y, z) = (2, 2, 2).

The primitive case of the conjecture (n = 1) was investigated thoroughly. Although the conjecture is still
open, many special cases are shown to be true. We refer to a recent survey [2] for a detailed account.

Much less known about the non-primitive case (n > 1). A positive integer solution (x, y, z, n) of (2) is
called exceptional if (x, y, z) 6= (2, 2, 2) and n > 1. For a positive integer t, let P(t) denote the set of distinct
prime factors of t and P(t)− their product. The first known result in this direction was obtained in 1998 by
M.-J. Deng and G.L. Cohen ([3]), namely if u = v + 1, a is a prime power, and either P(b) | n, or P(n) - b, then
(2) has only positive integer solution (x, y, z) = (2, 2, 2). In 1999, M.-H. Le gave necessary conditions for (2) to
have exceptional solutions.

Theorem 1. [4] If (x, y, z, n) is an exceptional solution of (2), then one of the following three conditions is satisfied:

(i) max{x, y} > min{x, y} > z, P(n) $ P(c);
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(ii) x > z > y, P(n) ⊂ P(b);
(iii) y > z > x, P(n) ⊂ P(a).

However, as noted in [5] by H. Yang and R.-Q. Fu, the case x = y > z is not completely handled by the
arguments used in [4]. Furthermore they completed the unhandled case ([5], Theorem 1) based on a powerful
result of Zsigmondy ([6], cf. [7,8]). In fact one can give a unified simple proof of Theorem of Le-Yang-Fu
(Theorem 1) by using a weaker version of the Zsigmondy theorem as stated in Lemma 3 of [3].

Since many works [3,4] intensively investigated the first interesting family of primitive triples:

v = 1, u = 2k, k = 1, 2, . . . . (3)

Most recently, X.-W. Zhang and W.-P. Zhang [9], and T. Miyazaki [10] independently proved Conjecture 1
for the (infinite) family (3).

It is natural to treat the next interesting case: v = 2, u is an odd prime which was known recently for few
values u: u = 3 ([3]), u = 5 – by Z. Cheng, C.-F. Sun and X.-N. Du, u = 7 – by C.-F. Sun, Z. Cheng, and by G.
Tang, u = 11 – by W.-Y. Lu, L. Gao and H.-F. Hao (cf. [2] for references). Let’s formulate our main results. We
rewrite (2) as

[(u2 − 4)n]x + (4un)y = [(u2 + 4)n]z. (4)

An arithmetical argument (given in Lemma 7 below) shows that u2 − 4 admits a proper decomposition
u2 − 4 = u1u2, gcd(u1, u2) = 1, so that there are three possibilities to consider: u1 ≡ ±1, 5 (mod 8).

Theorem 2. If (x, y, z, n) is an exceptional solution of (4) and u1 ≡ ±1 (mod 8), then y is even.

In view of Theorem 2 the possibility u1 ≡ −1 (mod 8) is eliminated, because in this case x, y, z are even,
which is in general impossible by an auxiliary argument (Lemma 8 below).

Let νq(t), for a prime q, denote the exponent of q in the prime factorization of t, and let
(

m

)
denote the

Jacobi quadratic residue symbol.

Theorem 3. If (x, y, z, n) is an exceptional solution of (4), then one of the following cases is satisfied

(1) ν2(u1− 1) = 3: (ν2(x), ν2(y), ν2(z)) = (0,≥ 2, 1); u1 admits a proper decomposition u1 = t1t2, gcd(t1, t2) = 1
and t1, t2 ≡ 5 (mod 8) satisfying certain special Diophantine equations;

(2) u1 ≡ 5 (mod 8), u2 = w2s
, where s = ν2(z− x)− ν2(x) and either of the following

(2.1) w ≡ ±3 (mod 8): (ν2(x), ν2(y), ν2(z)) = (0,≥ 1, 0); u ≡ 1 (mod 4);
(u1

p

)
=
(w

p

)
, ∀ p | (u2 + 4) and(w

p

)
=
(u2 + 4

p

)
, ∀ p | u1;

(2.2) w ≡ ±1 (mod 8): (ν2(x), ν2(y), ν2(z)) = (β, 0, β), β ≥ 1; u ≡ ±3 (mod 8);
(w

p

)
= 1, ∀ p | (u2 + 4)

and
(w

p

)
=
(u

p

)
, ∀ p | u1. Moreover, if u ≡ 3 (mod 8), then w can not be a square.

Corollary 1. Conjecture 1 is true for v = 2, u – an odd prime < 100.

Let’s explain the ideas in proving our main results. As for Theorem 2 and Theorem 3 we exploit a
total analysis of Jacobi quadratic and quartic residues. In the case u1 ≡ 1 (mod 8) we have a further
proper decomposition u1 = t1t2, which leads to certain special Diophantine equations. Theorem 3 helps
us substantially in reducing the verification process, as the possibility u1 ≡ 5 (mod 8) occurs quite sparsely.
We demonstrate this for u < 100 in proving Corollary 1.

