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1. Abstract

Possibilistic networks are important and efficient
tools for reasoning under uncertainty. This paper
proposes a new graphical model for decision making
under uncertainty based on possibilistic networks.
In possibilistic decision problems under uncertainty,
available knowledge is expressed by means of pos-
sibility distribution and preferences are encoded by
means another possibility distribution representing
the qualitative utility. The first part of the pa-
per proposes a new graphical way to represent such
problem, where agent’s knowledge and preferences
are encoded separately by two distinct possibilis-
tic networks. The first one encodes agent’s beliefs
and the second one represents the qualitative util-
ity. The second part of the paper proposes a new
algorithm for computing optimistic optimal deci-
sions based on merging these two possibilistic net-
works. In fact, the qualitative possibilistic decision
is viewed as a data fusion problem of these two par-
ticular possibilistic networks. We show that the
computation of optimal decisions comes down to
compute a normalization degree of the junction tree
associated with the graph representing the fusion of
agent’s beliefs and preferences.

Keywords: Possibilistic decision theory, min-based
possibilistic networks, junction trees.

2. Introduction

Decision making under uncertainty plays an impor-
tant role in Artificial Intelligence (AI) applications.
Several decision making tools have been developed
to assist decision makers in their tasks: simulation
techniques, dynamic programming, logical decision
models and graphical decision models.
This paper focuses on graphical decision models
which provide efficient decision tools by allowing a
compact representation of decision problems under
uncertainty [1]. Most of decision graphical models
are based on Influence Diagrams (ID) [2] for repre-
senting decision maker’s beliefs and preferences on
sequences of decisions to be made under uncertainty.
The evaluation of influence diagrams ensures opti-
mal decisions while maximizing the decision maker’s
expected utilities. In order to generate optimal de-
cisions, there are two evaluation methods: direct

methods [3] that need heavy computations and in-
direct methods [4] that require a graphical transfor-
mation of initial graph into a secondary structure
which will be used in different computations. Be-
sides, in many applications, it is easier to express
uncertainty in a qualitative way by ranking differ-
ent states of the world. Similarly, it is more easier
to provide a preference relation between different
consequences. In these situations, possibility the-
ory [5] is an appropriate framework for represent-
ing uncertain knowledge and preferences. Indeed, a
qualitative possibilistic decision model [6] allows a
gradual expression of both agent’s preferences and
knowledge.
Few works exist on decision making using possi-
bilistic networks. Garcia and Sabbadin [7] have
proposed a possibilistic counterpart of standard in-
fluence diagrams. Possibilistic Influence Diagrams
(PID) offer a compact representation of problems
dealing with decision making under uncertainty.
The graphical part of possibilistic influence dia-
grams is exactly the same as the one of standard
influence diagrams. Uncertainty is expressed by
possibility degrees and preferences are considered
as satisfaction degrees. Unlike probabilistic deci-
sion theory which is based on one expected utility
criteria to evaluate optimal decisions, a qualitative
possibilistic decision theory offers several qualita-
tive utility criteria for decision approaches under
uncertainty. Among these criteria, one can men-
tion the pessimistic utility and the optimistic one
proposed in [6], the binary utility proposed by Gi-
ang and Shenoy [8], etc. In order to evaluate such
possibilistic influence diagrams, two ways to accom-
plish this task, have been proposed in literature: (1)
an indirect methods which transform a possibilistic
influence diagram either into a decision tree [7] or
into a qualitative possibilistic network [9] and (2)
a direct methods [7] that use initial structures but
require heavy computations in order to update pos-
sibility distribution tables.

