

Volume 17, 2018

Accepted by Editor Janice Whatley│ Received: April 20, 2018│ Revised: August 18, August 30, September 4,
2018 │ Accepted: September 5, 2018.
Cite as: Joy, J., & V G, R. (2018). Activity oriented teaching strategy for software engineering course: An
experience report. Journal of Information Technology Education: Innovations in Practice, 17, 181-200.
https://doi.org/10.28945/4116

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

ACTIVITY ORIENTED TEACHING STRATEGY FOR
SOFTWARE ENGINEERING COURSE:

AN EXPERIENCE REPORT
Jeevamol Joy* Cochin University of Science and

Technology, Kochi, India
jeeva.loy@gmail.com

Renumol V G Cochin University of Science and
Technology, Kochi, India

renumolvg@gmail.com

* Corresponding author

ABSTRACT
Aim/Purpose This paper presents the findings of an Activity-Oriented Teaching Strategy

(AOTS) conducted for a postgraduate level Software Engineering (SE) course
with the aim of imparting meaningful software development experience for the
students. The research question is framed as whether the activity-oriented teach-
ing strategy helps students to acquire practical knowledge of Software Engi-
neering and thus bridge the gap between academia and software industry.

Background Software Engineering Education (SEE) in India is mainly focused on teaching
theoretical concepts rather than emphasizing on practical knowledge in software
development process. It has been noticed that many students of CS/IT back-
ground are struggling when they start their career in the software industry due
to inadequate familiarity with the software development process. In the current
context of SE education, there is a knowledge gap between the theory learned
in the classroom and the actual requirement demanded by the software industry.

Methodology The methodology opted for in this study was action research since the teachers
are trying to solve the practical problems and deficiencies encountered while
teaching SE. There are four pedagogies in AOTS for fulfilling the requirements
of the desired teaching strategy. They are flipped classroom, project role-play
for developing project artifacts, teaching by example, and student seminars. The
study was conducted among a set of Postgraduate students of the Software
Engineering programme at Cochin University of Science and Technology, In-
dia.

https://doi.org/10.28945/4116
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:jeeva.loy@gmail.com
mailto:renumolvg@gmail.com

Activity Oriented Teaching Strategy

182

Contribution AOTS can fulfil both academic and industrial requirements by actively engaging
the students in the learning process and thus helping them develop their profes-
sional skills.

Findings AOTS can be molded as a promising teaching strategy for learning Software
Engineering. It focuses on the essential skill sets demanded by the software in-
dustry such as communication, problem-solving, teamwork, and understanding
of the software development processes.

Impact on Society Activity-oriented teaching strategies can fulfil both academic and industrial re-
quirements by actively engaging the students in the SE learning process and
thus helping them in developing their professional skills.

Future Research AOTS can be refined by adding/modifying pedagogies and including different
features like an online evaluation system, virtual classroom etc.

Keywords software engineering education, activity oriented teaching, learning environ-
ment, flipped classroom

INTRODUCTION
Current Software Engineering (SE) education is mostly based on a classroom learning model that
does not meet the essential requirements of a subject that demands practical and interdisciplinary
approaches for solving problems (Shaw, 2005; Varma & Garg, 2005). For achieving the desired learn-
ing objectives of SE, various learning environments are being tried by software engineering educators
worldwide. Even then, additional needs exist to improve the learning process and the overall quality
of a learning environment (Garg & Varma, 2015). According to Garg and Varma (2015), the re-
quirements of an effective and sustainable SE learning environment are broadly classified into cli-
matic (authentic learning, self-learning, learning from failures and success, motivate students, etc.)
and systemic (scalability, portability, analyzability, reusability, and fault tolerance). The current soft-
ware engineering courses taught at the undergraduate/postgraduate level in India focus more on
software processes and management of these processes rather than software design and design quali-
ties (Reddy & Nori, 2014). While designing software engineering courses, it is essential to consider
what knowledge is important for a software professional (Lethbridge, 2000).

Software engineering graduates, when beginning their careers in the software industry, do not always
possess the necessary skills, abilities, or knowledge that are demanded by the industry (Radermacher,
Walia, & Knudson, 2014). According to the recruiters, newly hired graduates are mainly lacking in the
areas of project experience, oral communication, written communication, problem-solving, software
tools, teamwork, and working with customers. The deficiency in these skill sets limits the productivity
of newly hired software engineering graduates. The repetitive complaint from the software industry
is that computer science and software engineering graduates are not well trained during their under-
graduate/postgraduate studies for their future careers in the software industry (Begel & Simon,
2008). This lack of student preparation is not limited just to programming skills or other computer
science concepts, but also includes the understanding of software engineering concepts such as soft-
ware development processes. In some cases, there is a large requirement gap between students’ skills
and the expectations of industry managers or hiring personnel, which prevent students from getting
job offers and meeting the expectation level of the software industry (Miller & Dettori, 2008).

In the current context of SE education, there is a knowledge gap between the theory learned in the
classroom and the actual requirements demanded by industry. This motivated the authors to design
and develop a better teaching strategy which may bridge the required knowledge gap between aca-
demia and industry. This paper describes the experience of a teacher; using an Activity-Oriented
Teaching Strategy (AOTS), which was adopted for a Software Engineering course at the postgraduate
level in Cochin University of Science and Technology, India. The objective of the study is to develop

Joy & VG

183

an effective teaching strategy for the Software Engineering course by which students can acquire
more practical knowledge of SE and get a better understanding of the applicability of theoretical
concepts. The methodology opted for this study was action research since the teachers are trying to
solve the practical problems and deficiencies encountered while teaching SE. Action research is usu-
ally undertaken by practitioners to improve their teaching practices (Corey, 1954). Here the focus of
our research is to develop a teaching strategy for SE, which helps the students acquire practical
knowledge of software engineering so that they can successfully operate in an industrial environ-
ment.

