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Abstract

Rossby waves are generally expected to dominate the β plane dynamics in geo-
physics, and here in this paper we give a number theoretical observation of the
resonant interaction with a Diophantine equation. The set of resonant frequencies
does not have any frequency on the horizontal axis. We also give several clusters of
resonant frequencies.
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1 Introduction

We consider three-wave interactions of the Rossby waves in a number theoret-
ical approach. Such waves are observed in an incompressible two-dimensional
flow on a β plane (in geophysics). The β-plane approximation was first in-
troduced by meteorologists (see [1,2]) as a tangent plane of a sphere to ap-
proximately describe fluid motion on a rotating sphere, assuming that the
Colioris parameter is a linear function of the latitude. A formal derivation
of the β-plane approximation is given in [5]. It has been known that in the
incompressible two-dimensional flow on a β plane, as time goes on, a zonal
pattern emerges, consisting of alternating eastward and westward zonal flows,
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similar to the zonal band structure observed on Jupiter. From a physical point
of view, one of the most important properties of the flow on a β plane linear
waves called “Rossby waves”. The Rossby waves originate from the following
dispersion relation (see [7] for example),

ω = − βk1
k2
1 + k2

2

, (1)

where ω and (k1, k2) are the angular frequency and the wavenumber vector.
The Rossby waves have been considered to play important roles in the dy-
namics of geophysical fluids (see [6] for example). In [7], they proved a mathe-
matical rigorous theorem which supports the importance of the resonant pairs
of Rossby waves. However, none of studies tried to consider such resonant
waves in number theoretical approach, and in this paper we attempt to con-
sider it in an elementary number theory. Let us be more precise. We define the
wavenumber set consisting of wavenumbers in non-trivial resonance as follows:

Definition 1 (Wavenumber set of non-trivial resonance.) Let Λ be a wavenum-
ber set such that

Λ :=

{

n ∈ Z
2 with n1 6= 0 :

n1

n2
1 + n2

2

− x

x2 + y2
− n1 − x

(n1 − x)2 + (n2 − y)2
= 0,

for some (x, y) ∈ Z
2 with x 6= 0 and n1 − x 6= 0

}

.

The role of the above non-trivial resonance can be found in [7] in PDE sense.
Thus we omit to explain how it works to the two-dimensional flow on a β
plane (in PDE sense). We would like to figure out the exact elements of Λ
without any numerical computation. The following remark ensures that Λ has
at least infinite elements.

Remark 2 (Infinite elements.) At least, n = (n1, n2) = (m4, mℓ3) (m, ℓ ∈ N,
m 6= ℓ) is in Λ. In this case, we just take (x, y) = (ℓ4,−m3ℓ). Thus Λ has at
least infinite elements.

Λ itself is not only mathematically but also physically interesting. In a turbu-
lent flow, every wavenumber component should have nonzero energy. Suppose
that the initial energy distribution in a wavenumber space is isotropic. Two-
dimensional turbulence is known to transfer the energy from small to largescale
motions (energy inverse cascade). If there is no effect of rotation (no Coriolis
effect), then the energy therefore becomes concentrated isotropically around
the origin in wavenumber space. However, if the rotation effect (Coriolis effect)
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is dominant, the energy transfer becomes governed by the resonant interaction
of Rossby waves Λ, and the number of resonant triads gives a rough estimate
of the strength of the nonlinear energy transfer. Therefore, roughly speaking
(in a physical point of view), the wavenumbers not in Λ are then expected to
gain less energy compared with wavenumbers in Λ. In a numerical computa-
tion (see [7]), we can expect that Λ has anisotropic distribution. Thus our aim
is to know Λ rigorously, and prove (in a number theoretical approach) that
its distribution is anisotropic (however, it seems so difficult that we need to
progress little by little). For the first step, in this paper, we give nonexistence
of three wave interaction on n1-axis by using a Diophantine equation. In Ap-
pendix, we give suitable definitions to describe resonant points Λ, and give
several specific resonant points. Up to now, the points were found one by one
(not theoretically). The main theorem is as follows:

Theorem 3 (Nonexistence of the three wave interaction on n1-axis.) If n1, x, y ∈
Z and

n1

n2
1

=
x

x2 + y2
+

n1 − x

(n1 − x)2 + y2
, (2)

then n1x(n1 − x) = 0.