Our aim in this paper is to propose a new graph-
ical model for representing decision making under
uncertainty based on the use of possibilistic net-
works. When agent’s knowledge and preferences are
expressed in a qualitative way, we suggest to repre-
sent them by two distinct qualitative possibilistic
networks. The first one encodes a joint possibility
distribution representing available knowledge and
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the second one encodes the qualitative utility.
In a second phase, using our new model for repre-
senting qualitative possibilistic decision problems,
we present an efficient and unified way of computing
optimal optimistic decisions using inference process
based on the junction tree associated with the fu-
sion of agent’s beliefs and preferences networks. We
show that computing optimal decisions comes down
to compute a normalization degree of this junction
tree. Qualitative possibilistic decision will then be
viewed as a data fusion of these two particular pos-
sibility distributions (or two qualitative possibilistic
networks).

The rest of this paper is organized as follows:
next section briefly recalls basic concepts of possi-
bility theory and min-based possibilistic networks.
In the same section, we give main results on the
data fusion problem of min-based possibilistic net-
works. Section 3 describes our new model for en-
coding decision problems based on possibilistic net-
works. Section 4 describes how propagation process
can be efficiently used for computing optimal opti-
mistic decisions. Section 5 concludes the paper.

3. Backgrounds

3.1. Basic concepts of possibility theory

This section gives a brief refresher on possibility the-
ory [5] which is issued from fuzzy sets theory [11].
Let V = {X1, ..., XN} be a set of variables. We
denote by DXi

= {xi1, ..., xin} the domain associ-
ated with the variable Xi. xij denotes the jth in-
stance of Xi. The universe of discourse is denoted
by Ω = ×Xi∈VDXi , which is the Cartesian product
of all variables domain in V. Each element ω ∈ Ω
is called an interpretation which represents a possi-
ble state of Ω. It is denoted by ω = (x1i, ..., xNj).
ϕ, ψ... represent events, namely subsets of Ω.

3.1.1. Possibility distribution

One of basic elements in a possibility theory is
the notion of possibility distribution π which cor-
responds to a mapping from Ω to the scale [0, 1].
This distribution encodes available knowledge on
real world. π(ω) = 1 means that ω is completely
possible and π(ω) = 0 means that it is impossi-
ble for ω to represent the real world. A possibilistic
scale can be interpreted in ordinal or numerical way.
A possibility distribution π is said to be
α−normalized, if its normalization degree, denoted
h(π) is equal to α, namely:

h(π) = max
ω

π(ω) = α. (1)

If α = 1, then π is said to be normalized.
Given a possibility distribution π on the universe
discourse Ω, two dual measures are defined for each
event ϕ ⊆ Ω:

• Possibility measure: this measure evaluates
to what extent ϕ is consistent with our knowl-
edge encoded by π:

Π(ϕ) = max
ω∈Ω
{π(ω) : ω ∈ ϕ}. (2)

• Necessity measure: it is the dual of a pos-
sibility measure. The necessity measure evalu-
ates at which level ϕ is certainly implied by our
knowledge represented by π:

N(ϕ) = 1−Π(ϕ). (3)

3.1.2. Possibilistic conditioning

The possibilistic conditioning consists in the revi-
sion of our initial knowledge, encoded by a possi-
bility distribution π, by the arrival of a new cer-
tain information ϕ ⊆ Ω. The initial distribution π
is then replaced by another one, denoted by π′ =
π(. | ϕ). The two interpretations of the possibilistic
scale (qualitative and quantitative) induce two def-
initions of possibilistic conditioning [12]: product-
based conditioning and min-based conditioning. In
this paper, we focus on min-based conditioning de-
fined by [12]:

π(ω |min ϕ) =

 1 If π(ω) = Π(ϕ) and ω ∈ ϕ
π(ω) If π(ω) < Π(ϕ) and ω ∈ ϕ
0 otherwise

(4)
We also use a so-called min-based independence re-
lation, as a non-interactivity relation [11]. This rela-
tion is obtained by using the min-based conditioning
Equation 4 and it is defined by:

∀x, y, z Π(x ∧ y | z) = min(Π(x | z),Π(y | z)). (5)

3.2. Min-based possibilistic networks

3.2.1. Preliminaries

A min-based possibilistic network [13] over a set of
variables V denoted by ΠGmin = (G, π) is charac-
terized by:

1. A graphical component: which is repre-
sented by a Directed Acyclic Graph (DAG)
where nodes correspond to variables and arcs
represent dependence relations between vari-
ables.

