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1.  INTRODUCTION

Formal specifications that represent the way to realize soft-
ware requirements in unambiguous and executable forms play 
an important role in the development of high-quality software. 
Extended Place/transition Net with Attributed Tokens (EPNAT) 
[1] is a formal specification description language for modeling 
the expected behavior of state transition-based software that con-
sists of multiple objects, such as modules and subsystems. In an 
EPNAT model, each attributed token corresponds to an object and 
has variables to characterize the object, which are called attributes. 
The firing of transitions leads to the increase, decrease and move 
of attributed tokens, the change of values of attributes and global 
variables, and so on. The behavior is constrained by invariants, 
pre-conditions, post-conditions, and type constraints, which are 
collectively called constraints. Engineers need to understand such 
complex aspects of the EPNAT model when constructing, validat-
ing and refining it. EPNAT is a new language, and thus systematic 
techniques to address this problem need to be developed.

In this paper, we propose a technique of simulation and regres-
sion testing for EPNAT models, and then show a prototype tool 
to partially support it. In the technique, the information about 
a current marking (that is, a current distribution of attributed 
tokens, including current values of attributes), current values of 
global variables, and current fireable transitions is indicated to 

assist engineers in finding faults and selecting next transitions to 
be fired for the simulation. Also, good execution traces in the sim-
ulation are recorded as test cases for the regression testing. When 
an EPNAT model is modified, the test cases can be applied to it 
to reveal regression failures. This technique has been developed 
only for EPNAT. A preliminary experiment using simple software 
requirements has been carried out to discuss the effectiveness of 
our technique.

EPNAT models can be converted into VDM++ specifications that 
can be supported by existing tools [2]. They also enable engineers 
to perform interactive execution and regression testing. The main 
differences between our technique and the existing tools are that 
(i) our technique focuses on more abstract aspects of software 
specifications, (ii) our technique emphasizes the understanding 
of software specifications, and (iii) our technique cannot support 
test-first [3].

This paper is organized as follows. Section 2 describes our tech-
nique of simulation and regression testing for EPNAT models, and 
then Section 3 illustrates our prototype tool. Section 4 gives an 
experimental result to discuss the effectiveness of our technique. 
Finally, we show conclusion and future work in Section 5.

2.  TECHNIQUE OVERVIEW

In this section, we propose the technique of simulation and regres-
sion testing for EPNAT models.
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Figure 1 | Procedure of simulation (overview).

2.1.  Simulation of EPNAT Models

The simulation is intended to help engineers to construct, validate, 
refine, and understand EPNAT models, and it is applicable to both 
completed EPNAT models and EPNAT models under construc-
tion. The simulation of a given EPNAT model is performed accord-
ing to the following procedure. The overview of the procedure is 
shown in Figure 1. Step 2, 3, and 5 can be automatically executed, 
and should be supported by a tool to save time and effort.

Step 1. �An engineer specifies a starting state (that is, a state to start 
the simulation) according to the aim of the simulation. In 
this study, a state is characterized by a marking and values 
of all the global variables in an EPNAT model. Note that a 
marking in an EPNAT model includes values of attributes. 
The starting state does not necessarily have to be an initial 
state (that is, a state established just after software is invoked) 
or reachable state (that is, a state that can be reached from 
the initial state).

Step 2. �If the starting state violates any type constraints and invari-
ants, this procedure returns to Step 1. Otherwise, the cur-
rent state of the given EPNAT model is initialized to the 
starting state.

Step 3. �The pre-conditions of all the transitions are evaluated to 
determine fireable transitions in the current state. If there 
are no fireable transitions, the simulation is terminated.

Step 4. �The engineer confirms the determined fireable transitions 
and acceptable values of their arguments. If he/she finds any 
faults, the simulation will be stopped. Otherwise, the engi-
neer selects one arbitrary fireable transition and specifies 
values of its arguments according to the aim of the simu-
lation.

Step 5. �If the specified values of the arguments violate any type 
constraints, invariants and pre-condition, this procedure 
returns to Step 4. Otherwise, the selected transition is 
fired, and then its actions are executed by using the spec-
ified values of arguments. As a result of them, the current 
state is changed. If any invariants, and the post-condition of 
the fired transition are violated due to some sort of failures 
included in the given EPNAT model, the simulation will be 
stopped.

Step 6. �The engineer confirms the current state. If he/she finds any 
faults, or if he/she achieves the aim of the simulation, the 
simulation will be terminated. Otherwise, this procedure 
returns to Step 3.