The paper is organized as follows. In Section 2 we give a unified simple proof of Theorem 1. Section 3
provides some reduction of the problem and preliminary results. Theorem 2 will be proved in Section 4. The
case u1 ≡ 5 (mod 8) and Theorem 3 will be treated in Section 5. The verification for u < 100 in Corollary 1 will
be given in the last Section 6.

2. A Simple Proof of Theorem 1

We shall use the following weaker version of Zsigmondy’s theorem.
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Lemma 1. (cf. [3], Lemma 3) For X > Y > 0 co-prime integers,

(1) if q is a prime, then

gcd
(
X−Y,

Xq −Yq

X−Y
)
= 1, or q;

(2) if q is an odd prime, then

gcd
(
X + Y,

Xq + Yq

X + Y
)
= 1, or q.

Proof. Part (2) is Lemma 3 of [3]. As for part (1) one argues similarly: if `r is a common prime power divisor
of X−Y and (Xq −Yq)/(X−Y). Clearly

Xq −Yq

X−Y
≡ 0 (mod `r). (5)

On the other hand from the fact that X ≡ Y (mod `r) it follows

Xq −Yq

X−Y
= Xq−1 + Xq−2Y + · · ·+ XYq−2 + Yq−1 ≡ qYq−1 (mod `r). (6)

Since ` - Y, (5)-(6) imply that ` = q, and r = 1.

Remark 1. Part (1) of Lemma 1 is a special case of Theorem IV in [7].

Lemma 2. For a prime divisor q of (X−Y) and positive integer β

νq(Xqβ −Yqβ
) = β + νq(X−Y). (7)

Proof. Applying part (1) of Lemma 1 β times one has

gcd
(
Xqβ−1 −Yqβ−1

,
Xqβ −Yqβ

Xqβ−1 −Yqβ−1

)
= q;

· · ·

gcd
(
X−Y,

Xq −Yq

X−Y
)
= q.

Hence the formula (7).

In view of Lemma 2 of [3] there are no exceptional solutions with z ≥ max{x, y}, so as in [4] we have to
eliminate the following three cases:

(I) x > y = z;
(II) y > x = z;

(III) x = y > z.

(I) x > y = z: Dividing both sides of (2) by ny one gets

axnx−y = cy − by. (8)

By considering mod c + b, and taking into account (c + b)(c− b) = a2, one sees that y must be even, say
y = 2y1. Now put X = c2, Y = b2, so X ≡ Y(mod a2), gcd(Y, a) = 1. Taking mod a and in view of (8)

0 ≡ Xy1 −Yy1

X−Y
= Xy1−1 + Xy1−2Y + · · ·+ XYy1−2 + Yy1−1 ≡ y1Yy1−1 (mod a),

one concludes that a | y1.

For any q ∈ P(a) let β = νq(y1), so that y1 = qβy2 with q - y2. Putting U = Xqβ
, V = Yqβ

for short, we
have

Xy1 −Yy1 = (U −V)(Uy2−1 + Uy2−2V + · · ·+ UVy2−2 + Vy2−1), (9)
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and
Uy2−1 + Uy2−2V + · · ·+ UVy2−2 + Vy2−1 ≡ y2Vy2−1 6≡ 0 (mod q). (10)

Lemma 2 and (9), (10) imply that

νq(Xy1 −Yy1) = νq(U −V) = β + 2νq(a). (11)

In view of (8) the equality (11) means that ax−2 | y1 in contradiction with y1 = y/2 < ax−2 as x > y, a > 1.
(II) y > x = z: Similarly dividing both sides of (2) by nz one gets

byny−x = cx − ax. (12)

Arguing as above with mod c + a, one sees that x must be even, say x = 2x1. Put X = c2, Y = a2.
Considering mod b and from (12) it follows that b | x1. So νq(Xx1 − Yx1) = νq(x1) + 2νq(b) for any
q ∈ P(b), therefore by−2 | x1 in contradiction with x1 = x/2 < by−2 as y > x, b > 1.

(III) x = y > z: Dividing both sides of (2) by nz one gets

(ax + bx)nx−z = cz. (13)

First we claim that x must be even. Indeed, if x is odd, then from (13) it follows that there is an odd prime
q ∈ P(a + b) ∩ P(c), so q ∈ P(ab), as c2 = a2 + b2. A contradiction with gcd(a, b) = 1.

Writing now x = 2x1 one sees that x1 must be odd. Since otherwise for an odd prime q ∈ P(ax + bx)∩P(c)
taking mod q and by (13)

0 ≡ ax + bx = a2x1 + (c2 − a2)x1 ≡ 2a2x1 (mod q),

one gets a contradiction with gcd(a, c) = 1.

