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Several quantities related to the Zernike circle polynomials admit an expression, via the basic identity in the diffraction theory of Nijboer
and Zernike, as an infinite integral involving the product of two or three Bessel functions. In this paper these integrals are identified and
evaluated explicitly for the cases of (a) the expansion coefficients of scaled-and-shifted circle polynomials, (b) the expansion coefficients
of the correlation of two circle polynomials, (c) the Fourier coefficients occurring in the cosine representation of the radial part of the circle
polynomials. [DOI: 10.2971/jeos.2011.11028]
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1 INTRODUCTION

Zernike circle polynomials are extensively used in the char-
acterization of circular optical imaging systems with non-
uniform pupil functions [1]–[8], and, more recently, for the
computation of acoustical quantities arising from harmoni-
cally excited, baffled-piston radiators with non-uniform veloc-
ity profiles [9]–[11]. The circle polynomials were introduced
by Zernike [12] in connection with the knife-edge test and
his phase-contrast method and they play a fundamental role
in Nijboer’s thesis [13] (also see Ch. 9 in [1]), on the diffrac-
tion theory of aberrations where they were investigated in de-
tail. Nowadays, the circle polynomials find wide-spread ap-
plication in optical lithography, astronomy, ophthalmology
and other fields dealing with diffraction phenomena involv-
ing non-uniformities in a circular, finite setting.

The circle polynomials are given for integer m, n with n− |m|
even and non-negative by

Zm
n (ρ, ϑ) = R|m|n (ρ) eimϑ , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ < 2π , (1)

where the radial polynomials R|m|n are given by

R|m|n (ρ) = ρ|m| P(0,|m|)
n−|m|

2

(2ρ2 − 1) , (2)

with P(α,β)
k the general Jacobi polynomial as in [18], Ch. 22.

The circle polynomials are complete and orthogonal on the
unit disk

{(ρ cos θ, ρ sin θ) = (ν, µ) | 0 ≤ ρ2 = ν2 + µ2 ≤ 1,

0 ≤ θ < 2π},

and can therefore be used to expand any pupil function P(ρ, θ)

that is defined on and square integrable over the unit disk. Be-
sides being complete and orthogonal, the circle polynomials
possess a particular convenient form, in terms of Jinc func-
tions (see Eq. (5) below), for their Fourier transforms. This

result, which we shall call the basic identity of the Nijboer-
Zernike theory of optical aberrations (basic NZ-result, for
short) was given by Zernike in [12] and applied by Nijboer
in [13] to compute the optical point-spread function in and
near the best-focus plane for mildly aberrated, circular op-
tical systems with low-to-medium numerical aperture (NA).
The Nijboer-Zernike approach to point-spread computation
has been extended in recent years to cover the whole focal re-
gion for systems with arbitrarily high NA including the state
of polarization and birefringence, see [14]–[17] and [4] where
a survey is given.

The basic NZ-result has yielded several useful analytic results
in a variety of optical applications. In [5], this result is applied
to derive expressions for the derivatives of the radial polyno-
mials, with application to atmospheric turbulence. In [19, 22],
a formula for the Zernike expansion coefficients of a scaled
pupil in terms of the coefficients of the unscaled pupil is de-
rived. This formula is based on a concise expression for scaled
radial polynomials in terms of unscaled radial polynomials,
see Eq. (8) below, the proof of which is of similar nature as the
one given in [5] and heavily depends on the basic NZ-result.
Results on pupil scaling find applications in optical lithogra-
phy, where the NA of the optical system may be decreased
deliberately for imaging enhancement of particular structures,
and in ophthalmology, where pupil scaling is studied as a nat-
ural attribute of the human eye pupil, see [7] and [20].

The basic NZ-result can also be used to express the Radon
transform (the integral along a line of arbitrary distance p to
the origin and arbitrary angle φ of the normal with the ν-
axis) of the circle polynomials, see Eq. (9) below. This result
is used in [21] to obtain a computation scheme of the DFT-
type, with the inherent efficiency and accuracy that come with
DFT-algorithms, for the circle polynomials of arbitrarily large
degree n and order m, see Eq. (10) below. Eq. (10) was derived
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by a different method in [23], while Eq. (9) was presented al-
ready in [24] by Cormack in a medical imaging context.

In [25, 26], the problem of computing the Zernike expansion
coefficients of the optical transfer function (OTF) from the co-
efficients of the pupil function is tackled using the basic NZ-
result. This gives rise to integrals involving the product of
three Bessel functions for which there are presented recursion
relations in [26].

In the present paper, we give analytic solutions to three prob-
lems in optics using the basic NZ-result. All these problems
have as a common feature that they give rise, via the basic
NZ-result, to integrals involving the product of three Bessel
functions that can be evaluated in analytic form. These prob-
lems / solutions concern

• determining the Zernike expansion of an arbitrary
scaled-and-shifted circle polynomial, extending the pure
scaling results in [19, 22],

• finding the Zernike expansion of the OTF in terms of the
expansion coefficients of the pupil function, thereby solv-
ing the problem in [25, 26] completely analytically,

• finding the Fourier expansion coefficients of the radial
polynomials in which the radial variable ρ, 0 ≤ ρ ≤ 1,
is replaced by the numerically more convenient variable
cos x, 0 ≤ x ≤ π/2.

In the next section these three problems are described and mo-
tivated in more detail. A fourth problem that gives rise, via
the basic NZ-result, to integrals of the product of three Bessel
functions, is the computation of the spatial impulse responses
that occur in baffled-piston acoustic radiation using Zernike
expansion of flexible membranes. This problem is discussed
in [27] and [28], Sec. 6.

2 Basic formulas and overview

The circle polynomials are given for integer m, n with n− |m|
even and non-negative by Eq. (1) and (2). It is customary to
refer to n as the degree and to m as the azimuthal order of Zm

n .
The circle polynomials form a complete orthogonal system of
functions on the disk 0 ≤ ρ ≤ 1, with Zm

n (1, ϑ) = eimϑ, which
implies that

R|m|n (1) = 1 , (3)

and the orthogonality property reads explicitly

1∫
0

2π∫
0

Zm
n (ρ, ϑ)((Zm′

n′ (ρ, ϑ))∗ ρ dρ dϑ =
π

n + 1
δmm′ δnn′ (4)

with δ Kronecker’s delta. In the sequel it will be convenient to
set R|m|n = Zm

n ≡ 0 for integer values of m, n such that n− |m|
is odd or negative.

A crucial property of the circle polynomials for diffraction the-
ory is that their Fourier transform has the particular simple

form ∫ ∫
ν2+µ2≤1

e2πiνx+2πiµy Zm
n (ρ, ϑ) dν dµ

=

1∫
0

2π∫
0

e2πiρr cos(ϑ−ϕ) R|m|n (ρ) eimϑ ρ dρ dϑ

=2πin Jn+1(2πr)
2πr

eimϕ ,

(5)

where we have written ν+ iµ = ρ eiϑ and x+ iy = r eiϕ. Equiv-
alently, in terms of Hankel transforms (of order m), we have
(using Jm(z) = im−|m| J|m|(z))

1∫
0

R|m|n (ρ) Jm(2πrρ) ρ dρ = (−1)
n−m

2
Jn+1(2πr)

2πr
. (6)

This is the basic NZ-result as given in [12], Eq. (23) and [13],
Eq. (2.20).

By Fourier inversion in Eq. (5), using Hankel transforms of
order m, it is seen that

R|m|n (ρ) = (−1)
n−|m|

2

∞∫
0

Jn+1(u) J|m|(ρu) du, 0 ≤ ρ < 1. (7)

This result, often attributed to Noll [5], is shown in [12] to fol-
low from the discontinuous Weber-Schafheitlin integral, see
[18], 15.4.6 on p. 561. The integral on the right-hand side of
Eq. (7) converges uniformly in any closed set of ρ ≥ 0 not con-
taining 1, see Appendix A, and its value for ρ > 1 is 0. Thus
the equality in (7) holds pointwise and not just in an L2-sense.
Also see [19], Appendix, Sec. A.1.1 for a discussion of the re-
sult in Eq. (7).

The results in Eqs. (6), (7) are basic to the proof of a number
of results of the circle polynomials and their radial parts. In
[5], the result in Eq. (7) was used to derive expressions for the
derivative of Rm

n in terms of R-polynomials of azimuthal or-
ders m± 1 by employing recurrence relations for Bessel func-
tions and their derivatives. In [19]–[22], the two results in
Eqs. (6), (7) were combined with recursion properties of the
Bessel functions to produce the scaling formula

Rm
n′ (ερ) =∑

n
(Rn

n′ (ε)− Rn+2
n′ (ε)) Rm

n (ρ)

=
1
ε ∑

n

n + 1
n′ + 1

(Rn+1
n′+1(ε)− Rn+1

n′−1(ε)) Rm
n (ρ)

(8)

Here m = 0, 1, ... , n′ = m, m+ 2, ... , and the summation is over
n = m, m + 2, . . . , n′ in which we recall the convention that
Rn′+2

n′ = Rn′+1
n′−1 ≡ 0 for the last term in either series. Although

Eq. (8) is normally used for ε, ρ ∈ [0, 1], it should be empha-
sized that they are valid for all complex values of ε and ρ by
analyticity. The result in Eq. (8) is of interest to both the litho-
graphic community and the ophthalmological community, see
[7], [8], [19]-[20].