2. Numerical components: these components
quantify different links in the DAG by using lo-
cal possibility distributions for each node X in
the context of its parents denoted by Par(X).
More precisely:

• For every root node X (Par(X) = ∅), un-
certainty is represented by a priori possi-
bility degree π(x) for each instance x ∈
DX , such that max

x
π(x) = 1.
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• For the rest of the nodes (Par(X) ̸= ∅),
uncertainty is represented by the condi-
tional possibility degree π(x | par(X))
for each instance x ∈ DX and par(X) ∈
DP ar(X) (where DP ar(X) represents Carte-
sian product of all variables domain in
Par(X)), such that max

x
π(x | par(X)) =

1, for any par(X).

The set of a priori and conditional possibility de-
grees induces a unique joint possibility distribution
πmin defined by:

πmin(X1, ..., XN ) = min
i=1..N

π(Xi | Par(Xi)). (6)

The most common task performed on possibilistic
networks is possibilistic inference which corresponds
to determine how the realization of specific values of
some variables affects the remaining variables [14].
The problem of computing posteriori marginal dis-
tributions on nodes in arbitrary possibilistic net-
works is known to be a hard problem [13] except
for singly connected graphs which ensure the prop-
agation in polynomial time. In fact, we distinguish
two types of these algorithms: one that operates on
DAG without loops and others more general which
permit the propagation on multiple possibilistic net-
works. The idea is to transform the initial graph
into a junction tree on which the propagation al-
gorithm can be achieved in an efficient way [15].
Other work more recent are based on compilation
process [16]. However, other works in probabilistic
framework have been proposed [17, 14].

3.2.2. Min-based fusion of possibilistic networks

Merging uncertain informations [18] is important to
exploit complementarities between sources provid-
ing thus a global and complete point of view. In this
paper, we are interested in conjunctive mode which
makes sense if all sources are considered as equally
and fully reliable. One of the basic conjunctive op-
erators is the minimum operation (min). Given two
min-based possibilistic networks ΠGmin = (G, π),
which induces a joint possibility distribution πG

and ΠG′
min = (G′, π′), which induces a joint pos-

sibility distribution π′
G′ then the result of merg-

ing ΠGmin and ΠG′
min is the possibilistic network

ΠG⊕ = (G⊕, π⊕) [10], which induces a joint possi-
bility distribution πG⊕ such that

∀ω, πG⊕(ω) = min(πG(ω), π′
G′(ω)) (7)

The syntactic counterpart of the fusion of two pos-
sibility distributions, associated with two possibilis-
tic networks, using the min operator is a new min-
based possibilistic network definition of which de-
pends on the union of the two initial ones. In [10],
the authors propose two main classes for merging
min-based possibilistic networks:

• Fusion of same-structure networks:
namely where G = G′, then:

– The resulting network ΠG⊕ keeps the
same structure: G⊕ = G′ = G,

– For each variable X, π⊕(X | Par(X)) =
min(π(X | Par(X)), π′(X | Par(X))).

• Fusion of networks with different struc-
tures: in the case where the two networks have
different structures, two cases are distinguish-
able:

– The union of graphs is acyclic: in
this case, ΠGmin and ΠG′

min are first
expanded, with additional variables and
links, to ΠG1 = (G⊕ = G ∪ G′, π1) and
ΠG′

1 = (G⊕ = G ∪G′, π′
1) without affect-

ing possibilistiy distribution [10]. Then
the fusion of same-structure networks is
applied.

– The union of graphs is cyclic: in
this case, additional variables are added
to eliminate cycles. The new conditional
distributions relative to the new variables
ensure the equivalence between new and
old variables.

For more details on the fusion of possibilistic net-
works see [10].