Now from (13) we see that
(a2)x1 + (b2)x1

a2 + b2 =
cz−2

nx−z > 1. (14)

as x > z ≥ 2. So there is an odd prime q ∈ P(c) dividing ((a2)x1 + (b2)x1)/(a2 + b2). Considering mod q
and taking into account a2 ≡ −b2 mod q, q - a one has

0 ≡ (a2)x1 + (b2)x1

a2 + b2 = (a2)x1−1 − (a2)x1−2b2 + · · · − a2(b2)x1−2 + (b2)x1−1 ≡ x1a2x1−2 (mod q).

Hence q | x1, and so ((a2)q + (b2)q) | ((a2)x1 + (b2)x1). Applying part (1) of Lemma 1 we get

gcd
(
a2 + b2,

(a2)q + (b2)q

a2 + b2

)
= q. (15)

On the other hand from (14) one knows that ((a2)q + (b2)q)/(a2 + b2) is a product of primes in P(c).
It is easy to see that ((a2)q + (b2)q)/(a2 + b2) > q. So either νq

(
((a2)q + (b2)q)/(a2 + b2)

)
≥ 2 and

νq(a2 + b2) ≥ 2, or both of them must have another common prime factor in P(c), a contradiction with
(15).

3. Preliminary reduction

We need some reduction of the problem. The following result is due to N. Terai [11].

Lemma 3. Conjecture 1 is true for n = 1, v = 2.

Because of Lemma 3 we will assume henceforth n > 1.
M.-J. Deng ([12], from the proof of Lemma 2), and H. Yang, R.-Q. Fu ([5]) showed that we can remove the

condition (i) in Theorem 1.

Lemma 4. If (x, y, z, n) is an exceptional solution, then either x > z > y, or y > z > x.



Open J. Math. Sci. 2021, 5, 115-127 119

Note that the proof of Lemma 4 relies essentially on the condition n > 1. It could be interesting to find a
proof of this result for the case n = 1.

Furthermore, in the case when u is an odd prime and v = 2, H. Yang, R.-Q. Fu [13] succeeded to eliminate
the possibility (ii) in Theorem 1.

Lemma 5. Suppose that u is an odd prime and v = 2. Then equation (2) has no exceptional solutions (x, y, z, n) with
x > z > y.

Lemma 6. For a positive integer w

(1) if ν2(w) ≥ 2, then ν2[(1 + w)x − 1] = ν2(w) + ν2(x);
(2) if ν2(w) = 1 and x is odd, then ν2[(1 + w)x − 1] = 1;
(3) if ν2(w) = 1 and x is even, then ν2[(1 + w)x − 1] = ν2(2 + w) + ν2(x).

In particular ν2[(1 + w)x − 1] = 2 + ν2(x), if w ≡ 4 (mod 8); or if w ≡ 2 (mod 8) and x is even.

Proof. (1) The conclusions of Lemma 6 are true trivially for x = 1. Assuming now x ≥ 2 we have

(1 + w)x − 1 = w(C1
x + C2

xw + · · ·+ Cx−1
x wx−2 + Cx

x wx−1). (16)

Clearly ν2(j) ≤ j− 1 for j = 2, · · · , x, and so

ν2(C
j
xwj−1) = ν2

( x
j

Cj−1
x−1wj−1

)
≥ ν2(x) + j− 1 > ν2(x),

as ν2(w) ≥ 2. Hence the conclusion follows from taking ν2(·) on both sides of (16).
(2) Obvious from (16), since C1

x + C2
xw + · · ·+ Cx−1

x wx−2 + Cx
x wx−1 is odd in this case.

(3) Writing x = 2x1 we have

(1 + w)x − 1 = [(1 + w)x1 − 1][(1 + w)x1 + 1]. (17)

If x1 is odd, i.e., ν2(x) = 1, then ν2[(1 + w)x1 − 1] = 1 by the part (2) above, and ν2[(1 + w)x1 + 1] =
ν2(2 + w), as

(1 + w)x1 + 1 = (2 + w)[(1 + w)x1−1 − (1 + w)x1−2 + · · · − (1 + w) + 1]

and (1 + w)x1−1 − (1 + w)x1−2 + · · · − (1 + w) + 1 is odd.

If x1 is even, then ν2[(1 + w)x1 + 1] = 1, since

(1 + w)x1 + 1 = 2 + C1
x1

w + C2
x1

w2 + · · ·+ Cx1−1
x1 wx1−1 + wx1 .

Therefore ν2[(1 + w)x − 1] = ν2[(1 + w)x1 − 1] + 1 by (17). Now the descending argument yields the
conclusion.

The following claims play a central role in the next sections.