2.2.  Regression Testing of EPNAT Models

A good execution trace in the simulation is recorded as a test case 
for the regression testing of future EPNAT models. In this con-
text, the word “good” means that (a) the execution trace does not 
include the occurrence of faults, (b) the execution trace accelerates 
the growth of test coverage, (c) the execution trace corresponds to 
the typical use of software, and (d) the execution trace is useful to 
cover fault-prone parts [4]. The item (a) is particularly essential for 
a test case.

When an EPNAT model is modified, the test cases are applied to it 
to reveal regression failures. Some model-based coverage criteria 
[5,6] can be introduced to evaluate the effectiveness of the regres-
sion testing. Additionally, EPNAT models can be converted into 
VDM++ specifications [1], and thus common code-based coverage 
criteria [7] also can be introduced. In general, multiple test cases 
need to be executed to satisfy a coverage criterion. Also, regression 
testing is repeatedly performed, and thus it should be automated by 
a tool to save time and effort.

Figure 2 shows the abstracted structure of a test case for an EPNAT 
model. It is written in BNF, and parentheses are used to represent an 
optional element. A test case is a sequence of successive state tran-
sitions of arbitrary length. Each transition is identified by an event, 
and can have values of arguments. Each transition should follow 
fireable transitions that include its event. Fireable transitions are 
determined by a state, and thus should follow a state in a test case. 
Each state is characterized by a marking and values of all the global 
variables. If an invalid value is given to an argument of a transition 
to test a constraint, the following state should be a violation state, 
that is, a state in which the constraint has been violated. A marking 
is expressed as a sequence of attributed tokens in each place, and 
an attributed token is characterized by object type and values of 
attributes. Each place can hold one or more attributed tokens, but 
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Figure 2 | Abstracted structure of a test case for an EPNAT model (written in BNF).

the place and its attributed tokens need to have the same object 
type. Therefore, the object type of each attributed token is import-
ant information in the regression testing of EPNAT models.

The flow of the regression testing is similar to the one of the simu-
lation. A starting state and transitions correspond to test data (also 
called test input), and are used in Step 1 and 4, respectively. On 
the other hand, fireable transitions and states excepting the starting 
state correspond to expected output, and are used in Step 4 and 
6, respectively. When there are no differences between expected 
output and test output through the execution of a given test case, it 
is concluded that the test case has successfully passed. Otherwise, 
an engineer needs to find and fix a regression failure, or update 
the test case so as to reflect the latest true software specification. 
After that, the engineer should perform confirmation testing, that 
is, apply the failed test case to the fixed EPNAT model, or apply the 
updated test case to the EPNAT model.

3.  PROTOTYPE TOOL

This section shows our prototype tool to partially support the 
simulation and regression testing of EPNAT models. As shown in 
Figure 3, the prototype tool consists of (A) EPNAT model editor, 
(B) VDM++ specification editor, and (C) EPNAT simulator. (A) 
and (B) have been developed in our previous study [1], and (C) has 
been developed in this study. (A) allows an engineer not only to 
construct his/her EPNAT model using GUI, but also to automati-
cally convert the model into a VDM++ specification. The VDM++ 
specification can be further developed by using (B). When an 
EPNAT model on (A) needs to be simulated, (C) can be invoked 
from (A). (C) interacts with an existing tool called VDMJ [2] to 
execute a given EPNAT model.

An EPNAT model under simulation is visualized on the right 
pane of (C). Fireable transitions in the current state are high-
lighted in green. Therefore, an engineer will be able to easily 
confirm them, and select a next transition to proceed with his/
her simulation. Also, the current state and the simplified exe-
cution trace (described as a sequence of fired transitions) are 
indicated on the left pane. When an engineer selects a fireable 
transition and specifies its values of arguments on the right pane, 
(C) automatically executes the firing of the selected transition, 
executes its actions, evaluates constraints, and then updates the 
current state, the execution trace, and the graphical image of 
the EPNAT model. An engineer can stop and reset the current 
simulation at any time. When an engineer thinks that the exe-
cution trace is good for a test case in regression testing, he/she 
can save it.

An engineer can start automated regression testing by loading a test 
case and an EPNAT model to be tested.