Different learner-centered pedagogies have evolved in Engineering Education which motivate and
empower students by giving them control over their learning. The flipped classroom pedagogy is one
of the most popular among these nowadays and is included in AOTS. In a flipped classroom, the
information-transmission component of a traditional face-to-face lecture is moved out of class time.
In this pedagogy, active and collaborative tasks are included in the class hours (Abeysekera & Daw-
son, 2015). In the flipped classroom model, students prepare themselves for the lesson by watching
videos, listening to podcasts, and reading articles. Students use this knowledge while active learning
activities are conducted in the classroom with the guidance of a teacher. According to Hamdan,
McKnight, McKnight, and Arfstrom (2015), the flipped classroom is not a defined model, instead it
is a model that teachers use for supplementing the demands of students by using different types of
tools. Since educators in different countries use flipped classroom with various methods, the flipped
classroom concept was changed to a flipped classroom approach.

AOTS is a student-centric learning approach in which learners play a central role and take responsi-
bility for their own learning. In this kind of learning, the instructor acts as a facilitator for encourag-
ing learning and being a guide in the whole learning process. The primary goal of this teaching strat-
egy is to prepare students to understand the concepts of the subject and to apply the acquired theo-
retical knowledge to practical cases of software projects, preparing them for the software industry by
mainly focusing on the skill sets which are lacking in conventional SE courses. Hence for the study,
the Research Question (RQ) is framed as follows:

RQ: Whether the Activity-Oriented Teaching Strategy (AOTS) helps students to acquire
practical knowledge of Software Engineering and thus bridge the gap between academia and
the software industry?

The rest of the paper is organized as follows. A review of the literature is included, which mainly
focuses on studies conducted at different countries in the area of software engineering education
followed by the expected learning outcomes from a postgraduate level SE course. The design of
AOTS, procedures, and detailed execution of each teaching method in AOTS are explained subse-
quently. The evaluation and results sections provide detailed findings of the study as well as the stu-
dent feedback about AOTS. The paper is concluded with the outcomes of the study, limitations, and
future works planned.

RELATED WORK
There are several guidelines available for the basic and core courses of Software Engineering Educa-
tion (SEE). In addition to these, the other dimensions of SEE that should be considered are inter-
disciplinary skills, practice experience, communication skills, skills for continuing education, and pro-
fessionalism (Mishra, Ercil Cagiltay, & Kilic, 2007). A study was conducted to observe how these di-
mensions are handled in SE courses at different universities in the world; it has been observed that
the distribution of courses in terms of these dimensions vary from university to university and are
missing in some universities. In India, almost all major universities offer undergraduate programs in
Computer Science and a few offer postgraduate programs as well. But very few offer courses or de-
gree programs with a major in Software Engineering (Garg & Varma, 2008). Usually, SE is offered as
just one of the subjects in a Computer Science program. Thus most Computer Science graduates

Activity Oriented Teaching Strategy

184

study SE at the most for only one semester and, for some students, this is the only opportunity to get
familiarized with SE before starting their career as Software Engineers. Hence it becomes very im-
portant that this course imparts the knowledge and skills which are expected by the software indus-
try.

Typically, a Software Engineering course aims to impart the learning outcomes such as technical ca-
pability, teamwork, problem-solving, communication/presentation skills, technical documentation,
and software engineering practices. Software engineering (SE) teachers around the world are striving
to make learning situations that can accomplish their expected learning outcomes (Garg & Varma,
2015). A study conducted by Fonseca and Gómez (2017) at two different universities in Chile de-
tailed the development of student projects in the area of software using the framework of active
methodologies. The pedagogies included in their framework were problem-based learning and agile
software engineering, which enabled the students to acquire a deeper knowledge and apply it in a
practical way according to a work plan. In this framework, students were assigned different project
roles in real projects (project leader, programmer, tester, etc.) and were able to work in a dynamic
environment using problem-based learning. Even though this learning framework gives importance
to develop the skills of autonomous learning, creative product development, and teamwork, this
method is lacking in developing communication/presentation skills, technical documentation, and
software engineering practices.

In another study (Paez, 2017) conducted at Universidad Nacional de Tres de Febrero, Argentina, a
flipped classroom approach combined with other non-traditional teaching techniques was adopted to
teach a software engineering course. For conducting the experiment with the flipped classroom, the
instructors created relevant course materials and planned in-class and out-of-class activities with the
help of a virtual classroom. The virtual classroom was mainly used for file sharing and to extend the
interaction between instructors and students beyond the in-class time. The additional teaching strate-
gies involved in this approach are continuous practice, teaching by example, and use of real-world
tools. The main pedagogy used in this study is a flipped classroom, and it is found to be effective for
teaching SE. The methodology used in this study does not include pedagogies that develop other
required skills like teamwork, technical documentation, and software engineering practices that in-
clude processes and quality assurance techniques.