Remark 4 In order to consider more general setting, namely, to figure out
whether (n1, n2) (n1, n2 ∈ Z, n1 6= 0) belongs to Λ or not, we need to consider
the following equality (just derived from Definition 1):

y4 − 2n2y
3 − 2x(n1 − x)y2

+ 2n2x

(

n1 − x+
n2

2

n1

)

y − x(n1 − x)(x2 − n1x+ n2

1
+ 2n2

2
)− n4

2
x

n1

= 0

for x, y ∈ Z with x 6= 0.

This equality might be related to “elliptic curve” more or less. In this point of
view, the ideas of Mordell’s theorem and “infinite descent” might be useful.

2 Proof of the Theorem 3.

Assume there is n1 and x such that n1x(n1 − x) 6= 0. Since Λ is symmetric,
we can assume n1 > x > 0. From (2), we see
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(x2 + y2){(n1 − x)2 + y2} = n1x{(n1 − x)2 + y2}+ n1(n1 − x)(x2 + y2)

⇔ y4 + {x2 + (n1 − x)2 − n1x− n1(n1 − x)}y2
+{x2(n1 − x)2 − n1x(n1 − x)2 − n1x

2(n1 − x)} = 0

⇔ y4 − 2x(n1 − x)y2 + x2(n1 − x)2 − n2

1
x(n1 − x) = 0

⇔ y2 = x(n1 − x)±
√

x(n1 − x).

Clearly, we do not treat complex numbers in this consideration, thus n1−x > 0.
By 0 < x(n1 − x) < n2

1
(we have already assumed that n1 > x > 0, thus

n1 − x ≤ n1), we have 0 < x(n1 − x) < n1

√

x(n1 − x). Thus

y2 = x(n1 − x) + n
√

x(n1 − x).

Otherwise, y becomes a complex number. In particular, x(n1−x) =: p2 (p ∈ N)
and p2+n1p are square numbers (if x(n1−x) is not square number, then y2 is
not in Z and it is in contradiction). Here, we can assume x and n1 are relatively
prime. In fact, if the greatest common divisor is d > 1, we set x′ = x/d ∈ N

and n′

1
= n1/d ∈ N and then

(y/d)2 = x′(n′

1
− x′) + n′

√

x′(n′

1 − x′).

Since the left hand side of the above equality is a rational number, then x′(n′

1
−

x′) is a square number, namely, the right hand side is a natural number:
y′ := y/d ∈ N. Therefore we can regard n′

1
, x′ and y′ as n1, x and y. Since x

and x(n1 − x) are relatively prime and x(n1 − x) is a square number, x and
n1 − x are also square numbers. In fact, if either x or n1 − x is not square
number, then (at least) two pj in the following expression

x(n1 − x) = p2 = p2
1
p2
2
· · ·p2N

(p1, · · · , pN are prime numbers, and some pi and pj (i 6= j) may be the same)
must belong to both x and (n1−x). In this case, x and n1−x are not relatively
prime. Therefore

x = q2, n1 = q2 + r2, p = qr, q, r ∈ N are relatively prime. (3)

We see that q, r and q2+ qr+ r2 are all relatively prime. For example, if q and
q2+qr+r2 are not relatively prime, there is a prime number p such that q = s1p
and q2 + qr + r2 = s2p (s1, s2 ∈ N). Since q2 + qr is multiple of q (namely,
multiple of p) then r2 is also multiple of p. However, if r2 is multiple of p,
then r itself must be multiple of p. This means that q and r are not relatively
prime. It is in contradiction to (3). Recall that p2+n1p = q2r2+(q2+ r2)qr =
pr(q2+qr+r2) is a square number. Since q, r and q2+qr+r2 are all relatively
prime, we can rewrite

q = s2, r = t2, s4 + s2t2 + t4 = u2, s, t, u ∈ N.
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However it is in contradiction to the following lemma.

Lemma 5 ([3]) The following Diophantine equation

X4 +X2Y 2 + Y 4 = Z2, X, Y, Z ∈ Z

only have a trivial integer solution: X = 0 or Y = 0.