4. Encoding decision problems under
uncertainty using possibilistic networks

A qualitative decision problem [19] is modeled by
a finite set of possible states of the world S =
{s1, ..., sn}, a finite set of consequences X , a set
of decisions D = {d1, ..., dm}, such that each deci-
sion di : S → X associates for each possible state a
consequence. Preferences among consequences are
encoded by utility function µ : X → U where U is a
preference ordinal scale.
Possibility theory describes uncertain knowledge on
different states of the world by means of possi-
bility distributions. It can first represent uncer-
tain knowledge distinguishing what is plausible from
what is less plausible. It can also represent prefer-
ences over desired or less desired consequences [7].
Therefore, the uncertainty on possible states of the
world is expressed by a normalized possibility dis-
tribution π mapping a set of state variables values
into [0, 1]. Similarly, agent’s preferences are repre-
sented by means of another possibility distribution
µ (which may not be normalized) mapping a set of
consequences into an ordinal scale U , here repre-
sented by [0, 1]. We assume that uncertainty and
preferences scales are commensurate [6]. A decision
is represented by a function d from S to X. The
consequence d(s) ∈ X associated to a decision d on
the state s can be evaluated by combining possi-
bility degrees π(s) and utilities µ(d(s)) for all pos-
sible states of world. Two evaluation criteria have
been proposed to achieve such combinations: the
pessimistic [20] and the optimistic [21] one. The
first one being more cautious than the second one
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for computing optimal decisions.
In [22], the authors have proposed a compact rep-
resentation of a qualitative decision problems based
on possibilistic logic [23]. The logical approach al-
lows to express agent’s knowledge and preferences
by means of valued logical formula enabling to de-
duce the corespondent utility and uncertainty func-
tions. Indeed, two weighted propositional logical
bases are used: (1) a knowledge base describing
what the agent knows and (2) another base describ-
ing the consequences satisfying agent’s preferences.
The proposed logical approach use two types of vari-
ables: decision variables and state ones.
Two syntactical approaches have been proposed in
[24], based on possibilistic logic, for solving qualita-
tive decision problems: one pessimistic and another
optimistic. Both syntactical approaches are respec-
tively in agreement with the semantic definition of
the two qualitative possibilistic criteria.
In [25], an algorithm for computing optimal deci-
sions using syntactic possibilistic fusion has been
proposed. The proposed approach is based on log-
ical representation of decision problems as in [24].
Our aim in this paper is to propose a new graphical
model for representing qualitative decision problems
under uncertainty. Our starting point is a possi-
bility distribution π and a utility function µ which
represent respectively uncertainty on possible states
of the world and agent’s preferences. We propose
to compactly encoded these two possibility distri-
butions (uncertainty and utility) using two distinct
min-based posibilistic networks rather than the two
stratified bases: one representing agent’s beliefs
and the second representing the qualitative utility.
The first min-based posibilistic network, denoted
by ΠKmin = (GK , π), represents agent’s knowl-
edge and induces a unique possibility distribution
πK = π using Equation 6. The second min-based
possibilistic network, denoted by ΠPmin = (GP , µ),
defines agent’s preferences and induces a unique
qualitative utility µP = µ using also Equation 6. In
the same way as in logical based approach [24], the
graphical components GK and Gp of the two min-
based possibilistic networks ΠKmin and ΠPmin are
defined on two types of variables: decision variables
noted D = {D1, ..., Dp} and state variables noted
X = {X1, ..., Xn}. Concerning decision evaluation
process, we propose to preserve the two qualitative
criteria used in the case of logical representations
of qualitative decision problems under uncertainty.
Since our new graphical model for representing pos-
sibilistic decision making under uncertainty is based
on the possibility distribution and qualitative util-
ity then there is no interference on qualitative de-
cision criteria. So, making a decision comes down
to choosing a decision d which maximises one of the
two qualitative utilities given by [19]:

• Optimistic utility:

u∗(d) = max
ω∈Ω

min(πd(ω), µ(ω))

• Pessimistic utility:

u∗(d) = min
ω∈Ω

max(n(πd(ω)), µ(ω))

where n represents reversing map on scale [0, 1].