Lemma 7. If (x, y, z, n) is an exceptional solution of (4), then u2 − 4 admits a proper decomposition u2 − 4 =

u1u2, gcd(u1, u2) = 1 and with one of the following conditions satisfied:

(1) u1 ≡ 1 (mod 8) and ν2(z) = ν2(u1 − 1) + ν2(x)− 2;
(2) u1 ≡ 7 (mod 8), ν2(z) = ν2(u1 + 1) + ν2(x)− 2, and ν2(x) ≥ 1;
(3) u1 ≡ 5 (mod 8), u2 is a square and and ν2(z) = ν2(x).

Proof. In view of Lemmas 4, 5 we may assume the existence of an exceptional solution with y > z > x (the
case (iii) of Theorem 1). Dividing both sides of (4) by nx one gets

(u2 − 4)x = [(u2 + 4)z − (4u)yny−z]nz−x. (18)



Open J. Math. Sci. 2021, 5, 115-127 120

It is easy to see that gcd(u2 + 4, n) = 1. So (18) is equivalent to the following system{
(u2 + 4)z − (4u)yny−z = ux

1

nz−x = ux
2

(19)

with u2 − 4 = u1u2, gcd(u1, u2) = 1. The system (19) can be rewritten as

(u2 + 4)z − 22yuyny−z = ux
1 , (20)

or equivalently
[(u2 + 4)z − 1]− (ux

1 − 1) = 22yuyny−z, (21)

with k(z− x) = mx, and nm = uk
2.

Clearly u2 > 1. Assume now u1 = 1. As u2 ≡ 1 (mod 8), by comparing ν2(·) both sides of (20) and by (1)
of Lemma 6 we have ν2[(u2 + 4)z − 1] = 2 + ν2(z) < 2y. So (21) is inconsistent. So u1 > 1 and

ν2(z) = ν2(ux
1 − 1)− 2. (22)

If u1 ≡ 1 mod 8, then by (1) of Lemma 6 we get ν2(z) = ν2(u1 − 1) + ν2(x)− 2.
If u1 ≡ 7 mod 8 and x is odd, then by (2) of Lemma 6: ν2(ux

1 − 1) = 1, impossible by (22). Thus (21) is
inconsistent.

If u1 ≡ 7 mod 8 and x is even, then by (3) of Lemma 6: ν2(ux
1 − 1) = ν2(u1 + 1) + ν2(x). Hence by (22) one

gets ν2(z) = ν2(u1 + 1) + ν2(x)− 2.
For u1 ≡ 3 mod 8, we have ν2(ux

1 − 1) = 1, if x is odd (by (2) of Lemma 6), and ν2(ux
1 − 1) = 2 + ν2(x), if

x is even (by (3) of Lemma 6). Hence for (20) to be consistent one has necessarily ν2(z) = ν2(x), which implies
ν2(z− x) ≥ ν2(x) + 1. So from the second equation of (19): nz−x = ux

2 it follows that u2 must be a square, hence
u2 ≡ 1 mod 8. Thus u1u2 ≡ 3 mod 8, a contradiction with u1u2 = u2 − 4 ≡ 5 mod 8.

Similarly, for u1 ≡ 5 mod 8, by using (1) of Lemma 6 we have ν2(ux
1 − 1) = 2 + ν2(x), and by the same

reason ν2(z) = ν2(x). Hence the system (19) is inconsistent, if u2 is not a square.

Lemma 8. In the notations above if x, y, z are even, then (20) is inconsistent.

Proof. In this case we can rewrite (20) in the form of Pythagorian equation(
ux/2

1
)2

+
[
2yuy/2n(y−z)/2]2 =

[
(u2 + 4)z/2]2.

Hence (cf. (1)) there are integers X, Y, say with 2 | Y such that

(u2 + 4)z/2 = X2 + Y2, (23)

2yuy/2n(y−z)/2 = 2XY. (24)

In view of Lemma 2.2 of [9], Equation (23) has solutions

u2 + 4 = A2 + B2, 2 | B, (25)

ν2(Y) = ν(z/2) + ν2(B). (26)

Since u2 + 4 ≡ 5 mod 8 it follows from (25) that ν2(B) = 1. From (24) we have ν2(Y) = y − 1 which
together with (26) implies

y = ν2(z) + 1,

a contradiction with y > z.

Corollary 2. In the notations above if y, z are even and (20) is consistent, then x is odd and u1 ≡ 1 (mod 8). Moreover
u1 admits a proper decomposition u1 = t1t2 such that gcd(t1, t2) = 1 and

tx
2 + tx

1 = 2(u2 + 4)z/2, (27)
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tx
2 − tx

1 = 2y+1uy/2n(y−z)/2, (28)

ν2(tx
1 − 1) = ν2(tx

2 − 1) = ν2(ux
1 − 1)− 1. (29)

Proof. By Lemma 8 x is odd. In fact one can rewrite (20) as

A · B = ux
1 with gcd(A, B) = 1,

where
A = (u2 + 4)z/2 − 2yuy/2n(y−z)/2, B = (u2 + 4)z/2 + 2yuy/2n(y−z)/2.