In [21], the formula

Rm
n (p, ϕ) =

2
n + 1

(1− p2)1/2 Un(p) eimϕ ,

where 0 ≤ p ≤ 1, 0 ≤ ϕ < 2π ,

(9)
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for the Radon transform of Zm
n (ρ, ϑ) is used to show that

Rm
n (ρ) =

1
N

N−1

∑
k=0

Un

(
ρ cos

2πk
N

)
cos

2πmk
N

,

where 0 ≤ ρ ≤ 1 .

(10)

Here m = 0, 1, ... and N is any integer > n + m, and Un is the
Chebyshev polynomial of degree n and second kind. This for-
mula is interesting since it gives the Rm

n (ρ) for m + n < N in
the form of a discrete cosine transform, also see [23]. The re-
sult in Eq. (9) was discovered by Cormack in [24], but a proof
can also be based on the result in Eqs. (6), (7) and the con-
nection between Bessel functions and Chebyshev polynomials
through the Fourier transform, see [18], 11.4.24–25 on p. 486.

In the present paper a number of new applications of the re-
sults in Eqs. (6), (7) are presented. A common feature of the
problems we consider is that they all give rise to infinite inte-
grals involving the product of three Bessel functions. In Sec-
tion 3 we consider the problem of finding the Zernike expan-
sion of scaled-and-shifted circle polynomials. That is, given
a ≥ 0, b ≥ 0 with a + b ≤ 1, we give explicit expressions, in-
volving Jacobi polynomials, for the coefficients Kmm′

nn′ (a, b) in
the expansion

Zm
n (a + bρ′eiϑ′ ) = ∑

n′ ,m′
Kmm′

nn′ (a, b) Zm′
n′ (ρ

′eiϑ′ ) ,

where 0 ≤ ρ′ ≤ 1 , 0 ≤ ϑ′ < 2π ,
(11)

see Fig. 1 for the relation between the radial and angular vari-
ables of the full, centralized pupil and the reduced, shifted
pupil.

a

ρ

θ θ `

ρb `

a+b 1

P

ρ ``P=  e   =a+  be  θθi iρ

FIG. 1 Centralized, full pupil ρ eiϑ , 0 ≤ ρ ≤ 1, 0 ≤ ϑ < 2π, and shifted and reduced

pupil a + b ρ′ eiϑ′ , 0 ≤ ρ′ ≤ 1, 0 ≤ ϑ′ < 2π, where a ≥ 0, b ≥ 0, a + b ≤ 1.

This result generalizes the scaling formulas in Eq. (8) which
is the case with a = 0 in Eq. (11). Furthermore, it gives the
analytic solution of the transformation problem for the aber-
ration coefficients of an eye pupil when the pupil is scaled
and displaced. This problem has a long history in the oph-
thalmological community, see [7] and [20] for recent work and
survey material, but no closed-form solution seems to have
been found thus far. Moreover, by expressing the scaled-and-
shifted polynomials as linear combinations of the orthogonal
terms Zm′

n′ one has a handle, via the transformation matrix ele-
ments Kmm′

nn′ (a, b), to tackle the important problem of assessing
the condition of a finite set of circle polynomials when they are
restricted to subdisks of the unit disk.

In Section 4 we consider the problem of computing the
Zernike expansion coefficients of the correlation of two circle
polynomials. Having these expansion coefficients available
is of great interest when calculating transfer functions in
optical imaging, see [29], [30] for early work and motiva-
tion concerning this problem in computational optics. The
complex pupil function of the lens is expanded as a series
involving the circle polynomials. The resulting series with the
appropriate Zernike coefficients represent the amplitude and
phase of the complex pupil function, including wavelength
shift and defocusing. Through the analytic expression for
the expansion coefficients of the correlation of two circle
polynomials, one has direct access to the optical transfer
function over the full bandwidth of the imaging system.
This mathematical device is very attractive when calculating,
for instance, the pattern transfer in high-resolution optical
lithography. Hence, when m, n, m′, n′ are integers such that
n − |m| and n′ − |m′| are even and non-negative, and when
we denote for two functions Z, Z′ ∈ L2(R2) the correlation

(Z ∗ ∗corr Z′)(ν, µ) =
∫ ∫ [

Z(ν + ν1, µ + µ1)

× (Z′)∗(ν1, µ1)
]

dν1 dµ1 ,
(12)

we are interested in finding the numbers Γmm′m′′
nn′n′′ such that

(n + 1)(n′ + 1)
π2 (Zm

n ∗ ∗corr Zm′
n′ )(ρ, ϑ)

= ∑
n′′ ,m′′

n′′ + 1
4π

Γmm′m′′
nn′n′′ Zm′′

n′′ (
1
2 ρ, ϑ) .

(13)

Note that Zm
n ∗ ∗corr Zm′

n′ is supported by the disk around 0 of
radius 2 and this requires Zm′′

n′′ (
1
2 ρ, ϑ) at the right-hand side of

Eq. (13). This problem has been considered in the optical con-
text by Kintner and Sillitto in [25], [26] in the interest of com-
puting the optical transfer function (OTF) from the Zernike ex-
pansion of the pupil function. In [25], [26] a number of results
is obtained for the quantities Γ, but no closed-form solution is
given as we obtain here. Moreover, the values of the left-hand
side of Eq. (13) are expressed here as integrals involving the
product of three Bessel functions.

In optical simulations and/or experiments, a judicious choice
of sampling points is important. It now turns out that replac-
ing the radial variable ρ, 0 ≤ ρ ≤ 1, by cos x, 0 ≤ x ≤ π/2,
has the effect that the variation of the radial polynomials R|m|n
is spread out uniformly over the x-range (see Figure 5 in Sec-
tion 7). This suggests an adequate pupil sampling strategy.
In [31], Subsec. 2.4, a matching procedure, using a separable
set of sampling points (ρk, ϑl) on the disk, for estimating the
Zernike expansion coefficients of a pupil from its values at the
sampling points is proposed. It turns out that choosing the
radial sampling points as cos x, with uniformly spaced x be-
tween 0 and π/2, produces near-optimal results, in the sense
that the resulting method competes with Gaussian quadrature
for all relevant azimuthal orders m simultaneously. The fact
that the variation of R|m|n is spread uniformly over the x-range
suggests, furthermore, to apply this substitution when inte-
grals, involving the product of a radial polynomial and a func-
tion obtained from the pupil function after azimuthal integra-
tion, have to be computed. All this motivates consideration in
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Section 5 of the third problem: Finding the Fourier coefficients
of the radial polynomials R|m|n in their cosine-representation.
Here we aim at finding the Fourier coefficients am

nk in the rep-
resentation

R|m|n (cos x) =
bn/2c

∑
j=0

am
n,n−2j cos(n− 2j) x . (14)

The am
nk will be found explicitly, and from this result it is seen

that they are all non-negative. It then follows from Eq. (3) that

|R|m|n (ρ)| ≤
bn/2c

∑
j=0

am
n,n−2j = R|m|n (1) = 1 , 0 ≤ ρ ≤ 1 . (15)

That |R|m|n (ρ)| ≤ 1, 0 ≤ ρ ≤ 1, was proved by Szegö, see [32],
7.2.1 on p. 164 and the references given there, and the non-
negativity of the am

nk was established earlier by Koornwinder
[33], Corollary 6.2 on p. 113, as was communicated to the au-
thor by Erik Koelink [34]. The explicit form of the am

nk does not
seem to have been noted before. With the explicit result for the
am

nk available, the computation of the above mentioned inte-
grals can be done directly and very explicitly by choosing the
appropriate sampling points, of the form cos x with equidis-
tant x, and using, for instance, DCT-techniques. The fact that
the am

nk, being all non-negative with sum over k equal to 1, are
all small, renders this approach intrinsic stability.

