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Abstract-Natural frequency is the most representative damage 
feature in the field of structural damage detection. Nevertheless, 
the functionality of natural frequency to portray damage in noise 
conditions has not been clarified systematically. With this 
concern, this study investigates the performance of natural 
frequency to characterize damage in beams in noisy conditions. 
The investigation is performed based on using natural 
frequencies to estimate the location and depth of a crack with its 
crack flexibility modelled by fracture mechanics principles. 
Sensitivity to damage together with robustness against noise of 
natural frequency is studied through analyzing various crack 
scenarios incorporating noise in measurement. The observations 
obtained can function as a guideline for the reasonable use of 
natural frequencies to locate and quantify damage in beam-type 
structures. 
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I. INTRODUCTION 

Structural damage detection has been a research focus of 
increasing interest in mechanical, civil, aerospace, and military 
fields during the last few decades [1-3]. In the last two decades, 
the identification of cracks in beams based on natural 
frequencies has been increasingly investigated in the structural 
health monitoring community[4, 5]. The most representative 
method of using natural frequencies to identify cracks in a 
beam is the frequency contour method  [6-7]. Despite its 
popularity for characterizing damage, performance assessment 
of natural frequencies in identifying cracks is still pending. In 
essence, several factors influence the capacity of natural 
frequencies to depict damage: (i) as reported in  [8], natural 
frequencies are somewhat insensitive to slight damage [9]; (ii) 
experimentally measured natural frequencies cannot accurately 
reflect the inherent frequencies of structures due to the 
interference of measurement error and uncertainty; (iii) the 
simplifications of beam theories make crack modeling more or 
less inaccurate. These factors may impair the effectiveness of 
natural frequencies in identifying cracks in beams. It is of 
great significance, therefore, to assess the performance of 
natural frequencies in characterizing damage, so as to provide 
a guideline for reasonable use of this feature in practical 
damage diagnosis. 

II. FORMULATION 

Using the transfer matrix method  [10] together with the 
continuity and boundary conditions and Timoshenko beam 
theory, the characteristic equation for vibration of a 
Timoshenko beam with a crack can be represented in the form  
[11]: 
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being the natural angular frequency, E  the modulus of 
elasticity, G  the shear modulus, I  the area moment of inertia, 
ρ  the mass density of the material, A  the cross-sectional area, 

and k the shear coefficient, and y Hα =  and x Lβ = , with 
H  and L being the beam height and beam length, respectively. 

The crack of length h, located at cx L= , can be depicted by 
two dimensionless parameters, crack location ratio, 

i.e., c
e L L= , and crack depth ratio, i.e., h Hη = . θ  is the 

dimensionless crack-sectional flexibility in the form 
26 ( )( ),H

Lfθ πη η= with ( )f η given as  

2 3 4 5 6( ) 0.6384 1.035 3.720 5.1773 7.553 7.332 2.4909.f η η η η η η η= − + − + − +
The characteristic equation described in Eq. (1) is essentially 
an analytical function with respect to natural frequency (ω ), 

crack location ratio (e) and crack depth ratio (η ). For clarity, 
Eq. (1) can be further represented as 
( , , ) 0.F eω η =                                   (4) 

With several natural frequencies inputted into Eq. (4), a 
system of simultaneous characteristic equations (Eq. (4)) can 
be created. Theoretically, solving this system can determine 
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the unknown crack parameters, e  and η . An advanced 
frequency contour method is created and implemented using 
Matlab® language to automatically estimate the crack 
parameters for a beam. This advanced frequency contour 
method includes two distinctive features: (i) the vectorization 
capabilities of Matlab® place a high priority on efficiency in 
calculating the intersection points so as to form all the 
intersectional triangles; and (ii) the centroid of smallest-area 
triangle is utilized to determine the crack parameters. 