A Case-Based learning model (COSSEEd) (Garg, Sureka, & Varma, 2015) with well-designed SE
case studies as primary learning objects has been used in a study conducted at IIIT-Hyderabad, India.
COSSEEd provides opportunities for students to solve the challenges embedded in a context (case-
study) collaboratively and, thereby, engage in authentic activities similar to that of a software engi-
neer. The experimental analysis reveals that the model successfully achieves the cognitive goals of a
typical SE course. Other than this, COSSEEd also supports teamwork, problem-solving, technical
competence and, communication skills, but is mainly lacking in technical documentation and other
SE practices. Another educational framework (Yadav & Xiahou, 2010) that focused on integrated
project-based learning was experimented with at Xiamen University, China to effectively develop cru-
cial software engineering skills. According to the authors, an integrated project-based learning ap-
proach can be used for all the projects carried out in the software engineering course. The main focus
of this model was requirements engineering, software design, implementation, teamwork, project
management, and project documentation. In this framework, instructors used the pedagogy of pro-
ject-based learning, which gives importance to teamwork, problem-solving, and technical documenta-
tion, but this framework was also lacking in areas like technical competence and communica-
tion/presentation skills.

There is an evident change in the methodologies to teach software engineering along with the growth
of technology. Some examples are game-based teaching and learning platforms (Pieper, Lueth,
Goedicke, & Forbrig, 2017; Tillmann, De Halleux, & Xie, 2011), cloud-based learning environments
(Rana, Saleh, & Ghazali, 2017), and sensor-based cognitive approach (Gandhi, 2016), which are guid-

Joy & VG

185

ed by technology rather than classroom pedagogies and therefore beyond the scope of the current
study.

From the existing literature, it was found that different methodologies and pedagogies were experi-
mented with to develop effective teaching strategies for Software Engineering courses. The major
pedagogies implemented in the existing studies are project-based learning, problem-based learning,
context-based learning, collaborative learning, active learning, and flipped classroom. Most of the
methodologies resulted in visible improvement of learning outcomes. However, it is difficult to
achieve all the learning outcomes of an SE course with any one methodology. We have analyzed the
learning outcomes of each existing SE learning model and found that each model had its share of
advantages as well as limitations in imparting different essential skills. The activity-oriented teaching
strategy (AOTS) combines different pedagogies to impart all the essential skills required of a soft-
ware engineering course. The learning outcomes of AOTS and existing SE learning models men-
tioned in the literature are compared in Table 1.

Table 1: Learning outcomes of AOTS and existing SE learning models

Learning
Outcomes

Description

A
ct

iv
e

M
et

h-
od

ol
og

ie
s

(F
on

se
ca

 e
t a

l.,

20
17

)

Fl
ip

pe
d

cl
as

s-
ro

om
 (P

ae
z,

20

17
)

C
O

SS
E

E
d

(G
ar

g
&

 V
ar

-
m

a,
20

15
)

In
te

gr
at

ed
 P

ro
-

je
ct

- b
as

ed

le
ar

ni
ng

(Y

ad
av

 &
 X

ia
-

ho
u,

 2
01

0)

A
O

T
S

Technical
Competence

An ability to apply
knowledge of math, sci-
ence, and software engi-
neering as well as collect,
analyze, and interpret da-
ta.

 ✓

✓ ✓ ✕ ✓

Team work An ability to function on
multidisciplinary teams.

✓ ✕ ✓ ✓ ✓

Problem
Solving

An ability to identify,
formulate, and solve soft-
ware engineering prob-
lems using a well-defined
engineering process.

✓ ✓ ✓ ✓ ✓

Communica-
tion/ Presen-
tation skills

An ability to communi-
cate/present effectively.

✓ ✕ ✓ ✕ ✓

Technical
documenta-

tions

Prepare project docu-
ments involved in a soft-
ware development project.

✕ ✕ ✕ ✓ ✓

Software En-
gineering
Practices

Acquire knowledge about
real software project sce-
narios in industry related
to process/product, de-
sign, quality assurance,
etc.

✕ ✓ ✕ ✕ ✓

The experiment with AOTS was conducted for a set of postgraduate students; hence, it is worth-
while to discuss the learning outcomes required for a postgraduate level course in SE. Bloom’s tax-
onomy outlines a hierarchy of cognitive-learning levels ranging from knowledge of specific facts and
conventions to more advanced levels of comprehension, application, analysis, synthesis, and evalua-

Activity Oriented Teaching Strategy

186

tion (Azuma, Coallier, & Garbajosa, 2003). Students of postgraduate level SE courses are expected to
attain up to the fifth level (synthesis) of Bloom’s taxonomy. The Curriculum Guidelines for Graduate
Degree Programs in Software Engineering (The Graduate Software Engineering 2009-GSwE2009) is
a set of recommendations for a master’s level graduate program in Software Engineering (Adcock et
al., 2009). According to GSwE2009, the important recommendations for graduates of a master’s SE
program are:

1. Master the Core Body of Knowledge (CBOK)

2. Master software engineering in at least one application domain (e.g. finance, medical, retail, etc.)

3. Master at least one Knowledge Area (KA) from the CBOK to at least the Bloom Synthesis level.

4. Be able to make ethical professional decisions and practice ethical professional behavior.

5. Be an effective member of a team, including teams that are international and geographically dis-
tributed, effectively communicate both orally and in writing, and lead in one area of project de-
velopment, such as project management, requirements analysis, architecture, construction, or
quality assurance.

6. Understand and appreciate feasibility analysis, negotiation, and good communications with
stakeholders in a typical software development environment, and be able to perform those tasks
well; have effective work habits and be a leader.

7. Be able to learn new models, techniques, and technologies as they emerge, and appreciate the
necessity of such continuing professional development.