A word about the notation. We identify complex numbers z
with their polar representation ρ eiϑ or their Cartesian repre-
sentation ν + iµ, whatever is most convenient in a particular
setting. Thus we write things like

Zm
n (a + ρ′ b eiϑ′ ) , Zm

n (ν, µ) (16)

to denote Zm
n (ρ, ϑ) = R|m|n (ρ) eimϑ in which

a + ρ′ b eiϑ′ = ν + iµ = z = ρ eiϑ (17)

with a, b ≥ 0, a + b ≤ 1; 0 ≤ ρ′ ≤ 1, 0 ≤ ϑ′ < 2π; ν, µ ∈ R,
ν2 + µ2 ≤ 1; 0 ≤ ρ ≤ 1, 0 ≤ ϑ < 2π.

3 Scaled-and-shifted Zernike circle
polynomials

We shall prove the following result.

Theorem 3.1. Let a ≥ 0, b ≥ 0 with a + b ≤ 1, and let
n, m be integers with n− |m| even and non-negative. Then

Zm
n (a + b ρ′ eiϑ′ ) = ∑

n′ ,m′
Kmm′

nn′ (a, b) Zm′
n′ (ρ

′eiϑ′ ) ,

where 0 ≤ ρ′ ≤ 1 , 0 ≤ ϑ′ ≤ 2π ,
(18)

where for n = |m|, |m|+ 2, ... , n′ = |m′|, |m′|+ 2, ...

Kmm′
nn′ (a, b) = Tmm′

nn′ (a, b)− Tmm′
n,n′+2(a, b) . (19)

Here

Tmm′′
nn′′ = (−1)p−p′′

∞∫
0

Jm−m′′ (au) Jn′′ (bu) Jn+1(u) du. (20)

In the case when n− n′′ ≥ m−m′′ ≥ 0, we have

Tmm′′
nn′′ =

(q+p′′)! (p−p′′)!
(q−q′′)! (p+q′′)!

am−m′′bn′′

× P(m−m′′ ,n′′)
p−p′′ (1−2A2)P(m−m′′ ,n′′)

p−p′′ (2B2−1).
(21)

In the case when n− n′′ ≥ m′′ −m ≥ 0, we have

Tmm′′
nn′′ =

(p+q′′)! (q−q′′)!
(p−p′′)! (q+p′′)!

am′′−mbn′′

× P(m′′−m,n′′)
q−q′′ (1−2A2) P(m′′−m,n′′)

q−q′′ (2B2−1).
(22)

In any other case, we have

Tmm′′
nn′′ = 0. (23)

In Eqs. (20)–(22) we have written

p =
n−m

2
, q =

n + m
2

,

p′′ =
n′′ −m′′

2
, q′′ =

n′′ + m′′

2
.

(24)

Furthermore, P(γ,δ)
k (x) is the general Jacobi polynomial as in

[18], Ch. 22 of degree k = 0, 1, ... corresponding to the weight
function (1− x)γ(1 + x)δ on the interval [−1, 1]. Finally,

1− 2A2 =
[
(1− (a + b)2)(1− (a− b)2)

]1/2

− (a + b)(a− b) , (25)

2B2 − 1 =−
[
(1− (a + b)2)(1− (a− b)2)

]1/2

− (a + b)(a− b) . (26)

Alternatively, we have

A = sin α , B = sin β (27)

with α ≥ 0, β ≥ 0 such that α + β ≤ π/2 and

a = sin α cos β , b = cos α sin β . (28)

That is, A and B can be obtained from the geometrical picture
in Figure 2 where γ ∈ [π

2 , π] is such that sin γ = a + b.

a
βα

γ

b

AB

FIG. 2 Geometric definition of angles α, β, γ and side lengths A, B from a ≥ 0, b ≥ 0,

a + b ≤ 1 in accordance with Eqs. (27), (28) and the rule of sines

sin α/A = sin β/B = sin γ/(a + b) = 1 .

Proof. By completeness and orthogonality of the circle poly-
nomials, see Eq. (4), we have that

Kmm′
nn′ (a, b) =

n′ + 1
π

1∫
0

2π∫
0

[
Zm

n (a + b ρ′ eiϑ′ )

× (Zm′
n′ (ρ

′eiϑ′ ))∗ ρ′ dρ′ dϑ′
]

.

(29)
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We write ρ eiϑ = a + ρ′ b eiϑ′ in which ρ and ϑ are depending
on ρ′, ϑ′ with 0 ≤ ρ′ ≤ 1, 0 ≤ ϑ′ ≤ 2π. Then we get

Kmm′
nn′ (a, b) =

n′ + 1
π

1∫
0

2π∫
0

[
R|m|n (ρ(ρ′, ϑ′))

× eimϑ(ρ′ ,ϑ′) R|m
′ |

n′ (ρ′) e−im′ϑ′ ρ′ dρ′ dϑ′
]

.

(30)

We now use Eq. (7) to rewrite R|m|n (ρ(ρ′, ϑ′)) in integral form
and change the order of integration; this is allowed on account
of Appendix A where we show that the integral on the right-
hand side of Eq. (7) converges boundedly for all ρ ≥ 0 and
uniformly, to (−1)(n−|m|)/2 R|m|n (ρ), on any set [0, 1− ε] with
ε > 0. Therefore,

Kmm′
nn′′ (a, b) =

n′ + 1
π

(−1)
n−|m|

2

∞∫
0

Jn+1(u)

×
[ 1∫

0


2π∫
0

J|m|(uρ(ρ′, ϑ′)) eimϑ(ρ′ ,ϑ′) e−im′ϑ′ dϑ′


× R|m

′ |
m (ρ′) ρ′ dρ′

]
du .

(31)

U

V

W

γ

χ

FIG. 3 Geometric relation between angles χ, γ and side lengths U, V, W for Eq. (32).

We use the addition theorem of Graf, see [18], 9.1.79 on p. 363,

Cl(W) eilχ =
∞

∑
k=−∞

Cl+k(U) Jk(V) eikγ (32)

for integer l and C = J, where W, U, V, χ and γ are related
as in the picture in Figure 3. With the variables ρ′, ϑ′, ρ, ϑ as
in the integral in Eq. (31) and displayed in Figure 1, we use
Eq. (32) with

W = u ρ(ρ′, ϑ′) , U = ua , V = u ρ′ b ,

χ = ϑ(ρ′, ϑ′) , γ = π − ϑ′,
(33)

where we note by the comments in [18] after 9.1.79 and 9.1.80
on p. 363 that Eq. (32) can be used without any further restric-
tion on U, V, W. Then we get

Jm(uρ(ρ′, ϑ′)) eimϑ(ρ′ ,ϑ′)

=
∞

∑
k=−∞

Jm+k(ua) Jk(u ρ′ b) eik(π−ϑ′) .
(34)

Hence, in the case that m ≥ 0,

2π∫
0

Jm(uρ(ρ′, ϑ′)) eimϑ(ρ′ ,ϑ′) e−im′ϑ′ dϑ′

= 2π(−1)m′ Jm−m′ (ua) J−m′ (u ρ′ b)

= 2π Jm−m′ (ua) Jm′ (u ρ b) ,

(35)

and so

Kmm′
nn′ (a, b) = 2(n′ + 1)(−1)

n−m
2

∞∫
0

{
Jn+1(u) Jm−m′ (ua)

×

 1∫
0

Jm′ (u ρ′ b) R|m
′ |

n′ (ρ′) ρ′ dρ′

 du

}
.

(36)

Using Eq. (34) for m < 0 and noting that
J|m|(z) = (−1)m Jm(z) while

(−1)
n−|m|

2 (−1)m = (−1)
n−m

2 (37)

for m < 0, it is seen that Eq. (36) holds for all integer m.

Next we use Eq. (6) with m′, n′, ub instead of m, n, 2πr to
rewrite the integral in [ ] in Eq. (36), and we obtain

Kmm′
nn′ (a, b) = 2(n′ + 1)(−1)

n+n′−m−m′
2

×
∞∫

0

Jn+1(u) Jm−m′ (ua) Jn′+1(ub)
ub

du .
(38)

Using [18], first item in 9.1.27 on p. 361,

Jn′+1(z)
z

=
1

2(n′ + 1)
(Jn′ (z) + Jn′+2(z)) , (39)

it then follows that

Kmm′
nn′ (a, b) = (−1)

n+n′−m−m′
2

×
[ ∞∫

0

Jn+1(u) Jm−m′ (ua) Jn′ (ub) du

+

∞∫
0

Jn+1(u) Jm−m′ (ua) Jn′+2(ub) du
]

,

(40)

and this establishes the equality in Eq. (19) with T’s given in
integral form in Eq. (20). The identities in Eq. (21)-(23) follow
from an application of a result of Bailey, the administrative
details of which are deferred to Section 6.