3 Appendix

In this section we give several specific resonant points. The points were found
one by one (not theoretically). In order to state the resonant points, “clus-
ter” concept is very useful. Note that on a sphere case, Kartashova and
L’vov [4] have already tried to classify several Rossby waves into clusters.
Let {Ωfinite

j }j ⊂ Λ be a family of clusters composed by finite elements and

{Ωinfty
j }j ⊂ Λ be a family of clusters composed by infinite elements defined as

follows:

Definition 6 (Clusters with finite elements) Let {Ωfinite
j }j ⊂ Λ be a family

of wavenumber clusters satisfying the following properties:

• For any n ∈ Ωfinite
j , there is (x, y) ∈ Ωfinite

j such that n and (x, y) satisfy
the definition of Λ.

• For any n 6∈ Ωfinite
j , there is no (x, y) ∈ Ωfinite

j such that n and (x, y) satisfy
the definition of Λ.

• For each j, number of elements in Ωfinite
j is always finite.

• We set λ1,j := inf{|n|2 : n ∈ Ωfinite
j }. Then λ1,j ≤ λ1,k (j < k). If there is

j and k (j < k) such that λ1,j = λ1,k, again, we set λ2,j := inf{|n|2 : n ∈
Ωfinite

j , |n|2 6= λ1,j} and then λ2,j ≤ λ2,k (j < k). If there is j and k (j < k)
such that λ2,j = λ2,k, again, we proceed the same manner.

Definition 7 (Clusters with infinite elements) Let {Ωinfty
j }j ⊂ Λ be a family

of wavenumber clusters satisfying the following properties:

• For any n ∈ Ωinfty
j , there is (x, y) ∈ Ωinfty

j such that n and (x, y) satisfy the
definition of Λ.

• For any n 6∈ Ωinfty
j , there is no (x, y) ∈ Ωinfty

j such that n and (x, y) satisfy
the definition of Λ.

• For each j, number of elements in Ωinfty
j is always infinity.

• We set λ1,j := inf{|n|2 : n ∈ Ωinfty
j }. Then λ1,j ≤ λ1,k (j < k). If there is

j and k (j < k) such that λ1,j = λ1,k, again, we set λ2,j := inf{|n|2 : n ∈
Ωinfty

j , |n|2 6= λ1,j} and then λ2,j ≤ λ2,k (j < k). If there is j and k (j < k)
such that λ2,j = λ2,k, again, we proceed the same manner.
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Remark 8

• We see Ωfinite
j ∩ Ωfinite

k = ∅ (j 6= k), Ωinfty
j ∩ Ωinfty

k = ∅ (j 6= k) and

Ωfinite
j ∩ Ωinfty

k = ∅
• Theoretically, each Ωfinite

j and Ωinfty
j (j = 1, 2, · · · ) are uniquely determined.

• We see

Λ =
(

∪jΩ
finite
j

)

⋃

(

∪jΩ
infty
j

)

.

In order to find specific clusters, the following observation is useful. For fixed
n, we only need to see finite combinations of (x, y) satisfying the following
inequality:

|n1|
|n|2 ≤ 1√

x2 + y2
+

1
√

(n1 − x)2 + (n2 − y)2
≤

2

min(
√
x2 + y2,

√

(n1 − x)2 + (n2 − y)2)
.

Note that too large x or y will break the above inequality. Now we give several
clusters:

Ωfinite
1 = {(1, 11), (8,−34), (−9, 23)}

Ωfinite
2 = {(3, 19), (32,−44), (−35, 25), (8, 26), (27,−51)}

and

Ωinfty
1 = {(1,−8), (3,−11), (5, 25), (8, 14), (13, 13),

(15, 10), (−16,−2), (27,−21), (−32,−4) · · ·}.

Since (−32,−4) is two times (−16,−2), we easily see that the above Ωinfty
1

includes

∞
⋃

j=1

{(j,−8j), (3j,−11j), (5j, 25j), (8j, 14j), (13j, 13j),

(15j, 10j), (−16j,−2j), (27j,−21j), (−32j,−4j)}.

This means that Ωinfty
1 has infinite elements. However, we could not figure out

the exact elements in Ωinfty
1 so far.
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