While designing AOTS, the instructors considered both the advantages and limitations of existing
pedagogies for teaching SE and the learning outcomes demanded by the course. The AOTS was de-
signed to bridge the gap between the learning outcomes currently accomplished and the learning
outcomes demanded by an SE course. The details of different teaching methods applied in AOTS
for teaching SE are detailed in the next section.

DESIGN OF THE AOTS EXPERIMENT
Typically, a Software Engineering course aims to impart learning outcomes such as technical capabil-
ity, teamwork, problem-solving, communication/presentation skills, technical documentation, and
software engineering practices. All these essential skills cannot be acquired by the traditional lecture-
based method of teaching. The major problem with the lecture-based approach is that the students
are sometimes a passive audience during lectures and do not get actively involved in the learning pro-
cess. This passive mode of learning is a great worry for academia as well as software industry, as it
does not mold the students for creative product development and research (Yadav & Xiahou, 2010).

For AOTS, we have organized the syllabus of the SE course and grouped topics according to their
nature. The existing teaching strategies in the literature were also analyzed and each group of topics
correlated with the best-suited teaching strategy. For example, the method of developing project arti-
facts was applied to teaching software life cycles and models, whereas the flipped classroom approach
was applied to product metrics, project metrics, project cost estimation, and project scheduling for
getting better learning outcomes. AOTS combines different pedagogies like the flipped classroom,
teaching by example, project role-plays for artifacts development, and student seminars. The peda-
gogies applied under AOTS are shown in Figure 1.

Joy & VG

187

Figure 1: Pedagogies included under AOTS

The experiment was conducted for a group of 15 students who had registered for a master’s (Soft-
ware Systems) program at Cochin University of Science and Technology, India. Fourteen students
had completed their Bachelor of Technology (B.Tech) program in the Computer Science
/Information Technology stream and one student had completed her B.Tech. program in the Elec-
tronics and Communication Engineering stream. The age group of participants was between 22 and
27. Out of the 15 students, three students directly joined the program after completing their gradu-
ate-level course. Two of them had industrial experience of 2 to 3 years. Others took a 2 to 4 year
break after their graduate-level course and then joined this post-graduate program. The duration of
the SE course was 12-weeks with a 4-hour teaching session each week. The course was managed by
one teacher and two technical assistants. The masters program was started by the university in the
year 2013. From 2013 onwards, the course had been taught in a traditional lecture-based approach.
The instructors noticed that students were struggling while doing their academic projects. By consid-
ering the essential requirements of SE that demands practical knowledge and problem-solving skills,
we decided to conduct Activity-Oriented Teaching Strategy in the year 2017. At the end of the
course, the learning outcomes of AOTS were measured by evaluating the project artifacts developed
by the students, assessment of in-class activities, and by student opinion survey. The student opinion
survey was conducted with a set of open-ended questions related to the teaching methods applied
under AOTS (See the Appendix for the full survey). For each of the survey question, students were
asked to write the benefits/outputs or the hindering factors of each teaching method in AOTS. Stu-
dents’ opinions about the method are discussed in detail under evaluation and results section. The
details of AOTS methods applied in the classroom are elaborated in the following sections.

FLIPPED CLASSROOM
We decided to try the flipped classroom approach under AOTS, which proposes a reversal of the
traditional class flow (Bergmann & Sams, 2012). In the typical class flow, the “in-class” time is dedi-
cated to lecture where the teachers explain the concepts and then distribute some work/exercises,
which students have to complete at home. In the flipped classroom approach, students carry out the
lecture at home, for example watching a video or reading an article and then the “in-class” time is
used for interactive activities such as problem-solving and discussions (Gannod, Burge, & Helmick,
2008). The Flipped Classroom Model (FCM) has received great attention due to the benefits attribut-
ed by it in wide range of subjects, like STEM and ICT (Bishop & Verleger, 2013). FCM significantly
enhanced students’ cognitive learning outcomes in the context of Computing Curricula (Horton,
Craig, Campbell, Gries, & Zingaro, 2014; Reza & Baig, 2015). More specifically, FCM has been prov-
en for its positive results in Software Engineering courses (Amresh, Carberry, & Femiani, 2013; Gan-
nod et al., 2008).

While selecting the topics for conducting the flipped classroom approach, the instructors made sure
that the knowledge of the selected topics are important for the software professional. The topics
selected under this category are architectural design, product metrics, project metrics, project cost
estimation, and project scheduling. Most of the topics selected under this teaching method have ap-
plicability in the software industry related to project design and management activities. The in-class
activities were selected in such a way that they will be helpful for the students in acquiring practical
knowledge in the selected areas. Appropriate course materials were chosen for each of the selected

Activity-Oriented Teaching Strategy (AOTS)

Flipped Classroom Project Role-play for artifacts
development

Teaching by
Example

Student
Seminars

Activity Oriented Teaching Strategy

188

topics and shared with the students 2-3 days prior to the start of the in-class activities. Course mate-
rials included mainly videos and textbook references. Google classroom was used for sharing the
course materials with the students. The in-class activities were conducted based on the out-of-class
activities carried out by the students prior to the in-class time. The instructors clarified student
doubts during the in-class time and gave required guidance for getting the expected learning out-
comes from the students. The details of activities planned for the flipped classroom approach are
given in Table 2.

Table 2: Details of in-class and out-of-class activities

Activ-
ity No

 Topic Out-of-class activi-
ty/material

In-class activity

1 Architectural de-
sign Video lecture

Draw the architectural dia-
gram of the student pro-
jects(Undergraduate level)

2 Process / project
metrics

Text book reference, Video
lecture

Problem solving and discus-
sion -Defect removal effi-
ciency, Integrity of software
and customization index.