In this paper, we only deal with optimistic decision
making.

Example 1 Let us consider two min-based possi-
bilistic networks ΠKmin and ΠPmin.

Figure 1: Example of the acyclic union of networks

1. The agent’s knowledge: it is described by
the min-based possibilistic network ΠKmin =
(GK , π). Its graphical component GK is given
by Figure 1 (a). It contains four possible states
of the world {X1, X2, X3, X4} and one decision
variable {D}. The initial possibility distribu-
tions associated with ΠKmin are given by Ta-
bles 1, 2, 3 and 4. We suppose that all variables
are binary.

X1 π(X1) X2 π(X2)
x1 .5 x2 .8
¬x1 1 ¬x2 1

Table 1: Initial possibility distributions ΠKmin on
X1 and X2

X3 X1 π(X3 | X1) X3 X1 π(X3 | X1)
x3 x1 .5 ¬x3 x1 1
x3 ¬x1 .6 ¬x3 ¬x1 1

Table 2: Initial possibility distributions ΠKmin on
X3 | X1

D X1 X2 π(D | X1X2) D X1 X2 π(D | X1X2)
d x1 x2 .1 ¬d x1 x2 1
d x1 ¬x2 .6 ¬d x1 ¬x2 1
d ¬x1 x2 .7 ¬d ¬x1 x2 1
d ¬x1 ¬x2 .4 ¬d ¬x1 ¬x2 1

Table 3: Initial possibility distributions ΠKmin on
D | X1X2
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X4 D X2 π(X4 | DX2) X4 D X2 π(X4 | DX2)
x4 d x2 .1 ¬x4 d x2 1
x4 d ¬x2 .9 ¬x4 d ¬x2 1
¬x4 ¬d x2 .2 ¬x4 ¬d x2 .8
¬x4 ¬d ¬x2 1 ¬x4 ¬d ¬x2 1

Table 4: Initial possibility distributions ΠKmin on
X4 | DX2

2. Agent’s preferences: are expressed by the min-
based possibilistic network ΠPmin = (GP , µ),
where its DAG is given by Figure 1 (b). The
initial possibility distributions associated with
ΠPmin are given by Tables 5 and 6.

D µ(D) X4 µ(X4)
d .5 x4 1
¬d 1 ¬x4 .3

Table 5: Initial possibility distributions ΠPmin on
D and X4

X3 D X4 µ(X3 | DX4) X3 D X4 µ(X3 | DX4)
x3 d x4 1 ¬x3 d x4 .7
x3 d ¬x4 .6 ¬x3 d ¬x4 1
¬x3 ¬d x4 .8 ¬x3 ¬d x4 1
¬x3 ¬d ¬x4 .2 ¬x3 ¬d ¬x4 1

Table 6: Initial possibility distributions ΠKmin on
X3 | DX4

5. On the computation of optimal optimistic
decisions based on min-based fusion

This section presents the computation of qualita-
tive possibilistic decisions which can be viewed as
a data fusion problem of two particular possibility
distributions: one representing agent’s beliefs and
the second representing the qualitative utility. We
assume that agent’s knowledge and preferences are
both represented by two separated min-based pos-
sibilistic networks. The first min-based posibilis-
tic network ΠKmin = (GK , π) represents agent’s
knowledge. ΠKmin induces a unique possibility dis-
tribution πK using Equation 6. The second min-
based possibilistic network ΠPmin = (GP , µ) de-
fines agent’s preferences. ΠPmin induces a unique
qualitative utility µP using Equation 6.
In what follows, we propose a direct method for
computing optimal optimistic decisions based on
the fusion of πK and µP (or ΠKmin and ΠPmin).
Each set of decision d induces a possibility distribu-
tion πKd

in the following way [6]:

πKd
(ω) = min(πK(ω), πd(ω)), (8)

where,

πd(ω) =
{

1 If ω |= d
0 otherwise, (9)

where ω |= d means the value of D in ω is equal to
d.