We now list some special cases of Theorem 3.1.
— a = 0. This gives the result of the scaling theory as de-
veloped in [19], [22], also see Eq. (8). To see this, note that in
Eqs.(27), (28) we have

A = a = α = 0 , B = b = sin β , (41)

and in Eqs. (19),(20) only the cases with m = m′ give non-zero
results. Furthermore,

P(0,n′)
k (1) = 1 , bn′ P(0,n′)

k (2b2 − 1) = Rn′
n′+2k(b) , (42)

and, see Eq. (24),

p + q′ = p′ + q , p− p′ = q− q′ (43)

since m = m′. Plugging all this in into Eq. (21) yields Eq. (8).

— b = 0. Only n′ = 0 gives non-zero results in Eqs. (19),(20)
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and then also m′ = 0 (since |m′| ≤ n′). Now we have in
Eqs.(27), (28)

A = a = sin α , B = b = β = 0 , (44)

and, see Eq. (24),

q + p′ = q− q′ , p− p′ = p + q′ (45)

since p′ = q′ = m′ = n′ = 0. Thus, when m ≥ 0, Eq. (21)
yields

am P(m,0)
p (1− 2a2) P(m,0)

p (−1)

= am P(0,m)
p (2a2 − 1)

= Rm
m+2p(a) = Rm

n (a) ,

(46)

where we have used that

P(γ,δ)
k (−x) = (−1)k P(δ,γ)

k (x) , P(0,m)
p (1) = 1 . (47)

Therefore, we have in Eq. (18) with b = 0 the trivial represen-
tation

Zm
n (a) = Rm

n (a) Z0
0(ρ
′) , 0 ≤ ρ′ ≤ 1 , 0 ≤ ϑ′ ≤ 2π , (48)

with a similar result in the case that m ≤ 0.
— a + b = 1. We have in Eq. (27),(28) in this limit case

α + β = π/2 , A = sin α , B = cos α ,

1− 2A2 = 2B2 − 1 = cos 2α .
(49)

As a consequence, all T’s are non-negative.

A further interesting observation is that

Kmm′
nn′ (a, b) 6= 0⇒ |m′| ≤ n′ ≤ n− |m−m′| . (50)

Hence, a Zernike circle polynomials Zm
n can be identified from

the set of integer pairs (m′, n′) corresponding to non-zero co-
efficients when Zm

n is scaled and shifted. In Subsection 7.1, a
detailed computation based on Theorem 3.1 of the Zernike ex-
pansion of the scaled-and-shifted circle polynomial Z0

4 is pre-
sented.

The validity of the identities (21)-(23) for T in Theorem 3.1 will
now be shown to extend to all complex values of a and b. First
assume that a ≥ 0, b ≥ 0, a + b ≤ 1. We have from Eqs. (1), (2)
that

Zm
n (ρ eiϑ) = (ρ e±iϑ)|m| P(0,|m|)

n−|m|
2

(2ρ2 − 1) , (51)

where ± = sgn(m). Since

ρ e±iϑ = a + b ρ′ e±iϑ′ ,

ρ2 = a2 + b2(ρ′)2 + 2ab ρ′ cos ϑ′ ,
(52)

we have that

Zm
n (a + b ρ′ eiϑ′ ) =

n+|m|
2

∑
k=− n−|m|

2

pk(ρ
′ ; a, b) e±ikϑ′ , (53)

where pk(ρ
′ ; a, b) depends polynomially on ρ′, a and b. On the

other hand, from Eqs. (25), (26), we have that for any polyno-
mial p

p(1− 2A2) p(2B2 − 1) = p(−x + y)p(−x− y) (54)

is an even function of y = ((1− (a + b)2)(1− (a− b)2))1/2 for
any value of x = (a + b)(a− b). Consequently, the right-hand
side of Eq. (54) contains only even powers of y. We conclude
that any of the T’s considered in Eqs. (21)-(23) depends poly-
nomially on a and b. Hence, the relation in Eq. (18) extends to
all a, b ∈ C by analyticity in which Zm

n (a+ bρ
′
eiϑ′ ) at the right-

hand side of Eq. (18) is to be replaced by the analytic extension
Wm

n (a, b, ρ′, ϑ′) of the right-hand side of Eq. (53) to all complex
values of a, b and ρ′ with 0 ≤ ϑ′ < 2π. Note that for general
complex a, b, ρ′ and ϑ′, 0 ≤ ϑ′ < 2π,

Wm
n (a, b, ρ′, ϑ′) = Zm

n (a + bρ′eiϑ′ ) (55)

does not need to hold even when |a + bρ′eiϑ′ | ≤ 1. For in-
stance, when α is real and; 0 ≤ ρ′ ≤ 1, 0 ≤ ϑ′ < 2π with
(a = 0, b = exp(iα) in Eq. (55)), we have

Wm
n (0, eiα, ρ′, ϑ′) = (eiαρ′e±iϑ′ )|m|R|m|n (eiαρ′) (56)

while
Zm

n (eiαρ′eiϑ′ ) = (ρ′e±i(ϑ′+α))|m|R|m|n (ρ′) . (57)

We do have equality in Eq. (55) when a and b are real and
ρ′ ≥ 0, 0 ≤ ϑ′ < 2π, and the definition of Zm

n in Eqs. (1), (2) is
used with general ρ ≥ 0. Accordingly, Theorem 3.1 is valid for
all real a and b, with Zm

n defined as in Eqs. (1), (2) with general
ρ ≥ 0.

An important consequence of this extension is that now also
the transformation matrices (Kmm′

nn′ (−a/b, 1/b)) correspond-
ing to the inverse transformation z 7→ −a/b + z/b can be con-
sidered. Accordingly, when the degrees n, n′ are restricted to a
finite set {0, ..., N}, the matrices corresponding to z 7→ a + bz
and z 7→ −a/b + z/b are each other’s inverse. Having ex-
panded the scaled-and-shifted circle polynomials in terms of
the orthogonal functions Zm′

n′ , we have now the opportunity
to deal with the problem of assessing the condition of the set
of circle polynomials of maximal degree N as a linear sys-
tem when they are restricted to an arbitrary disk in the plane.
Indeed, the condition number is given as the square-root of
the ratio of the largest and smallest eigenvalue of the Gram-
mian matrix, and this Grammian matrix and its inverse are
expressible in terms of the appropriate transformation matri-
ces (Kmm′

nn′ (a, b)). Such an effort is already worthwhile for the
case of restriction of circle polynomials to a disk ρ ≤ ε with
ε < 1 (pure scaling), and the author has found for this case
useful and simple estimates for the magnitude of these condi-
tion numbers. This case is much simpler than the general case
since the transformation matrices decouple per m, while the
issue of analytic extension can be considered on the level of
Eq. (8) that extends to all complex ε and ρ.

We finally note that the approach, via the basic NZ-result and
Eq. (34), to prove Theorem 3.1 can be used to derive an ad-
dition theorem in which the general scaled-and-shifted circle

polynomial Zm
n (a + bρ

′
eiθ
′
) is expressed as a finite Fourier se-

ries in θ
′

where the Fourier coefficients are (again) in the form
of the integral of the product of three Bessel function. This ad-
dition theorem generalizes the familiar one for the Legendre
polynomials (m = 0).
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4 Zernike expansion of the optical
transfer function

In this section we assume that we have expanded the general-
ized complex pupil function P(ρ, ϑ) (vanishing outside ρ ≤ 1)
as

P(ρ, ϑ) = ∑
n,m

n + 1
π

γm
n Zm

n (ρ eiϑ) ,

where 0 ≤ ρ ≤ 1 , 0 ≤ ϑ < 2π ,
(58)

with coefficients γm
n that can be obtained by using orthogo-

nality of the Zm
n . Writing ν + iµ = ρ eiϑ with ν, µ ∈ R and

identifying P(ν, µ) ≡ P(ρ, ϑ), compare end of Section 2, it
is required to find the Zernike expansion of the OTF (optical
transfer function)

(P ∗ ∗corr P)(ν, µ) =
∫ ∫ [

P(ν + ν1, µ + µ1)

× P∗(ν1, µ1) dν1 dµ1

] (59)

that vanishes outside the set ν2 + µ2 ≤ 4, see Figure 4.
Thus, considering the expansion in Eq. (58), it is required to
compute (the Zernike expansion of) Zm

n ∗ ∗corr Zm′
n′ for integer

n, m, n′, m′ with n− |m| and n′ − |m′| even and non-negative.
We maintain the p, q-notation of Eq. (24).

Theorem 4.1. We have, with ν + iµ = ρ eiϑ and 0 ≤ ρ ≤ 2,

(Zm
n ∗ ∗corr Zm′

n′ )(ν, µ) = 2π(−1)p−p′

× ei(m−m′)ϑ
∞∫

0

Jn+1(u) Jn′+1(u) Jm−m′ (ρu)
u

du ,
(60)

and

(n + 1)(n′ + 1)
π2 (Zm

n ∗ ∗corr Zm′
n′ )(ρ eiϑ)

= ∑
n′′ ,m′′

n′′ + 1
4π

Γmm′m′′
nn′n′′ Zm′′

n′′ (
1
2 ρ eiϑ) ,

(61)

where Γ is non-vanishing for m′′ = m − m′ only, and in that
case

Γmm′m′′
nn′n′′ =8(n + 1)(n′ + 1)(−1)

n−n′−n′′
2

×
∞∫

0

Jn+1(u) Jn′+1(u) Jn′′+1(2u)
du
u2 .