Hence
A = tx

1 , B = tx
2 with u1 = t1t2 and gcd(t1, t2) = 1. (30)

If t1 = 1, then by (1) of Lemma 6: ν2[(u2 + 4)z/2 − 1] = 2 + ν2(z/2) < y = ν2(2yuy/2n(y−z)/2). So A = 1
is impossible.

Now from (30) we have two possibilities:

(1) z/2 is odd: t1 ≡ t2 ≡ 5 (mod 8);
(2) z/2 is even: t1 ≡ t2 ≡ 1 (mod 8);

both of them imply u1 ≡ 1 (mod 8).
Also (27)-(29) follow immediately from (30).

Corollary 3. In the situation of Corollary 2 we have t1, t2 ≡ 5 (mod 8) and ν2(u1 − 1) = 3.

Proof. We will show that z/2 must be odd, from which the conclusion immediately follows by the proof above,
noting that ν2(u1 − 1) = ν2(ux

1 − 1) = ν2(A− 1) + 1 = 3.
Assume on the contrary that ν2(z) ≥ 2. In view of (30) one has x ≥ 3, as t1 < t2 < u2 − 4. We claim that

x > 3. Indeed, if x = 3, then n = u3
2 by (19), noting that z = 4 by B = tx

2 of (30), so y = 6 as A = tx
1 > 0. Now

from the equation tx
1 = A in (30) we see that (t1, 4uu2, u2 + 4) is a primitive solution of

X3 + Y3 = Z2. (31)

Euler ([14], pp. 578–579) indicated a primitive parameterization for the Diophantine Equation (31) with
3 - Z, 2 | Y as follows

X = (s− t)(3s− t)(3s2 + t2), Y = 4st(3s2 − 3st + t2),

with s, t co-prime, 3 - t and s 6≡ t (mod 2). Hence 8 | Y which shows that tx
1 = A in (30) is impossible.

Furthermore, if x ≥ 4, then by Theorem 1.1 of [15], (27) is again impossible.

4. Proof of Theorem 2

The aim of this section is to show that the case u1 ≡ 7 (mod 8) in Lemma 7 is not realized. We refer the

reader to [16] for basic properties of Jacobi quadratic and quartic residue symbols
(

m

)
,
(

m

)
4

we shall use in

the following lemmas.

Lemma 9. For a prime p | (u2 + 4) one has p ≡ 1 (mod 4) and
(u

p

)
= 1.

Proof. Since u2 ≡ −4 (mod p), so
(−1

p

)
= 1, i.e., p ≡ 1 (mod 4). Furthermore we include the following

simple argument due to the referee instead of ours in the original version:

(u
p

)
=
(4u

p

)
=
(4u + u2 + 4

p

)
=
( (u + 2)2

p

)
= 1.

Lemma 10. If (20) is consistent and u1 ≡ ±1 (mod 8), then
(n

p

)
=
(u2

p

)
for any prime p.
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Proof. Indeed, in this case by Lemma 7 ν2(z) > ν2(x). Hence ν2(z− x) = ν2(x), so we have in (21) nm = uk
2

with k, m odd, and therefore the conclusion of Lemma 10.

We are ready now to prove Theorem 2. Let p | (u2 + 4). By taking
(

p

)
on (20) and using Lemmas 9, 10

one sees that (u1

p

)x
=
(n

p

)y−z
=
(u2

p

)y−z
=
(u2

p

)y
, (32)

(as z is even). Now taking the product of (32) over all (not necessarily distinct) prime divisors p | (u2 + 4) we
have ( u1

u2 + 4

)x
= ∏

p|(u2+4)

(u1

p

)x
= ∏

p|(u2+4)

(u2

p

)y
=
( u2

u2 + 4

)y
. (33)

By the quadratic reciprocity law

( u1

u2 + 4

)
=
(u2 + 4

u1

)
=
( 2

u1

)
= 1, (34)( u2

u2 + 4

)
=
(u2 + 4

u2

)
=
( 2

u2

)
= −1, (35)

as u1 ≡ ±1 (mod 8), u2 ≡ ±5 (mod 8). Altogether (33)-(35) imply that
(u2

p

)y
= (−1)y = 1, i.e., y must be

even.

Corollary 4. The possibility u1 ≡ 7 (mod 8) in Lemma 7 is not realized.

Proof. Indeed, in this case ν2(z) > ν2(x) ≥ 1, so (20) is inconsistent by Lemma 8.

Corollary 5. In the case u1 ≡ 1 (mod 8) of Lemma 7 we have

(ν2(x), ν2(y), ν2(z)) = (0,≥ 2, 1).