5.1. Describing optimistic decisions as a
fusion process

We recall that an optimal optimistic decision d is
defined by the one that maximizes the expression:

u∗(d) = max
ω∈Ω

min(πKd
(ω), µP (ω)) (10)

Using equation 8, the optimistic utility decision
u∗(d) becomes:

u∗(d) = max
ω∈Ω

min(min(πK(ω), µP (ω)), πd(ω)) (11)

Using technical merging of two min-based possibilis-
tic networks (Equation 7), Equation 11 comes:

u∗(d) = max
ω∈Ω

min(πG⊕(ω), πd(ω)) (12)

Besides, we have recalled in section 3.2.2
how to compute the syntactic counterpart of
min(π, π′). Then, the syntactic counterpart of
min(πK(ω), µP (ω)) is the min-based possibilistic
network denoted by ΠG⊕ = (G⊕, π⊕) which induces
the unique possibility distribution πG⊕ .

Example 2 The two DAGs (GK and GP ) given
in Example 1, Figure 1 have a different structure.
Their union is free of cycles, then the result of merg-
ing ΠKmin and ΠPmin is the min-based possibilis-
tic network ΠG⊕ = (G⊕, π⊕), where G⊕ is given in
Figure 2. G⊕ is simply the union of the two graphs
of Figure 1.

Figure 2: The DAG G⊕

The initial possibility distributions are given by
Tables 7, 8, 9 and 10, which are obtained using the
minimum of local distributions ΠKmin and ΠPmin.

X1 π⊕(X1) X2 π⊕(X2)
x1 .5 x2 .8

¬x1 1 ¬x2 1

Table 7: Initial possibility distributions ΠG⊕ on X1
and X2

D X1 X2 π⊕(D | X1X2) D X1 X2 π⊕(D | X1X2)
d x1 x2 .1 ¬d x1 x2 1
d x1 ¬x2 .1 ¬d x1 ¬x2 1
d ¬x1 x2 .1 ¬d¬x1 x2 1
d ¬x1 ¬x2 .1 ¬d¬x1 ¬x2 1

Table 8: Initial possibility distributions ΠG⊕ on D |
X1X2
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X4 D X2 π⊕(X4 | DX2) X4 D X2 π⊕(X4 | DX2)
x4 d x2 .1 ¬x4 d x2 .3
x4 d ¬x2 .9 ¬x4 d ¬x2 .3

¬x4 ¬d x2 .2 ¬x4 ¬d x2 .3
¬x4 ¬d¬x2 1 ¬x4 ¬d¬x2 .2

Table 9: Initial possibility distributions ΠG⊕ on
X4 | DX2

X3 X1 D X4 π⊕(X3|X1DX4) X3 X1 D X4 π⊕(X3|X1DX4)

x3 x1 d x4 .5 ¬x3 x1 d x4 .7
x3 x1 d ¬x4 .5 ¬x3 x1 d ¬x4 1
x3 x1 ¬d x4 .5 ¬x3 x1 ¬d x4 1
x3 x1 ¬d¬x4 .2 ¬x3 x1 ¬d¬x4 1
x3 ¬x1 d x4 .6 ¬x3 ¬x1 d x4 .7
x3 ¬x1 d ¬x4 .6 ¬x3 ¬x1 d ¬x4 1
x3 ¬x1 ¬d x4 .6 ¬x3 ¬x1 ¬d x4 1
x3 ¬x1 ¬d¬x4 .2 ¬x3 ¬x1 ¬d¬x4 1

Table 10: Initial possibility distributions ΠG⊕ on
X3 | X1DX4

So, the min-based possibilistic network ΠG⊕ issued
from the fusion phase can be used to generate opti-
mal decisions by maximizing the qualitative utility
relative to each decision. This computation is en-
sured by applying a propagation process based on
junction tree.