4.  EXPERIMENT

To discuss the effectiveness of the proposed technique, we have car-
ried out a preliminary experiment using software requirements of a 
simple load balancer [1]. In the experiment, the simulation on our 
prototype tool is compared with Scenario-Based Reading (SBR), 
that is, a review technique [8] to find faults in normal software 
specifications by using expected usage scenarios. The experiment 
consists of the following four steps:

Step 1. �In accordance with the software requirements, we correctly 
create software Specifications written in a Natural language 
(SN) and an EPNAT model.

Figure 3 | Screen shots of our prototype tool. (A) EPNAT model editor. (B) VDM++ specification editor. (C) EPNAT simulator.
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Step 2. �We insert three faults f1, f2 and f3 into SN, and create Faulty 
SN (FSN). Additionally, we insert the three faults into the 
EPNAT model, and create a faulty EPNAT model.

Step 3. �In accordance with the software requirements, we correctly 
create three expected usage scenarios s1, s2 and s3 for SN. 
They are written in a natural language. s1 is useful to reveal 
f2, and s3 is useful to reveal f1. Additionally, we convert the 
three expected usage scenarios into three simplified execu-
tion traces for the EPNAT model.

Step 4. �Five students (three in the master’s course and two in the 
undergraduate course at our university) read the software 
requirements. After that, each of them performs SBR, that 
is, tries to find the three faults in FSN by using the three 
expected usage scenarios within 20 min. Additionally, each 
of them performs the simulation, that is, tries to find the 
three faults in the faulty EPNAT model by using the three 
simplified execution traces within 20 min.

Table 1 shows the results of this experiment. The simulation has 
greater detection rate of each fault than SBR. The average number 
of faults detection per one student is 1.8 on simulation, and is 0.6 
on SBR. After the experiment, we interviewed each of the students 
and got the following comments:

•• The EPNAT model, rather than SN, was or might be useful to 
understand the software (three students).

•• It was easier to find faults in the faulty EPNAT model than in 
FSN (five students).

•• The simulation is useful for understanding the EPNAT model 
(four students). The simulation is useful for testing and validat-
ing, rather than for understanding (another student).

•• There is room to improve the user interface of the prototype  
tool (two students).

The results of the experiment and of the interview indicate the 
effectiveness of our technique. However, note that the simulation 
follows SBR in Step 4, and thus the students may have developed 
the understanding of the given faulty software specifications before 
starting the simulation. Further evaluation will be needed in future 
study.

5.  CONCLUSION AND FUTURE WORK

In this paper, we have proposed a technique of simulation and 
regression testing for EPNAT models, and then have shown a pro-
totype tool to partially support it. In the technique, the information 
about a current marking (including current values of attributes), 
current values of global variables, and current fireable transitions 
is indicated to assist engineers in finding faults and selecting next 

transitions to be fired for the simulation. Also, good execution 
traces in the simulation are recorded as test cases for the regression 
testing. When an EPNAT model is modified, the test cases can be 
applied to it to reveal regression failures. This technique has been 
developed only for EPNAT. We have carried out a preliminary 
experiment using simple software requirements. The results of the 
experiment and of the interview indicate the effectiveness of the 
technique, but further evaluation will be needed in future study.

When a failure that was caused in the earlier stage of software 
development is found in the later stage (typically, the processes of 
system testing and acceptance testing), the cost to fix it generally 
tends to become higher. Therefore, it is important to find and fix 
failures in the earlier stage, and it is expected that our technique 
can be applied to address this problem. However, our tool is under 
development, and the functions to support our technique are not 
completely implemented at present. Also, the following matters 
need to be tackled in future work in order to improve the technique:

•• An engineer will often need to confirm that the set of reachable 
states in an EPNAT model under construction includes all the 
indispensable states to satisfy given software requirements and 
also the set does not include any invalid states. However, test 
cases are manually created in our technique and tool, and thus it 
will be difficult for most engineers to do such task systematically 
at small cost. Model checking [9] may be useful to address this 
problem.

•• After an engineer has made a modification on an EPNAT model, 
he/she will often need to maintain some existing test cases, that 
is, to update some existing test cases so as to reflect the latest true 
software specification. A technique and tool to systematically 
support it should be constructed.

•• Coverage criteria are useful to create good execution traces in 
simulation and to select good test cases in regression testing. 
Engineers will need guidelines for the effective use of coverage 
criteria, and will need a tool to automatically suggest execution 
traces and test cases according to coverage criteria.

Based on the above, we will develop the tool to support our extended 
technique, and apply it to pilot projects to evaluate its effectiveness.
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