Proof. By Lemma 7 and Theorem 2: y, z are even, hence x is odd by Lemma 8. From the proof of Corollary 3 it

follows that ν2(z) = 1. For a prime p | (u2 + 4) by taking
(

p

)
on A = tx

1 of (30) and using Lemma 9 one gets

( t1

p

)
=
(n

p

)(y−z)/2
. (36)

By the same reason of (35) we have
( t1

u2 + 4

)
= −1, as t1 ≡ 5 (mod 8) by Corollary 3. Hence there exists

a prime p0 | (u2 + 4) such that ( t1

p0

)
= −1. (37)

From (36), (37) one concludes that (y− z)/2 must be odd (and
( n

p0

)
= −1), so the conclusion of Corollary

5 follows.

Remark 2. One can have another proof of Lemma 8 as shown in several steps below. Assuming y, z even, and
arguing as in the proof of Corollary 2 one gets Equation (30) together with (27)-(29).

1) If u1 ≡ 5 (mod 8) we have four possibilities for (t1, t2):

(i) t1 ≡ 1 (mod 8), t2 ≡ 5 (mod 8);
(ii) t1 ≡ 5 (mod 8), t2 ≡ 1 (mod 8);

(iii) t1 ≡ 3 (mod 8), t2 ≡ 7 (mod 8);
(iv) t1 ≡ 7 (mod 8), t2 ≡ 3 (mod 8);

all of them violate (29).
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(2) Assume now u1 ≡ ±1 (mod 8) and x even, hence ν2(z) ≥ 2 by Lemma 7. We will shows that ν2(y) = 1.

Indeed, considering p | (u2 + 4) and taking
(

p

)
4

on (20) one has by using Lemmas 9, 10

(u1

p

)x/2
=
(−1

p

)
4

(n
p

)(y−z)/2
=


(u2

p

)y/2
, p ≡ 1 (mod 8)

−
(u2

p

)y/2
, p ≡ 5 (mod 8)

(38)

as z/2 is even. Let r denote the number of prime divisors p | (u2 + 4), p ≡ 5 (mod 8). Clearly r is odd,
as u2 + 4 ≡ 5 (mod 8). In a similar way as in (33)-(35), taking the product of (38) over all (not necessarily
distinct) prime divisors p | (u2 + 4) we get

1 =
( u1

u2 + 4

)x/2
= (−1)r

( u2

u2 + 4

)y/2
= −(−1)y/2.

Hence y/2 must be odd, so (y− z)/2 is odd. For any prime p | (u2 + 4) taking
(

p

)
on equation A = tx

1

from (30) now gives us (n
p

)
= 1

(
=
(u2

p

)
by Lemma 10

)
(39)

On the other hand from (35) it follows that there exists a prime p0 | (u2 + 4) such that
(u2

p0

)
= −1, a

contradiction with (39). Thus (30) (and hence (20)) is inconsistent.

5. The case u1 ≡ 5 (mod 8)

In this case by (3) of Lemma 7 we have ν2(z) = ν2(x), hence from (19) it follows that u2 = w2s
, where

s = ν2(z− x)− ν2(x). The following lemma can be proved similarly as Lemma 10.

Lemma 11. If (20) is consistent and u1 ≡ 5 (mod 8), then
(n

p

)
=
(w

p

)
for any prime p.

Proof. Indeed, in this case nm = wk with k, m odd by the above argument, and therefore the conclusion of
Lemma 11.

Lemma 12. If x, z are even and (20) is consistent, then y is odd and u1 ≡ 5 (mod 8). Moreover n admits a decomposition
n = n1n2 such that gcd(n1, n2) = 1 and{

ux/2
1 = uyny−z

2 − 22y−2ny−z
1 ;

(u2 + 4)z/2 = uyny−z
2 + 22y−2ny−z

1 .
(40)

Proof. By Lemma 8 y is odd. In view of Lemma 7 and Theorem 2 we are in the situation (3) of Lemma 7. Now
one rewrites (20) as

C1 · D1 = 22yuyny−z with gcd(C1, D1) = 2, 2‖D1,

where
C1 = (u2 + 4)z/2 − ux/2

1 , D1 = (u2 + 4)z/2 + ux/2
1 .

As 2‖D1 we obtain either
C1 = 22y−1ny−z

1 , D1 = 2uyny−z
2 , (41)

or
C1 = 22y−1uyny−z

1 , D1 = 2ny−z
2 , (42)

where n = n1n2, gcd(n1, n2) = 1 and

w = w1w2, nm
1 = wk

1, nm
2 = wk

2, (43)
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with k, m odd from Lemma 11. Note that this is not used in the proof here, we label it for convenience in
proving Proposition 1 below.