3 Product Metrics Video lecture
Function point estimation
for a software project

4 Project estimation

Go through one or more
online model for project
estimation from web based
courses.

Discussion on Project esti-
mation factors, Time estima-
tion for students’ Under-
graduate project.

5 Project scheduling Text book reference, Video
Problem solving – Earned
value analysis

When the flipped classroom approach is considered, success of the method mostly depends on the
completion of out-of-class activities on time and the quality/appropriateness of materials (videos,
textbook, references) given for out-of-class activities (O’Flaherty & Phillips, 2015). Therefore, stu-
dents were asked to respond to the following questions related to the flipped classroom approach at
the end of the course.

Have you completed your outclass activities on time?

Whether the learning materials shared for out-of-class learning was appropriate and helpful in completing the
in-class activities?

Along with this, the instructors evaluated all the documents submitted by the students as part of each
in-class activity and gave feedback to each of them. The evaluation details of in-class activities and
student opinions are included under the evaluation and results section.

TEACHING BY EXAMPLE
The use of concrete examples while teaching is an easy way to capture student attention and make
the concept simple for them to understand and remember (Kember & Kwan, 2002). In our experi-
ment using AOTS, the method of teaching by example is mainly used by the instructors to teach dif-
ferent verification and validation methods, which comes under the topic “quality assurance of soft-
ware.” One of the instructors had eight years of industrial experience in software development, test-
ing, and analysis, which helped her in using real examples and scenarios associated with project de-
velopment in an enriching way.

Joy & VG

189

This method of teaching was mainly adopted for the better understanding of different quality assur-
ance techniques. The instructor used real project examples in the classroom to understand the differ-
ent testing scenarios that come with the quality assurance of software. The instructor had highlighted
the various modes of testing, such as unit testing, integration testing, system testing and regression
testing, that are done in the software industry, pointing out which technique should be adopted in a
particular scenario for ensuring optimum test results. For example, if there is a need of adding a new col-
umn to an existing table in the database (part of a running project), regression testing should be done after making the
table change in order to make sure that, the table change doesn’t affect the other part of the application in any way.
The instructor presented different testing scenarios such as changing an input file by adding more
details in it, and most of the students could correctly identify the required testing strategies (unit test-
ing followed by integration testing) for the given scenario. This method of teaching by example has
given first-hand knowledge of quality assurance techniques in a typical industrial environment.

The example-based teaching method influences students’ attitudes and interests towards the subject
and leads to greater learning achievements (Tai, Leou, & Hung, 2015). But the learning achievement
depends on the selection of an appropriate example. While choosing examples, the pedagogical rea-
soning from the perspective of learner and teacher creates two interlinked problems (Shafto, Good-
man, & Griffiths, 2014). For the teacher, the problem is to choose suitable examples that will help the
learner to infer the correct concept easily. For the learner, the problem is to infer the same concept,
conveyed by the teacher through these examples. While adopting examples-based teaching method in
AOTS, the instructors gave importance to the above factors to achieve maximum learning outcomes.

The question included in the opinion survey to get the feedback from the students about teaching by
example method is

“Whether the examples used by the instructor in the classroom were appropriate and helpful to understand
the concepts clearly?”

The student opinions are detailed under the evaluation criteria of student opinion survey.

PROJECT ROLE-PLAY FOR ARTIFACTS DEVELOPMENT
The main purpose of an activity-oriented teaching strategy in the software engineering course is to
gain some software engineering experience which cannot be obtained by traditional lecturing. Project
role-play for developing project artifacts was introduced in AOTS since all the software projects in-
volve the creation of artifacts such as Software Requirement Specification (SRS), Design document
and Test plan documents. The instructors think this method will help the students in the future to do
their academic projects in an authentic way and also to bridge the gap of industrial requirements
when they enter into the software industry.

In the planning phase of the study, the instructors decided on the project artifacts that the students
have to develop during the course. When the lifecycle of a software development project is consid-
ered, the most prevalent project artifacts are SRS, design document, and test plan. Therefore these
artifacts were selected to be developed by the students. Meanwhile, students were divided into groups
of 3 or 4, and they were asked to revise the major projects they did at the undergraduate (B.Tech.)
level. According to the planned strategy, students were asked to work as a team to collect the re-
quirements and to prepare the SRS, design, and test plan documents. The instructors acted as facilita-
tors during group activities and guided them on how to collect requirements and what things should
be taken care of to get maximum benefits from the group activity. Each student in the group played
the role of a client for their own undergraduate project and the rest of the students in the group
were asked to play the roles of System Analyst, Designer, and Tester. For a group of 4 members, the
role play among the group is as shown in Figure 2. In this way every student in the group got an op-
portunity to get familiarized with the creation of all planned project documents and also got a hands-
on experience in software development.

Activity Oriented Teaching Strategy

190

The development of project artifacts started with a requirements analysis phase. Requirements analy-
sis and gathering is one of the most important tasks in the software development phase (Hofmann &
Lehner, 2001). The student playing the role of system analyst needed to collect all the requirements
from the client person and to prepare the SRS document based on the requirements. The SRS creat-
ed by the analyst is used as the base document to prepare the design and test plan by the designer and
tester members in the student group. The discussions among the students within the team led to de-
veloping good quality artifacts, due to continuous interaction among the team.

Figure 2: Project role play during project artifacts creation

In the student opinion survey, students were asked about the feedback of project artifacts creation,
which is a project-supported teaching method.