(62)

Proof. We have by Parseval’s theorem and Eq. (5) that (F de-
notes the Fourier transform)

(Zm
n ∗ ∗corr Zm′

n′ )(ν, µ)

=
∫ ∫
F [Zm

n (ν + ·, µ + ·)](x, y) (F Zm′
n′ )
∗(x, y) dx dy

=
∫ ∫

e−2πiνx−2πiµy(F Zm
n )(x, y) (F Zm′

n′ )
∗(x, y) dx dy

= in−n′
∞∫

0

2π∫
0

Jn+1(2πr) Jn′+1(2πr)
r2

× e−2πiρr cos(ϑ−ϕ) ei(m−m′)ϕ r dr dϕ ,

(63)

ρ

θ

O

FIG. 4 Schematic representation of the autocorrelation function P ∗ ∗corr P of a non-

uniform pupil function P as an integral over the common region of two disks of unit

radius with centers at 0 and ρ eiϑ , respectively.

where we have written x + iy = r eiϕ and where we use that
νx + µy = ρ r cos(ϑ− ϕ). Now

2π∫
0

e−2πiρr cos(ϑ−ϕ) eikϕ dϕ = 2π(−i)k eikϑ Jk(2πρr) , (64)

and inserting this into Eq. (63) with k = m − m′, noting that
in−n′ (−i)m−m′ = (−1)p−p′ and substituting u = 2πr, we ob-
tain Eq. (60).

Next to show Eq. (62), we note from orthogonality of the
Zm′′

n′′ (
1
2 ρ eiϑ), see Eq. (4), that

Γmm′m′′
nn′n′′ =

(n + 1)(n′ + 1)
π2

×
∫ ∫

(Zm
n ∗ ∗corr Zm′

n′ )(ν, µ)(Zm′′
n′′ (

1
2 ν, 1

2 µ))∗ dν dµ .
(65)

Again using Parseval’s theorem, together with

F (Z ∗ ∗corr Z′) = FZ · (FZ′)∗ , (F Z′′)( 1
2 ν, 1

2 µ))(x, y)

= 4(FZ′′)(2x, 2y) ,
(66)

we obtain

Γmm′m′′
nn′n′′ =

4(n + 1)(n′ + 1)
π2

∫ ∫ [
(F Zm

n )(x, y)

× (F Zm′
n′ )
∗(x, y)(F Zm′′

n′′ )
∗(2x, 2y)

]
dx dy.

(67)

Then inserting Eq. (5) and using polar coordinates
x + iy = r eiϕ, we obtain

Γmm′m′′
nn′n′′ =

2(n + 1)(n′ + 1)
π2 in−n′−n′′

×
∞∫

0

Jn+1(2πr) Jn′+1(2πr) Jn′′+1(4πr)
dr
r2

×
2π∫
0

ei(m−m′−m′′)ϕ dϕ .

(68)

The proof is completed by the substitution u = 2πr. Also note
that n− n′ and n′′ have the same parity when m′′ = m−m′.
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Notes.
1. We have by Eq. (39) that

(Zm
n ∗ ∗corr Zm′

n′ )(ν, µ) =
π

n′ + 1
(−1)p−p′ ei(m−m′)ϑ

× [Qm−m′
n+1,n′ + Qm−m′

n+1,n′+2],
(69)

and, for the case that m′′ = m−m′,

Γmm′m′′
nn′n′′ = 2(−1)

n−n′−n′′
2

× [Qn′′+1
nn′ + Qn′′+1

n+2,n′ + Qn′′+1
n,n′+2 + Qn′′+1

n+2,n′+2] ,
(70)

where

Qk
ij(a, b, c) =

∞∫
0

Ji(au) Jj(bu) Jk(cu) du , (71)

and where the Q’s in Eq. (69) are evaluated at
(a = 1, b = 1, c = ρ) and the Q’s in Eq. (70) are evalu-
ated at (a = 1, b = 1, c = 2).

2. We shall use in Section 6 a result of Bailey [35] to
show the following. We have Qn′′+1

nn′ = 0 when n′′ < n + n′,
and when n′′ ≥ n + n′, we have

Qn′′+1
nn′ (1, 1, 2) =

( 1
2 (n
′′ + n + n′))! ( 1

2 (n
′′ − n− n′))!

( 1
2 (n
′′ + n− n′))! ( 1

2 (n
′′ + n′ − n))!

× (
1
2
)n+n′+1 P(n,n′)

n′′−n−n′
2

(0) P(n′ ,n)
n′′−n−n′

2
(0) ,

(72)

also see Note 2 at the end of Section 5.

3. From a result of Bailey [35] it also follows that Qm−m′
n+1,n′ and

Qm−m′
n+1,n′+2 vanish when ρ ≥ 2, but this is already clear from

the fact that the Z’s are supported by the unit disk. The result
in Eq. (69) takes a more complicated form when 0 < ρ < 2,
see Section 6 for more details.

4. In Subsection 7.2, a detailed computation, based on
Theorem 4.1, for the OTF corresponding to P = Z0

0 is
presented.

5 Cosine representation of the radial
polynomials

We shall prove the following result.

Theorem 5.1. Let m, n be integers ≥ 0 with n− m even and
non-negative. Then

Rm
n (cos x) =

bn/2c

∑
j=0

an−2j cos(n− 2j) x , (73)

where for integer k ≥ 0 with n− k even and non-negative

ak = εk
p! q!
s! t!

( 1
2 )

l (P(γ,δ)
p (0))2 . (74)

Here ε0 = 1, ε1 = ε2 = ... = 2 (Neumann’s symbol), and

p =
n− l

2
, q =

n + l
2

, s =
n− r

2
,

t =
n + r

2
, γ =

l − r
2

, δ =
l + r

2
,

(75)

where
l = max(m, k) , r = min(m, k) . (76)

Proof. We have from Eq. (7)

Rm
n (cos x) = (−1)

n−m
2

∞∫
0

Jn+1(u) Jm(u cos x) du . (77)

Next we note that

Rm
n (cos x) = (cos x)m P(0,m)

n−m
2

(cos 2x) (78)

has non-vanishing Fourier components bk eikx only for integer
k of the same parity as m. For such k we shall show that

1
2π

2π∫
0

Jm(u cos x) eikx dx = J m−k
2
( 1

2 u) J m+k
2
( 1

2 u) . (79)

Indeed, abbreviating “the coefficient of eimy in” by Cm, we
have by the generating function

eiz sin y =
∞

∑
m=−∞

Jm(z) eimy (80)

that

1
2π

2π∫
0

Jm(u cos x) eikx dx

=
1

2π
Cm

 2π∫
0

eiu cos x sin y eikx dx


=

1
2π

Cm

 2π∫
0

e
1
2 iu sin(x+y) e−

1
2 iu sin(x−y) eikx dx


=

1
2π

Cm

[
∞

∑
m1,m2=−∞

Jm1(
1
2 u) Jm2(

1
2 u)

×
2π∫
0

eim1(x+y)−im2(x−y)+ikx dx

]

= Cm

 ∞

∑
m1, m2 = −∞,
m2 −m1 = k

Jm1(
1
2 u) Jm2(

1
2 u) ei(m1+m2)y


= J m−k

2
( 1

2 u) J m+k
2

( 1
2 u) . (81)

Then we have at once from Eq.(77) that

1
2π

2π∫
0

Rm
n (cos x) eikx dx

= (−1)
n−m

2

∞∫
0

Jn+1(u) J m−k
2
( 1

2 u) J m+k
2
( 1

2 u) du .

(82)

When k ≥ 0 and m− k ≥ 0, we have then

1
2π

2π∫
0

Rm
n (cos x) eikx dx = 2(−1)

n−m
2 Qn+1

m−k
2 , m+k

2
(1, 1, 2) , (83)

see Eqs. (71) and (72). For this case, the result follows from
Eq. (72), the fact that P(δ,γ)

p (0) = (−1)p P(γ,δ)
p (0) and the fact
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that ak = a−k. When k ≥ 0 and m− k ≤ 0, the result follows in
a similar manner, by using that J m−k

2
( 1

2 u) = (−1)
m−k

2 J k−m
2
( 1

2 u)
and Eq. (72) together with some easy administration with
signs.