III.  PERFORMANCE ASSESSMENT 

A. Crack Modeling 

The performance of natural frequencies in characterizing 
cracks is assessed using the advanced frequency contour 
method. The cantilever beam specimen described by Rizo et al. 
in [9] is considered, for which the elastic and geometric 
properties are: cross-section 20×20 mm2, length 300 mm, 

modulus of elasticity 
112.06 10E = × N/m2, density 

3

7.85 10ρ = × Kg/m3, Poisson ratio 0.3ν = , shear modulus 
107.92 10G = × N/m2, and shear coefficient 

10(1 ) (12 11 )k ν ν= + + . Various crack cases are elaborated 
in light of crack location ratios of  0.2, 0.4, and 0.6, each with 
crack depth ratios 0.1, 0.2, 0.3, 0.4 and 0.5. 

For performance assessment, identifications of cracks at 
various noise levels are implemented. A ε-noise cube is 
proposed to depict the noise effect involved in actual 
experimental measurements. The ε-noise cube is defined by 

* * *
1 1 2 2 3 3(1 ); (1 ); (1 )i   j   k= + ⋅ = + ⋅ = + ⋅ω ω ε ω ω ε ω ω ε    (5) 

where lω
, l=1-3, is the exact first three natural frequencies 

of the cracked Timo-shenko beam model, and 
*
mω

, m=1-3, are 
the possible values arising from actual measurement. 
According to the ε -noise cube, there are eight possible 

deviations of 
*
mω

from lω
, specified by the vertices of the 

cube. Consequently, eight groups of 
*
mω

, m=1-3,  are required 
in light of the ε -noise cube to bound the possible variations of 
measurement for each crack case at a specified level of noise. 

B. Crack Identification 

The procedure of identifying a crack using the advanced 
frequency contour method is implemented independently for 

every crack case. For each case, eight groups of 
*
mω

, m=1-3, 
are produced at a noise level in terms of the ε -noise cube, 
correspondingly giving rise to eight groups of estimates of 

crack parameters, 
*e  and 

*η . These estimates jointly 
characterize the result of crack identification at a certain noise 
level. When noise level ε  varies for ε = 1/1000,  3/1000, 
5/1000, 7/1000, 1/100, 3/100, 5/100, and 6/100, the results of 
crack identification are shown in Figs. 1 and 2. 
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(a) 1/1000ε =  
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(b) 3 /1000ε =  
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(c) 5 /1000ε =  
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(d) 7 /1000ε =  

FIGURE I. IDENTIFICATION OF CRACKS AT NOISE LEVELS 
ε = 1/1000, 3/1000, 5/1000,7/1000, WHERE ‘+’ DENOTES THE ACTUAL 

CRACK, AND ‘○’,‘◊’, AND ‘ ∆’ DENOTE THE  IDENTIFIED 
CRACKS AT E = 0.2, 0.4, AND 0.6, RESPECTIVELY. 
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(e) 1 /100ε =  
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(f) 3 /100ε =  
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(g) 5 /100ε =  
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(h) 6 /100ε =  

FIGURE II. IDENTIFICATION OF CRACKS AT NOISE LEVELS 
ε = 1/100, 3/100, 5/100, AND 6/100, WHERE ‘+’ DENOTES THE 

ACTUAL CRACK, AND ‘○’,‘◊’, AND ‘ ∆’ DENOTE THE IDENTIFIED 
CRACKS AT E = 0.2, 0.4, AND 0.6, RESPECTIVELY. 

From Figure.1 and 2 , several observations can be derived: 

(1) Accuracy of crack identification gradually decreases 
with the increase in noise level; 
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(2) Accuracy of crack identification progressively 
increases with the increase in crack depth;  

(3)When the noise level exceeds 3/1000, the frequency 
contour method is basically incapable of identifying a crack 
with a crack depth ratio less than 0.1; and 

(4)When the noise level exceeds 3/100, the frequency 
contour method is unable to identify a crack with a crack depth 
ratio less than 0.3. 

IV.  CONCLUSIONS  

In the field of structural health monitoring, most existing 
studies address the merits of natural frequency in depicting 
cracks, whereas few investigations concern the capability of 
natural frequency to identify cracks in noisy conditions. This 
study demonstrates the performance of natural frequency in 
characterizing cracks in  noisy conditions. The results indicate 
quantitatively that natural frequencies, as global dynamic 
properties of a structure, are somewhat insensitive to local 
slight damage. The outcome of this study provides a guideline 
for rational use of natural frequencies to identify cracks in 
actual beam-type structures. 
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