Do you think the project artifacts (SRS, Design Document, and Test Plan) created helped in enhancing your
practical knowledge?

Whether the activities behind the creation of project artifacts improved your skills to work in a project con-
text within a team?

In the software engineering context, no two projects are exactly alike and the processes involved
from requirements engineering to validation are different for each project (Gary, 2015). To profes-
sionally prepare students, experience in a project context is essential. In the current experiment, each
student is involved in three or four projects to gain experience of working in different project con-
texts.

STUDENT SEMINARS
Teaching has proved to be an important opportunity for recognizing one’s own ignorance and there-
by rendering oneself open to the possibility of learning (Cortese, 2005). Presentation skills and inter-
personal skills are crucial in the software development industry. These aspects were considered in
AOTS. By including student seminars in this study, students had an opportunity to prepare and teach
lessons, or parts of lessons, in front of the remaining students in the class, thereby improving their
soft skills. Most of the students in the class had already undergone a basic course in software engi-
neering at the undergraduate level. Since the students had basic knowledge about the subject, semi-
nars were given for the topics that are the basics of software engineering, such as software life cycle
models and software development principles. The instructors assigned one topic for each student to
come prepared and teach in the class for one hour. The students prepared PowerPoint presentations
and taught their assigned topic in the classroom. During student seminars, the instructors monitored
the content of the presentations and gave constructive feedback to improve the overall content as
well as their presentation skills.

Joy & VG

191

Students consider personal transferable skills like presentation skills and communication skills most
important for them in the future, and they require special training to enhance these skills (Haigh &
Kilmartin, 1999).

In the student opinion survey, the question related to this teaching method was

“Do you think the individual presentations helped to improve your presentation and communication skills?”

By including student seminars in AOTS, students were able to acquire these skills to a certain extent.

EVALUATION AND RESULTS
The AOTS was evaluated by three methods: by evaluating the project artifacts developed by the stu-
dents, assessment of in-class activities, and by a student opinion survey.

BY EVALUATING PROJECT ARTIFACTS
During the first week of the course, the students were asked to write the high-level requirements of
their own major projects at the undergraduate level. Requirements definition is a careful assessment
of the needs that a software system is to fulfill (Ross & Schomn, 1977). It must state why a system is
needed (context), it must state what system features will serve and satisfy this context (functional
specification, stakeholders) and how the system is to be constructed (design constraints). Upon eval-
uating the high-level requirements document prepared by the students, the instructors found that
students were not knowledgeable about how to write a requirements document and the details which
should be included in the document. The documents prepared by the students contained only the
objective of the projects and software modules they developed for their projects. As the course pro-
gressed, students worked in teams and submitted their Software Requirement Specification (SRS),
design, and test plan documents based on the guidelines given by the instructors. These documents
were evaluated by the instructors to analyze the extent to which AOTS can help students to improve
their skills in requirements gathering, analysis, design, testing, and documentation. Upon evaluation
of the documents, it was found that students acquired noticeable improvement in the construction
of the project artifacts involved at different stages of project development. Students choose good
document templates (IEEE template) for creating each of the artifacts that met the level of a soft-
ware development industry standard. The SRS documents created by the students were of good
quality and could be used by another person to create both design and test plans.

The students tried to incorporate as many details as possible of the functionalities in the design doc-
ument including use-case and data flow diagrams. Some of the design documents contained architec-
tural design and even small design considerations. Overall quality of the design documents was found
to be above average. In classrooms, students created a unit test plan based on the project specifica-
tion, and this was reviewed by a peer student, as practiced in the software industry, to capture the
deficiencies in the test plan. By this, students improved in framing test plans covering the specifica-
tions in a comprehensive manner. Due to time constraints, the test plan document was created for
only one function of the assigned project, and it was noted by the instructors that most of the stu-
dents selected the least complex functionality of their respective project for test plan preparation.
But now students had developed a basic understanding of how to write test cases, including the logi-
cal sequence of all the input data setup, input conditions, expected results, etc. Even though the con-
tent of all three documents were of good quality, noticeable documentation errors were found dur-
ing the evaluation. The review comments for each document were shared with the students individu-
ally and students resubmitted the documents after making any necessary corrections.

In higher education, collaborative learning environments are helpful to achieve self-regulated learning
and student motivation (Järvelä & Järvenoja, 2011). In AOTS, the creation of project artifacts was
done by students in a collaborative environment under the guidance of an instructor. Students inter-
acted within the team and started creating draft versions of the required documents. Later on, they

Activity Oriented Teaching Strategy

192

made different iterations in the documents and improved them to the desired level. In the student
opinion survey, the respondents were asked: “Whether the activities behind the creation of project artifacts
enhanced your skills to work in a project context within a team?” All the students reported that the method
was helpful in understanding the project environment and in proceeding with project activities effec-
tively. They also said that, as a result of the group activities, their interpersonal skills had also im-
proved which is an essential skill required in the software industry.