Notes.
1. It is straightforward to generalize the result of Theo-
rem 5.1 to the representation of Rm

n (v cos x) with 0 ≤ v ≤ 1.
Now Qn+1

m−k
2 , m+k

2
(v, v, 2) appears in Eq. (83) and ak in Eq. (74)

becomes

ak(v) = εk
p! q!
s! t!

( 1
2 v)l P(γ,δ)

p (x)P(γ,δ)
p (−x), (84)

where x = (1− v2)1/2. Also, see Section 6 and Eq. (20).

2. In using Theorem 5.1 it is convenient to note that

P(γ,δ)
p (0) =

1
2p

p

∑
j=0

( p + γ

j

) ( p + δ

p− j

)
(−1)p−j , (85)

see [18], 22.3.1 on p. 775. Alternatively, P(γ,δ)
p can be eval-

uated per Eq. (90) in terms of the hypergeometric function 1F2.

3. In Subsection 7.3, a table is presented in which the
radial polynomials Rm

n , integer n, m with 0 ≤ n, m ≤ 8 and
n − m ≥ 0 and even, are given in polynomial and in the
cosine representation of Theorem 5.1.

6 Infinite integrals involving the
product of three Bessel functions

We consider in this section the integrals

Aλµν(a, b, c) =
∞∫

0

Jλ(ax) Jµ(bx) Jν(cx) dx , (86)

where a, b, c > 0 and λ, µ, ν are non-negative integers. There
is quite some literature on these integrals and more general
instances of them, see [36], Sec. 13.46 on pp. 411–415, [35], [37],
Sec. 19.3 on pp. 349–357, [38], Sec. 13.4.5 on pp. 331–335. These
general results can become quite unmanageable; it is the point
of this section that, in the special cases that we consider, often
concise and manageable results appear, often in terms of the
radial polynomials themselves.

For the case that a + b < c (and a > 0, b > 0, c > 0), the
integral in Eq. (86) is given by Bailey, [35], Eq. (8.1) (with a
minor correction in which the cµ+ν+1 in the denominator at

the right-hand side should be replaced by c), as

∞∫
0

Jλ(cu sin α cos β) Jµ(cu cos α sin β) Jν(cu) du

=
Γ( 1

2 (1 + λ + µ + ν)) sinλ α cosλ β cosµ α sinµ β

c Γ(λ + 1) Γ(µ + 1) Γ( 1
2 (1− λ− µ + ν))

× 2F1

(
1
2 (1 + λ + µ− ν), 1

2 (1 + λ + µ + ν) ;

λ + 1 ; sin2 α

)
× 2F1

(
1
2 (1 + λ + µ− ν), 1

2 (1 + λ + µ + ν) ;

µ + 1 ; sin2 β

)
,

(87)

where α, β ≥ 0 are such that α + β < π/2. In Eq. (20) the
choice

c = 1 , a = sin α cos β , b = cos α sin β ;

λ = m−m′ , µ = n′ , ν = n + 1
(88)

is made. When m−m′ ≥ 0 and A = sin α, B = sin β, we have

∞∫
0

Jm−m′ (au) Jn′ (bu) Jn+1(u) du

=
Γ( 1

2 (n + n′ + m−m′) + 1) am−m′ bn′

Γ(m−m′ + 1) Γ(n′ + 1) Γ( 1
2 (n− n′ −m + m′) + 1)

× 1F2

(
1
2 (n
′ − n + m−m′), 1

2 (n + n′ + m−m′) + 1 ;

m−m′ + 1 ; A2
)

× 1F2

(
1
2 (n
′ − n + m−m′), 1

2 (n + n′ + m−m′) + 1 ;

n′ + 1 ; B2
)

.

(89)

Recall that both n − m and n′ − m′ are even. Hence
n − n − m′ + m′ is an even integer, and when this even inte-
ger is negative the whole expression (89) vanishes due to the
Γ(1/2(n− n′ − m + m′) + 1) in the denominator. Using [18],
15.4.6 on p. 561 and 22.4.1 on p. 777, we have for j = 0, 1, ...
and γ, δ ≥ 0

1F2(−j, γ + 1 + δ + j ; γ + 1 ; x)

=
j! Γ(γ + 1)

Γ(γ + 1 + j)
P(γ,δ)

j (1− 2x) .
(90)
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Therefore,

1F2

(
1
2 (n
′ − n + m−m′), 1

2 (n + n′ + m−m′) + 1 ;

m−m′ + 1 ; A2
)

= 1F2

(
1
2 (n
′ − n + m−m′), m−m′ + 1 + n′

+ 1
2 (n− n′ −m + m′) ; m−m′ + 1 ; A2

)
=

( 1
2 (n
′ − n−m + m′))! (m−m′)!
( 1

2 (n− n′ + m−m′))!

× P(m−m′ ,n′)
1
2 (n−n′−m+m′)

(1− 2A2) ,

(91)

and similarly

1F2

(
1
2 (n
′ − n + m−m′), 1

2 (n + n′ + m−m′) + 1 ; n′

+ 1 ; B2
)

=
( 1

2 (n− n′ −m + m′))! (n′)!
( 1

2 (n + n′ −m + m′))!
P(n′ ,m−m′)

1
2 (n−n′−m+m′)

(1− 2B2) .

(92)

Using that P(γ,δ)
j (−x) = (−1)j P(δ,γ)

j (x) in Eq. (92) and some
further administration with Γ-functions and factorials then
yields Eq. (21). In the case that m′ − m ≥ 0, we use that
Jm−m′ (z) = (−1)m−m′ Jm′−m(z), and so we can apply Eq. (21)
with m and m′ interchanged. This requires a careful adminis-
tration with q, p, q′, p′ as well as with the signs (−1)p−p′ in
Eq. (20). Doing so, Eq. (22) follows.

The result in Eqs. (21)–(23) has been proved now for the case
that a + b < 1. However, the case that a + b = 1, a > 0, b > 0,
follows by taking the limit case in Eq. (20) and observing that
the integral in Eq. (20) converges uniformly in (a, b) ∈ [ε, 1]×
[ε, 1] for any ε > 0 since Jk(z) = O(z−1/2), z → ∞ and Jk(z) is
bounded in z ≥ 0.

We shall now consider the Q-integrals in Eqs. (71) and
Eqs. (82), (83). These can be treated in very much the same
way as the integrals in Eq. (89) that arise from Eq. (87) by
making the choice as in Eq. (88). Note that we have here
the limit case a = b = 1

2 c. As to Eq. (72), we note that
Qn′′+1

nn′ (1, 1, 2) = 1
2 Qn′′+1

nn′ ( 1
2 , 1

2 , 1). We thus need to replace
(m−m′, n′, n + 1) by (n, n′, n′′ + 1) and take

a = b = 1
2 = A2 = B2 (93)

in Eq. (89). In particular, the Q-integral vanishes when
n′ + n − n′′ < 0, and when n′ + n − n′′ ≥ 0 the 1F2 that
arise in Eqs. (91), (92) should be written down with the re-
placement just mentioned and the choice in Eq. (93). This then
yields Eq. (72). Next, the Q-integral in Eq. (82) can be han-
dled in a similar fashion by replacing (m − m′, n′, n + 1) by
( 1

2 (m− k), 1
2 (m + k), n + 1) with a, b, A, B as in Eq. (93).

The result for Zm
n ∗ ∗corrZm′

n′ in Eq.(69) involves the integrals Q
in Eq. (71) with values of the numbers a, b, c such that none of
them is larger or equal than the sum of the other two when 0 <

ρ < 2. For such integrals, there is a result, see [36], Eq.(7) on
p.413, in the form of an infinite sum involving the product of
three hypergeometric functions 2F1. This formula takes a more
tractable form, solely in terms of radial polynomials, when
i = 0, j = m, k = n + 1 in Eq.(71) with n − |m| even and
non-negative, see [28], Section 6 for more details.

7 Examples

In this section we present worked out examples of our main
results.