Clearly (41) is equivalent to (40). It remains to show that (42) can’t happen by rewriting it as{
ux/2

1 = ny−z
2 − 22y−2uyny−z

1 ,

(u2 + 4)z/2 = ny−z
2 + 22y−2uyny−z

1 ,
(44)

which is impossible, since (u2 + 4)z/2 < 22y−2uy.

Lemma 13. If
(u1

u

)
= 1 and u2 is a square, then u ≡ 1 (mod 4).

Proof. We have obviously

1 =
(u1

u

)
=
(u1u2

u

)
=
(u2 − 4

u

)
=
(−1

u

)
,

so the conclusion of the lemma.

Lemma 14. In the notations of Lemma 11 we have

(1) if w ≡ ±3 (mod 8), then x, z are odd, y is even;
(2) if w ≡ ±1 (mod 8), then x, z are even, y is odd.

Proof. For a prime p | (u2 + 4) by taking
(

p

)
on (20) and using Lemmas 9, 11 one sees that

(u1

p

)x
=
(n

p

)y−z
=
(w

p

)y−z
. (45)

By taking the product of both sides of (45) over all (not necessarily distinct) prime divisors p | (u2 + 4)
and using the reciprocity law we have

∏
p|(u2+4)

(u1

p

)x
=
( u1

u2 + 4

)x
=
(u2 + 4

u1

)x
=
( 2

u1

)x
= (−1)x, (46)

∏
p|(u2+4)

(w
p

)y−z
=
( w

u2 + 4

)y−z
=
(u2 + 4

w

)y−z
=
( 2

w

)y−z
=

{
(−1)y−z, w ≡ ±3 (mod 8),

1, w ≡ ±1 (mod 8).
(47)

Hence if w ≡ ±3 (mod 8), then by equalizing (46), (47): (−1)x = (−1)y−z. Thus y must be even, as
ν2(z) = ν2(x). In view of Lemma 8 x, z are odd.

In the case w ≡ ±1 (mod 8), again equalizing (46), (47) we see that (−1)x = 1, therefore x is even, and so
is z. By Lemma 8 y must be odd.

Proposition 1. In the situation of Lemma 14 we have

(1) if w ≡ ±3 (mod 8), then u ≡ 1 (mod 4);
(2) if w ≡ ±1 (mod 8), then u ≡ ±3 (mod 8). Moreover, if u ≡ 3 (mod 8), then w can not be a square.

Proof. (1) If w ≡ ±3 (mod 8), then x, z are odd in view of Lemma 14. So by taking
(

u

)
on (20) one gets(u1

u

)
= 1, hence u ≡ 1 (mod 4) by Lemma 13.

(2) In the case w ≡ ±1 (mod 8): x, z are even, y is odd by Lemma 14. There are two subcases to consider.

I. x/2, z/2 are odd. For a prime p | (u2 + 4) by taking
(

p

)
on D1 = 2uyny−z

2 from (41), (43) and using

Lemmas 9, 11 one sees that

(u1

p

)
=
( 2

p

)(n2

p

)
=
( 2

p

)(w2

p

)
=


(w2

p

)
, p ≡ 1 (mod 8),

−
(w2

p

)
, p ≡ 5 (mod 8).

(48)
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Recall that the number of (not necessarily distinct) prime divisors p | (u2 + 4), p ≡ 5 (mod 8) is

odd, so ∏
p|(u2+4)

( 2
p

)
= −1. Now taking the product of both sides of (48) over all (not necessarily

distinct) prime divisors p | (u2 + 4) and using the reciprocity law one has

∏
p|(u2+4)

(u1

p

)
=
( u1

u2 + 4

)
=
(u2 + 4

u1

)
=
( 2

u1

)
= −1, (49)

and

∏
p|(u2+4)

( 2
p

)(w2

p

)
= − ∏

p|(u2+4)

(w2

p

)
= −

( w2

u2 + 4

)
= −

(u2 + 4
w2

)
= −

( 2
w2

)
. (50)

Equalizing (49), (50) we get w2 ≡ ±1 (mod 8), so in view of (43): n2 ≡ ±1 (mod 8). From this and
(40) it follows that u ≡ ±3 (mod 8). Moreover, if u ≡ 3 (mod 8), then w2 ≡ −1 (mod 8), hence by
(43) w can not be a square.

II. x/2, z/2 are even. If one takes
(

u

)
on the second equation of (40), then

(n1

u

)
= 1. Now taking(

u

)
on the first equation of (40) we get 1 =

(−1
u

)(n1

u

)
. Thus u ≡ 1 (mod 4).

The proof of Proposition 1 is completed.

As for Theorem 3 notice that the case u1 ≡ ±1 (mod 8) follows from Corollaries 2, 3, 4 and 5. The rest of
Theorem 3, i.e., the case u1 ≡ 5 (mod 8), follows from Lemma 14 and Proposition 1.

The equalities for Jacobi symbols are immediate from (20) and Lemma 11.