EVALUATION OF IN-CLASS ACTIVITIES IN THE FLIPPED CLASSROOM
The effectiveness of flipped classrooms is evaluated mainly by two methods. One is student feedback
and the other method is to measure the student grades in the examinations conducted in between or
at the end of the course (Karabulut-Ilgu, Jaramillo Cherrez, & Jahren, 2015). In the flipped class-
room approach, we have collected the student feedback regarding the learning material sources
shared with the students as part of out-of-class activities and the appropriateness and quality of in-
class activities chosen. Also, the instructors evaluated the in-class activity of every student. Students
had prepared the architectural diagrams of their undergraduate level projects for their in-class activi-
ty. During in-class time, students actively participated in discussions and interacted with the instruc-
tors to complete the architectural diagrams, and they were able to comprehend the system better by
these activities. The instructors evaluated the architectural diagrams prepared during the in-class time,
focusing on the structure of the software system which comprised the software elements, the rela-
tionships among them, and the properties of both elements and relations. Upon evaluating the archi-
tectural diagrams, the instructors noticed the increase in students’ knowledge level which was lacking
in the initial discussions on the topic. The instructors reviewed the student activity and emphasized
the areas in which each student needed work. The in-class activity given for the topic, product met-
rics, was to determine the Function Point estimate of a software project. Students were able to esti-
mate different performance indicators such as cost per unit of software delivered, staff resource per
unit of software delivered, and elapsed time to deliver a unit of software. Also, students did the pro-
ject estimation for their undergraduate level project. Students considered the essential resources that
are required to complete the project. Size, effort, and cost were estimated based on the user require-
ments and data given based on past projects. Based on these data, students did the project scheduling.
Different problems were given to do the Earned Value Analysis to find whether a project is running
behind schedule, on schedule, or ahead of schedule. Overall, the in-class activities chosen were help-
ful for the students to improve their practical knowledge in the subject and exposure to the industrial
working environment.

There is a need for balance between out-of-class preparatory activities and time spent with actual in-
class activities (O’Flaherty & Phillips, 2015). A lack of engagement with the out-of-class activities
results in variability of student preparedness, which is a learning challenge in the flipped classroom
model. In our study, most of the students were able to complete the in-class activities within the allo-
cated time. Some students faced difficulties and experienced time lag while doing in-class activities
since they had not gone through their out-of-class activities before the in-class session. In such cases,
students had to spend their in-class activity time to understand the concepts that they were supposed
to complete before coming for the in-class time. The activities and percentage of students completed
the in-class activities in the allotted time are given in Table 3.

Joy & VG

193

Table 3: Details of percentage completion of in-class activities on time

No. In-class activity
% of students
completed the
activity on time

Comments

1 Architectural design 73
The remaining % of students
took extra time to complete

their in-class activity.

2 Process/project metrics 85

3 Product Metrics 100

4 Project estimation 76

5 Project scheduling 45 Students spend in-class time for
out-of-class activities.

STUDENT OPINION SURVEY
An opinion survey was conducted to get the student feedback about the activity oriented teaching
strategy conducted to teach the SE course at postgraduate level. Fourteen out of 15 students partici-
pated in the opinion survey. The feedback from the survey is presented below along with the student
opinion, which is quoted in italic.

The survey respondents were asked the question “Have you studied Software engineering/equivalent courses
at undergraduate level? Yes /No. If ‘yes’, point out the factors that you have experienced with the new teaching strategy
at the advanced level.” Students who had earlier undergone software engineering course in their under-
graduate level said that the new teaching strategy was more concentrated on the practical aspects of
SE and this activity-oriented methodology will be helpful for them to apply the learned concepts in
real project scenarios when they enter the software industry.

“The new teaching strategy is focused on acquiring practical knowledge of SE and got a better understanding
of the applicability of learned concepts”

“Got an idea to handle practical problems in SE”

When it comes to flipped classroom and project artifacts creation, both encompass the features of
an active learning strategy which is a favored method in engineering education (Freeman et al., 2014).
Active learning is particularly beneficial in small classes and found to be very effective for compre-
hending the concepts easily. Here the experiment was conducted for an engineering postgraduate
level course consisting of 15 students. Active learning is generally defined as an instructional method
that engages students in the learning process. In short, active learning requires students to do mean-
ingful learning activities and think about what they are doing (Jensen, Kummer, & Godoy, 2015).

The benefits of flipped learning are flexibility, improved teacher-student interaction, and increased
student engagement in the learning process (Karabulut-Ilgu et al., 2018). The students mentioned
that they were able to grasp the content beyond memorization and basic knowledge. Here also, 12
out of 14 students said that the in-class activities were beneficial for them to clarify doubts during the
in-class time. And two of them said they were not able to complete the out-of-class activities on time
due to time factors.

”In-class activities were helpful to understand the concepts and clearing the doubts”

The existing studies say active learning leads to improvement in examination performance that would
raise average grades by half a letter, and when compared with traditional lecturing the failure rates of
active learning have been reduced by 55% (Freeman et al., 2014). In the current study, 12 out of 14
students said that the in-class activities will be beneficial for them in the exam.

Activity Oriented Teaching Strategy

194

”All the out-of-class activities were not completed on time because of time issues and sometimes it affected the
in-class exercises. The method was found to be very useful in problem-solving context and from exam point of
view”

According to the students’ opinions the teaching strategy using project artifacts development was
beneficial for all the students. The students’ opinion is that this activity helped them to know how to
(1) write the SRS, (2) prepare the design document, and (3) execute the test plan for different pro-
jects. They think this exercise will be helpful for them in the future to work as a team and improve
their creative project development skills.

“Helped to understand how to make SRS, design and test plan for a new project”

“Improved our team working skills and interpersonal skills”

In the opinion survey, students were asked about the appropriateness of the examples used by the
instructor in the class. By including concrete examples in our teaching and correlating these examples
back to “real-world” systems and situations, students would be motivated towards the topic and un-
derstand the subject more effectively (Felder, Woods, Stice, & Rugarcia, 2000). In the current experi-
ment, instructors tried to connect different testing methods with appropriate testing scenarios/cases
in real software projects. Students also found that the teaching by example strategy was helpful for
them to understand the real scenario, where different verification and validation methods need to be
applied. All the students thought the examples used by the instructor were simple and relevant, and
they were able to correlate between the theory and application.