7.1 Example for Section 3

We use Theorem 3.1 for the computation of the Zernike expan-
sion of the scaled-and-shifted circle polynomial Z0

4 . We have

Z0
4(a + b ρ′ eiϑ′ ) = ∑

n′ ,m′
K0m′

4n′ Zm′
n′ (ρ

′ eiϑ′ ) , (94)

where we have K0m′
4n′ Zm′

n′ 6≡ 0 only if n′ and m′ have the same
parity and |m′| ≤ n′ ≤ 4−m′, see Eq. (50). This leaves us with
the cases

|m′| = 0 , n′ = 0, 2, 4 ; |m′| = 1 , n′ = 1, 3 ;

|m′| = 2 , n′ = 2 .
(95)

Furthermore, K0,−m′
4n′ = K0m′

4n′ and so it is sufficient to do the
computations for the cases m′ = 0, 1, 2 in Eq. (95).

m′ = 0. a. K00
40 = T00

40 − T00
42 by Eq. (19) with T00

40 and T00
42

given by Eq. (22) as

T00
40 [p = q = 2 ; p′ = q′ = 0]

= P(0,0)
2 (1− 2A2) P(0,0)

2 (2B2 − 1) ,
(96)

T00
42 [p = q = 2 ; p′ = q′ = 1]

= b2 P(0,2)
1 (1− 2A2) P(0,2)

1 (2B2 − 1) .
(97)

m′ = 0. b. K00
42 = T00

42 − T00
44 with T00

42 given in Eq. (97) and T00
44

given as

T00
44 (p = q = 2 ; p′ = q′ = 2]

= b4 P(0,4)
0 (1− 2A2) P(0,4)

0 (2B2 − 1) .
(98)

m′ = 0. c. K00
42 = T00

44 − T00
46 with T00

44 given in Eq. (98) and
T00

46 = 0.

m′ = 1. a. K01
41 = T01

41 − T01
43 by Eq. (19) with T01

41 and T01
43

given by Eq. (22) as

T01
41 [p = q = 2 ; p′ = 0, q′ = 1]

= 3
2 ab P(1,1)

1 (1− 2A2) P(1,1)
1 (2B2 − 1) ,

(99)

T01
43 [p = q = 2 ; p′ = 1, q′ = 2]

= 4ab3 P(1,3)
0 (1− 2A2) P(1,3)

0 (2B2 − 1) .
(100)

m′ = 1. b. K01
43 = T01

43 − T01
45 with T01

43 given by Eq. (100) and
T01

45 = 0.
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m′ = 2. a. K02
42 = T02

42 − T02
44 by Eq. (19) with T02

42 given
by Eq. (22) as

T02
42 = [p = q = 2 ; p′ = 0, q′ = 2]

= 6a2b2 P(2,2)
0 (1− 2A2) P(2,2)

0 (2B2 − 1) ,
(101)

and T02
44 = 0 since n− n′′ = 0 < 2 = |m−m′′|, see Eq. (23).

There remains to be calculated the right-hand side of
Eqs. (96)–(101) with P(γ,δ)

k the Jacobi polynomials and 1− 2A2

and 2B2 − 1 given in terms of a and b by Eqs. (25), (26). In
general, one can use that

P(γ,δ)
k (x) =

(k + γ)!
k! (k + γ + δ)!

×
k

∑
l=0

( k
l

) (k + l + γ + δ)!
2l(l + γ)!

(x− 1)l ,
(102)

together with P(γ,δ)
k (−x) = (−1)k P(δ,γ)

k (x). For the present
purposes it is sufficient to know that

P(0,0)
2 (x) = 3

2 x2 − 1
2 ; P(0,δ)

1 (x) = (1 + 1
2 δ) x− 1

2 δ ;

P(γ,δ)
0 (x) = 1 .

(103)

Using Eqs. (103) and (25), (26) in Eqs. (96)–(101) yields

T00
40 = 6a4 + 6b4 + 24a2b2 − 6a2 − 6b2 + 1 ,

T00
42 = b2(12a2 + 4b2 − 3) , T00

44 = b4 , (104)

T01
41 = 3

2 ab(8a2 + 8b4 − 4) , T01
43 = 4ab3 , (105)

T02
42 = 6a2b2 . (106)

This then gives

K00
40 = 6a4 + 2b4 + 12a2b2 − 6a2 − 3b2 + 1 ,

K00
42 = 3b4 + 12a2b2 − 3b2 , K00

44 = b4 , (107)

K01
41 = 12a3b + 8ab3 − 6ab , K01

43 = 4ab3 , (108)

K02
42 = 6a2b2 . (109)

Hence

Z0
4(a + b ρ′ eiϑ′ )

=
{
(6a4 + 2b4 + 12a2b2 − 6a2 − 3b2 + 1) Z0

0

+ (3b4 + 12a2b2 − 3b2) Z0
2 + b4Z0

4

}
+
{
(12a3 + 8ab3 − 6ab) Z1

1

+ (12a3b + 8ab3 − 6ab) Z−1
1

+ 4ab3 Z1
3 + 4ab3 Z−1

3

}
+ {6a2b2 Z2

2 + 6a2b2 Z−2
2 } ,

(110)

where the Zm′
n′ at the right-hand side of Eq. (110) should be

evaluated at ρ′ eiϑ′ .

It is obvious that for the expansion of a general
Zm

n (a + b ρ′ eiϑ′ ) one can construct a concise and efficient com-
puter code on basis of Theorem 3.1, taking advantage of the
various shortcuts and reuse of intermediate results such as
those encountered in passing in the above example.

7.2 Example for Section 4

We compute, using Theorem 4.1 and the notes thereafter, the
Zernike expansion of Z0

0 ∗∗corr Z0
0 . It is easy to show by ele-

mentary means, Z0
0 ∗∗corr Z0

0 being the area of the common
part of two disks of radius 1 whose centers are at a distance
ρ apart, that

(Z0
0 ∗ ∗corr Z0

0)(ρ) =2
[
arccos( 1

2 ρ)− 1
2 ρ
√

1− ( 1
2 ρ)2

]
,

where 0 ≤ ρ ≤ 2 .
(111)

From Eq. (60) we have

(Z0
0 ∗ ∗corr Z0

0)(ρ) = 2π

∞∫
0

J2
1 (u) J0(ρu)

u
du . (112)

This integral can be found in [39], 2.12.42, item 31 on p. 232,
and this would yield Eq. (111) when the parentheses would
have been placed correctly in this reference (a cross-check
with [39], 2.12.42, item 15 on p. 230, that arises when the in-
tegral on the right-hand side of Eq. (112) is differentiated with
respect to ρ, shows inconsistency of [39] in this matter).

We have m′′ = m− m′ = 0 and n′′ is even at the right-hand
side of Eq. (61), and this yields

(Z0
0 ∗ ∗corr Z0

0)(ρ) =
π

4 ∑
n′′ even,≥0

(n′′ + 1) Γ000
00n′′ Z0

n′′ (
1
2 ρ) ,

where 0 ≤ ρ ≤ 2 ,
(113)

where

Γ000
00n′′ = 8(−1)−

1
2 n′′

∞∫
0

J1(u) J1(u) Jn′′+1(2u)
du
u2

= 2(−1)
1
2 n′′ [Qn′′+1

00 + 2Qn′′+1
02 + Qn′′+1

22 ] ,

(114)

with, see Eq.(72),

Qn′′+1
00 = 1

2 (P(0,0)
1
2 n′′

(0))2 ,

where n′′ = 0, 2, ... ,
(115)

Qn′′+1
02 = 1

8 P(0,2)
1
2 n′′−1

(0) P(2,0)
1
2 n′′−1

(0) ,

where n′′ = 2, 4, ... ,
(116)

Qn′′+1
22 =

( 1
2 n′′ + 2)! ( 1

2 n′′ − 2)!

(( 1
2 n′′)!)2

1
32

×
(

P(2,2)
1
2 n′′−2

(0)
)2

,

where n′′ = 4, 6, ... ,

(117)
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while Q1
02 and Q1

22, Q3
22 vanish. Thus this yields the Zernike

0-expansion of the function

2(arccos τ − τ
√

1− τ2 ) = ∑
n′′ even,≥0

C0
n′′ Z0

n′′ (τ =
1
2

ρ) ,

where 0 ≤ τ ≤ 1 .
(118)

The C0
n′′ are given in integral form as

C0
n′′ =4(n′′ + 1),

×
1∫

0

(arccos τ − τ
√

1− τ2) R0
n′′ (τ) τ dτ ;

(119)

the evaluation of the integrals in Eq. (119) becomes cumber-
some, already for low values of n′′ = 0, 2, ... . We compute
from Eqs. (114)–(118) and C0

n′′ =
π
4 (n′′ + 1) Γ000

00n′′

C0
0 =

π

4
, C0

2 = − 3π

8
, C0

4 =
5π

32
, ... . (120)

Unfortunately, see Eq. (85), there does not seem to exist
a closed formula for the values of P(γ,δ)

k (0) as required in
Eqs. (115)–(117), except for the case γ = δ = 0, see [18], Table
22.4.1 on p. 777. Furthermore, the C0

n′′ decay only slowly be-
cause of non-smooth behaviour of (Z0

0 ∗ ∗corr Z0
0)(ν, µ) around

(ν, µ) = (0, 0) and, to a lesser extent, around ν2 + µ2 = 4,
where (Z0

0 ∗ ∗corr Z0
0)(ρ) is continuous differentiable, but not

twice differentiable with respect to ρ.

7.3 Examples for Section 5

We have computed, using Theorem 5.1, the Fourier coeffi-
cients ak in the cosine representation

Rm
n (cos x) =

bn/2c

∑
j=0

an−2j cos(n− 2j) x (121)

for various cases of integer n, m with n, m non-negative and
n−m even and non-negative. The results are collected in Ta-
ble 1.