6. Proof of Corollary 1

In this section we shall apply results of previous parts for establishing the truth of Jeśmanowicz’ conjecture
for u < 100 and v = 2. In view of Theorem 3 one has to consider only two cases: u1 ≡ 1 (mod 8) and
u1 ≡ 5 (mod 8).

Observation 1. If u1 ≡ 1 (mod 8) and (20) is consistent, then u > 183.

Proof. Indeed, it was noted that x ≥ 3 by (30). On the other hand from the proof of Corollary 3 we have
ν2(z) = 1, so z ≥ 6, hence y ≥ 8. From (28) it follows that 2y+1 | t2 − t1, as x is odd. Since t1, u2 are co-prime
and ≡ 5 (mod 8), so t1u2 ≥ 5 · 13. Therefore u >

√
t1t2u2 ≥

√
(29 + 5) · 65 > 183.

Observation 2. If u1 ≡ 1 (mod 8) and (20) is consistent, then in fact u > 729.

Proof. By Corollary 5 one knows 4 | y. We claim that y ≥ 12. Assuming on the contrary y = 8, then by the
above z = 6. In view of (27) and [17] we must have x > 3, so x = 5, which gives us a non-trivial solution of
X5 + Y5 = 2Z3. This is impossible by [18] (Theorem 1.5).

Therefore y ≥ 12, and by the argument above u >
√
(213 + 5) · 65 > 729.

It remains to consider the case u1 ≡ 5 (mod 8). In the range of odd primes < 100 there are ten possibilities
with u2 − 4 = u1u2 and u2 is a square, namely u = 7, 11, 23, 43, 47, 61, 73, 79, 83, 97. In view of Proposition 1 we
shall exclude the possibilities u = 7, 23, 47, 79.

Observation 3. For (u, u1, u2) = (11, 13, 32), (43, 5 · 41, 32), (83, 5 · 17, 34) we have w ≡ ±3 (mod 8), hence u ≡
1 (mod 4) by Proposition 1, a contradiction. Note that in the original version to eliminate the possibility (83, 5 · 17, 34)

and w = 9 we used implicitly the fact that if u ≡ 3 (mod 8), then w can not be a square, which we include a proof in the
revised version (cf. Proposition 1 above). The referee provides another argument by choosing p = 5 | u1 which leads also
to a contradiction as follows

1 =
(9

5

)
=
(w

p

)
6=
(u

p

)
=
(83

5

)
= −1.

Observation 4. For (u, u1, u2) = (61, 7 · 59, 32) one has w = 3, so

−1 =
(w

7

)
6=
(u2 + 4

7

)
= 1,
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a contradiction with (2.1) of Theorem 3.

Observation 5. For (u, u1, u2) = (73, 3 · 71, 52) we have w = 5, hence x, z are odd and y is even by (2.1) of Theorem
3. Taking modulo 73 on (20) one gets

4z ≡ (−6)x (mod 73). (51)

Working in F∗73 we have
ord(4) = 9, ord(−6) = 36. (52)

Therefore from (51), (52) it follows that 36 | 9x, so 4 | x, a contradiction.

Observation 6. For (u, u1, u2) = (97, 5 · 11 · 19, 32) one has w = 3, so

1 =
( w

11

)
6=
(u2 + 4

11

)
= −1,

again a contradiction with (2.1) of Theorem 3.
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[1] Jeśmanowicz, L. (1955). Several remarks on Pythagorean numbers. Wiadom. Mat, 1(2), 196-202, (in Polish).
[2] Le, M.-H., Scott, R., & Styer, R. (2019). A survey on the ternary purely exponential Diophantine equation ax + by = cz.

Surveys in Mathematics & its Applications, 14, 109–140.
[3] Deng, M.-J., & Cohen, G. L. (1998). On the conjecture of Jeśmanowicz concerning Pythagorean triples. Bulletin of the
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[5] Yang, H., & Fu, R. (2015). A note on Jeśmanowicz’ conjecture concerning primitive Pythagorean triples. Journal of

Number Theory, 156(1), 183-194.
[6] Zsigmondy, K. (1892). Zur theorie der potenzreste. Monatshefte für Mathematik und Physik, 3(1), 265-284.
[7] Birkhoff, G. D., & Vandiver, H. S. (1904). On the integral divisors of an − bn. Annals of Mathematics, 5(4), 173-180.
[8] Carmichael, R. D. (1913). On the numerical factors of the arithmetic forms αn ± βn. The Annals of Mathematics, 15(2),

30–70.
[9] X.-W. Zhang, W.-P. Zhang, The exponential diophantine equation ((22m − 1)n)x + (2m+1n)y = ((22m + 1)n)z, Bull. Math.

Soc. Math. Roum., Nouv. Sér., 57:3 (2014), 337–344.
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