5.2. Computing optimal decisions using
junction trees

The computation of min(πG⊕(ω), πd(ω)) is per-
formed using junction tree algorithm on ΠG⊕. This
junction tree is parameterized by some decision d.
Note that the construction of junction tree is only
done once. However, the propagation and the ini-
tialization (which are both polynomial) are repeated
for each possible decision. The following provides
mains steps of our algorithm:

• Building junction tree J T : min-based
propagation algorithms begin by transforming
the initial graph G⊕ into a junction tree in
three steps [17]:

– Moralization of the initial graph G⊕: con-
sists of the creation of an undirected graph
from the initial one by adding links be-
tween the parents of each variable.

– Triangulation of the moral graph: allows
to identify sets of variables that can be
grouped as clusters noted Ci. Several
heuristics have been proposed in order to
find the best triangular graph which min-
imizes the size of clusters.

– Construction of the optimal junction tree
J T : the junction tree is built by connect-
ing the clusters identified in the previous
step such that all clusters on the path be-
tween any two clusters Ci and Cj should
contain Ci ∩ Cj . Once adjacent clusters

have been identified, between each pair of
clusters Ci and Cj , a separator Sij con-
taining their common variables, will be in-
serted.

This step (building junction tree) is the same
as in standard possibilistic or probabilistic net-
works. However, as we will see the initialization
step is not the same.
• Initialization for a given decision d: once

the junction tree is built, we proceed to its
quantification taking into account the decision
d as follows:

– For each cluster Ci (resp. Sij), πI
Ci
← 1

(resp. πI
Sij
← 1),

– for each variable Xi, select a cluster
Ci containing {Xi} ∪ Par(Xi), πI

Ci
←

min(πI
Ci
, π⊕(Xi | Par(Xi))),

– encode the evidence D = {d} as likelihood
ΛD(d):

ΛD(d) =

{
1 If D is instanciated as d
0 If D is instanciated by a

value diffrent from d
(13)

– identify a cluster Ci containing D: πI
Ci
←

min(πI
Ci
,ΛD)

Note that Equation 13 does not appear in stan-
dard initialization of junction trees associated
with standard min-based possibilistic networks.
It is proper to our framework. By entering the
fact D = {d}, the junction tree J T encodes
πJ T (ω) = min(πG⊕(ω), πd(ω)). Then the qual-
itative utility associated to a decision d is sum-
marized by the following proposition:

Proposition 1 Let ΠKmin = (GK , π) be
a min-based possibilistic network representing
agent’s beliefs and ΠPmin = (GP , µ) be a min-
based possibilistic network representing agent’s
preferences. Let ΠG⊕ = (G⊕, π⊕) be the re-
sult of merging ΠKmin and ΠPmin using the
min operator. Let J T be the junction tree cor-
responding to ΠG⊕ generated using the above
initialization procedure. Then,

u∗(d) = max
ω∈Ω

πJ T (ω). (14)

where u∗(d) is given in Equation 12.

Hence, after the initialization step, the junc-
tion tree really encodes the possibilistic opti-
mistic decision. The next step is used to apply
propagation algorithm in order to efficiently de-
termine the value of u∗(d).
• Global propagation: after the initialization

step of J T , the global propagation is per-
formed in order to make it globally consistent,
namely:

max
Ci\Sij

πt
Ci

= πt
Sij

= max
Cj\Sij

πt
Cj
.
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The global propagation is ensured via a mes-
sage passing mechanism between clusters which
is based on two main phases: collection and dis-
tribution of the evidence [26]. Once stability is
reached, the computation of qualitative utility
relative to a decision d can be achieved as fol-
lows:

Proposition 2 Let ΠKmin = (GK , π) be
a min-based possibilistic network representing
agent’s beliefs and ΠPmin = (GP , µ) be a min-
based possibilistic network representing agent’s
preferences. Let ΠG⊕ = (G⊕, π⊕) be the re-
sult of merging ΠKmin and ΠPmin using the
min operator. Let J T be the junction tree cor-
responding to ΠG⊕ generated using the above
global propagation procedure. Then, the compu-
tation of optimistic decisions amounts to com-
pute a normalization degree of J T :

u∗(d) = max
Ci

πCi . (15)

The optimal optimistic decisions are those
maximizing the qualitative utility. The com-
putation of these optimal optimistic decisions
is obtained using the following algorithm.
Algorithm 1: Computation of optimal opti-
mistic decisions
Data: ΠKmin = (GK , π), a knowledge

possibilistic network,
ΠPmin = (GP , µ), a preferences
possibilistic network,
D = {D1, ..., Dp}, set of decisions.