0.2 0.4 0.6 0.8 1

-0.4

-0.2

0.2

0.4

0.6

0.8

1

(a)

0.25 0.5 0.75 1 1.25 1.5

-0.4

-0.2

0.2

0.4

0.6

0.8

1

(b)

FIG. 5 Plot of (a) R0
80(ρ), 0 ≤ ρ ≤ 1, and (b) R0

80(cos x), 0 ≤ x ≤ π/2. The sampling

rate used to display (a) is not high enough to adequately represent the last peak but

one just before ρ = 1.

R0
0 1 = c0

R0
2 2ρ2 − 1 = c2

R0
4 6ρ4 − 6ρ2 + 1 = 1

4 c0 +
3
4 c4

R0
6 20ρ6 − 30ρ4 + 12ρ2 − 1 = 3

8 c2 +
5
8 c6

R0
8 70ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1 = 9

64 c0 +
5
16 c4 +

35
64 c8

R1
1 ρ = c1

R1
3 3ρ3 − 2ρ = 1

4 c1 +
3
4 c3

R1
5 10ρ5 − 12ρ3 + 3ρ = 1

4 c1 +
1
8 c3 +

5
8 c5

R1
7 35ρ7 − 60ρ5 + 30ρ3 − 4ρ = 9

64 c1 +
15
64 c3 +

5
64 c5 +

35
64 c7

R2
2 ρ2 = 1

2 c0 +
1
2 c2

R2
4 4ρ4 − 3ρ2 = 1

2 c2 +
1
2 c4

R2
6 15ρ6 − 20ρ4 + 6ρ2 = 3

16 c0 +
1

32 c2 +
5

16 c4 +
15
32 c6

R2
8 56ρ8 − 105ρ6 + 60ρ4 − 10ρ2 = 9

32 c2 +
1
16 c4 +

7
32 c6 +

7
16 c8

R3
3 ρ3 = 3

4 c1 +
1
4 c3

R3
5 5ρ5 − 4ρ3 = 1

8 c1 +
9
16 c3 +

5
16 c5

R3
7 21ρ7 − 30ρ5 + 10ρ3 = 15

64 c1 +
1
64 c3 +

27
64 c5 +

21
64 c7

R4
4 ρ4 = 3

8 c0 +
1
2 c2 +

1
8 c4

R4
6 6ρ6 − 5ρ4 = 5

16 c2 +
1
2 c4 +

3
16 c6

R4
8 28ρ8 − 42ρ6 + 15ρ4 = 5

32 c0 +
1
16 c2 +

1
8 c4 +

7
16 c6 +

7
32 c8

R5
5 ρ5 = 5

8 c1 +
5

16 c3 +
1
16 c5

R5
7 7ρ7 − 6ρ5 = 5

64 c1 +
27
64 c3 +

25
64 c5 +

7
64 c7

R6
6 ρ6 = 5

16 c0 +
15
32 c2 +

3
16 c4 +

1
32 c6

R6
8 8ρ8 − 7ρ6 = 7

32 c2 +
7

16 c4 +
9

32 c6 +
1
16 c8

R7
7 ρ7 = 35

64 c1 +
21
64 c3 +

7
64 c5 +

1
64 c7

R8
8 ρ8 = 35

128 c0 +
7

16 c2 +
7

32 c4 +
1
16 c6 +

1
128 c8

TABLE 1 Rm
n in polynomial and cosine representation with ρ = cos x and ck = cos kx

In Figure 5 we have displayed R0
80(ρ), 0 ≤ ρ ≤ 1, and

R0
80(cos x), 0 ≤ x ≤ π/2 to illustrate the point that the vari-

ation of the radial polynomial is more or less spread out uni-
formly over the x-interval.

8 Conclusion and outlook

In this paper we have used the basic identity in the classical
Nijboer-Zernike theory of optical aberrations to prove three
new analytic results for the Zernike circle polynomials, and
we have indicated the relevance of these new results for the
fields of optical lithography, ophthalmology and computa-
tional optics. The first result is an analytic formula for the ex-
pansion coefficients of a circle polynomial Zm

n when it is con-
sidered on an arbitrary disk, contained in the nominal disk
ρ ≤ 1, and expanded in terms of the orthogonal circle poly-
nomials pertaining to this smaller disk. This result embod-
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ies an analytic solution of the much studied problem in li-
thography and ophthalmology of how the expansion coeffi-
cients of a non-uniform complex pupil function change when
this function is considered on sub-disks of the nominal disk. It
would be interesting to see how this result generalizes when
restriction to subdomains with elliptic, rather than circular,
boundaries were considered. At present, there are no results
for this more general situation, since the very choice of or-
thogonal polynomials on these more general subdomains is a
non-trivial issue. The second result concerns the computation
of the Zernike expansion of the optical transfer function (OTF)
from the Zernike expansion of the complex pupil function that
yields the OTF in the form of an autocorrelation function. This
problem has received attention from researchers in the optics
community for more than half a century, but a complete an-
alytic solution was not presented yet. It is expected that the
analytic solution presented in this paper will contribute, for
instance, to faster calculation schemes for pattern transfer in
high-resolution optical lithography and to faster operation of
pupil function retrieval schemes in optics. The third result
concerns the analytic determination of the Fourier coefficients
of the radial polynomials R|m|n (ρ) when the radial variable ρ,
0 ≤ ρ ≤ 1, is replaced by cos x, 0 ≤ x ≤ π/2. The explicit
form of these coefficients presented in this paper shows that
they are all non-negative and small. Thus, this result offers,
in conjunction with FFT-methods, an attractive prospect for
methods to perform the radial integration in diffraction inte-
grals.

The analytic formulas given in this paper for the quantities
just mentioned contain factorials, monomials and Jacobi poly-
nomials only, and are thus readily and numerically efficiently
implemented. For all these three results, the quantities of in-
terest have first been expressed, using the basic result of the
Nijboer-Zernike theory, as integrals involving the product of
three Bessel functions. In all cases, it appeared that the expres-
sions for these integrals, as given in existing literature, can be
reduced to the simpler form described above, making the ap-
plication of the results of this paper quite feasible.

A Convergence of the integral in
Eq. (7)

We shall show in this appendix that for non-negative integers
n and m with n−m even and non-negative, the integral

v∫
0

Jn+1(u) Jm(ρu) du (122)

as v → ∞ converges to (−1)
n−m

2 Rm
n (ρ) for 0 ≤ ρ < 1 and

to 0 for ρ > 1, and that it does so boundedly in ρ ≥ 0 and
uniformly in ρ outside (1− ε, 1 + ε) for any ε > 0. We have
from [18], 9.2.1 on p. 364

Jk(u) =

√
2

πu
cos(u− 1

2
kπ − 1

4
π) + O(u−3/2) ,

where u→ ∞ ,
(123)

and Jk(u) is smooth and bounded on u ≥ 0. Therefore, to
show bounded and uniform convergence of the integral in

Eq. (122) as v → ∞ on the appropriate sets of ρ, it is sufficient
to establish this for the integral

2
π

v∫
0

[
1
u

cos(u− 1
2
(n + 1)π − 1

4
π)

× cos(ρu− 1
2

mπ − 1
4

π)

]
du .

(124)

Once this has been established, the issue of to what the inte-
gral in Eq. (122) converges is settled by the remark that Zm

n
and 2πin exp(imϕ) Jn+1(2πr)/2πr, see Eq. (5), are 2D Fourier
pairs so that Fourier inversion of the latter function yields the
former in L2(R)-sense while the former function is smooth
outside the set ν2 + µ2 = 1.

Using elementary trigonometric identities, we have

2
π

v∫
1

1
u

cos(u− 1
2
(n + 1)π − 1

4
π)

× cos(ρu− 1
2

mπ − 1
4

π) du

=
(−1)p

π

v∫
1

sin(1− ρ) u
u

du

− (−1)q

π

v∫
1

cos(1 + ρ) u
u

du

=
(−1)p

π

(1−ρ)v∫
1−ρ

sin x
x

dx

− (−1)q

π

(1+ρ)v∫
1+ρ

cos x
x

dx ,

(125)

where we have set p = 1
2 (n− m), q = 1

2 (n + m). Since both
functions

y∫
0

sin x
x

dx , y ≥ 0 ;

y∫
1

cos x
x

dx , y ≥ 1 , (126)

are bounded and have a finite limit as y→ ∞, the convergence
of the integral in Eq. (124) is bounded in ρ ≥ 0 and uniform in
any closed set of ρ’s not containing 1. The assumption that n

and m have same parity is essential:
∞∫
1

1
u cos2 u du = ∞.
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