Result: Decisions, u∗.
begin

ΠG⊕(G⊕, π⊕), fusion of ΠKmin and ΠPmin,
J T , the junction tree issued from ΠG⊕,
i← 1,
Norm← 0, /*normalisation degree*/,
u∗ ← 0, /*the optimistic utility*/,
Decisions← ∅, */optimal optimistic
decisions*/,
for i = 1..p do

Init(J T , di),/*Initialization step*/
Norm← Prog(J T ), /*global
propagation*/
if Norm > u∗ then

Decisions← {di},
u∗ ← Norm,

else
if Norm = u∗ then

Decisions← Decisions ∪ {di}

In algorithm 1, the function Init(J T , d) corre-
sponds to the initialization step. It has two param-
eters: the junction tree J T issued from ΠG⊕ and
a decision d which will parameterize J T .
Similarly, the function P rog(JT ) corresponds to
the global propagation and returns normalization
degree relative to J T .

Example 3 Let us continue Example 2. We
need to compute the optimal optimistic decision
D = {d,¬d}. We first begin by constructing the
junction tree (see Figure 3) associated with the
graph G⊕ (Figure 2) representing the fusion of
ΠKmin and ΠPmin. The resulting junction tree
contains two clusters C1 = {X1, X2, X4, D} and
C2 = {X1, X3, X4, D} and their separator S12 =
{X1, X4, D}.

Figure 3: The junction tree associated with G⊕ of
example 2

For each decision value D = {d,¬d}, we need to
run the propagation algorithm in order to compute
the normalization degree associated with the junc-
tion tree. From the initialization procedure, we get:
πC1 = min(1, π⊕(X1), π⊕(X2), π⊕(X4 | DX2)),
πC2 = min(1, π⊕(X3 | DX1X4),ΛD).
Step 1 (D = {d}): In this case, the fact D = d is
encoded as likelihood as follows:

ΛD(d) =
{

1 If D is instanciated as d
0 If D is instanciated as ¬d

Once the junction tree is quantified, then the global
propagation allows to compute the normalization de-
gree of the junction tree which corresponds to the
normalization degree of any cluster. Using this pro-
cedure, we obtain:

u∗(d) = max
C1

πC1 = max
C2

πC2 = .7

Step 2 (D = {¬d}): We repeat the same proce-
dure described in the previous step, with:

ΛD(¬d) =
{

1 If D is instanciated as ¬d
0 If D is instanciated as d

then, we get:

u∗(¬d) = max
C1

πC1 = max
C2

πC2 = 1

Thus, we can conclude that the optimal decision
D∗ = ¬d with the maximal qualitative utility equal
to 1

6. Conclusion

In this paper, we have first proposed a new graphical
model for representing possibilistic decision making
under uncertainty in compact way using possibilistic
networks. This new graphical model benefits from
existing tools for possibilistic networks. Secondly,
we have proposed a new approach for computing
optimal optimistic decisions in the new possibilis-
tic graphical framework. Our approach first merges
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possibilistic networks associated with available un-
certain knowledge and possibilistic networks asso-
ciated with agent’s preferences. We then showed
that computing optimistic decisions comes down to
compute a normalization degree of the junction tree
associated to the result graph of merging agent’s be-
liefs and preferences networks. This allows an effi-
cient computation of optimal decisions. As a future
work, we plan to apply our solution to deal with the
pessimistic decisions for possibilistic decision prob-
lems.
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