“The simple and relevant examples used were very beneficial to understand the testing scenarios very well”

Students considered soft skills like presentation skills and communication skills are most important
for them in the future, and they required special training to enhance these skills. Thirteen out of 14
students opined that the seminars were helpful to enhance their confidence level and presentation
skills.

“The individual topic presentations improved our confidence level and presentation skills”

The overall opinion of the students about the new teaching strategy was that the method was con-
centrating on the practical side of the software engineering discipline. Three students opined that it
was difficult to adapt to the new teaching strategy due to the time limitation of the course. Two stu-
dents felt they could have spent more time on the in-class/out-of-class activities to get maximum
benefit from the new teaching strategy. One student opined that from an exam point of view, tradi-
tional teaching is better when compared with the new activity oriented teaching strategy.

“New method would help the student to know more about the practical side, but it takes more time to com-
plete all the activities”

“Since the duration of the semester is limited, it was difficult to adopt the new teaching strategy. For the ex-
am point of view, traditional teaching is more effective than new strategy since the new method is concentrating
on the practical side of software engineering”

Overall, AOTS emphasized the areas where traditional SE teaching methods are lacking. Students
opined that AOTS helped them to acquire the practical knowledge of SE, to understand the applica-
bility of the learned concepts, and to develop interpersonal/soft skills, thus helping the students for
their professional careers.

CONCLUSION AND FUTURE WORK
This paper describes the findings of an activity-oriented teaching strategy (AOTS) which was adopt-
ed for a software engineering course at postgraduate level. It was found that AOTS helped students
in acquiring practical knowledge of SE and how to apply the learned concepts on different project
scenarios. The key features of AOTS are:

Joy & VG

195

• Student centric.
• Promotes collaborative learning
• Uses active student learning.
• Provides many concrete, practical examples.
• Helps to meet industrial needs.

There are several complaints from the software industry sector that graduates are not well prepared
for their professional careers and they are not ready to enter into the real work environment (Almi,
Rahman, Purusothaman, & Sulaiman, 2011). The skills which are lacking are good communication
skills, ability to follow processes and to be part of a team, and project management skills. This arises
since the SE education environment differs from the Software Engineering industry environment.
This experiment reveals that activity-oriented teaching strategies can fulfill both academic and indus-
trial requirements by actively engaging the students in the learning process and thus helping them
develop their professional skills.

Constructivism is a theory of learning which is very much applicable to software engineering educa-
tion (Hadjerrouit, 2005a). According to this theory, knowledge must be actively constructed by learn-
ers, not passively transmitted by teachers. To get students more actively involved in knowledge con-
struction, learner-centered pedagogies are essential (Hadjerrouit, 2005b). AOTS consists of different
learner-centered pedagogies like flipped classroom, project role-plays for developing project artifacts,
and student seminars. According to student feedback, the most useful pedagogy in AOTS was pro-
ject role-play for developing project artifacts, which enabled them to acquire deeper knowledge about
the creative software development procedure. Students opined that the flipped classroom approach
was far more effective and engaging than the traditional lecture-based approach since this method
gave more importance to problem-solving. In this method, students had to apply higher cognitive
levels in order to analyze and evaluate solutions for project-based problems, which they have to deal
with in an industrial atmosphere. In the teaching by example method, the students were able to cor-
relate different quality assurance techniques with real project scenarios in the software industry. Stu-
dent seminars had vastly improved confidence levels and presentation skills of the students.

Overall, AOTS emphasized the areas where traditional SE teaching methods are lacking. AOTS guid-
ed students towards acquiring theoretical knowledge as well as practical skill sets which are essential
in the software industry and currently lacking in the newly recruited graduates. Thus, the research
question has been answered as “Yes;” AOTS helps the students to acquire practical knowledge of
Software Engineering and thus bridge the gap between academia and industry. In particular, students
benefited from the activities such as project role-play, individual presentations, collaborative problem-
solving tasks, and examples of quality assurance techniques in different project scenarios.

Beyond the positive results, students found difficulties in meeting the different milestones set by the
course, due to time constraints. Also, AOTS could not encompass pedagogies for addressing mana-
gerial skills such as people management and conflict management due to time constraints, which is
also an essential skill required in the software industry. The above problems could be eliminated
through more efficient planning of the teaching strategy. At the initial stages of AOTS implementa-
tion, instructor load is comparatively high when compared to traditional teaching methods since pre-
cise planning and focused effort is required for each AOTS activity. Once the AOTS becomes refined
based on the feedback and the learning outcomes, the instructor load will reduce considerably, since
all the teaching aids for each activity will be in place before the commencement of the course.

According to the instructors, AOTS is a promising teaching strategy for software engineering cours-
es. To make a generalization about the benefits of AOTS, further longitudinal cohort studies are re-
quired in this area to evaluate the learning outcomes. We are planning to continue this study in 2018
also, by refining AOTS based on our current experience, learning outcomes, and student feedback. In
the present study, all the AOTS activities were evaluated manually. We are planning to include an
online grading system for conducting and evaluating assignments for each activity. We are also plan-

Activity Oriented Teaching Strategy

196

ning to introduce virtual classrooms for improving the interactions among instructors and students
beyond the regular class time so as to get maximum AOTS utilization and to improve the learning
outcomes.

REFERENCES
Abeysekera, L., & Dawson, P. (2015). Motivation and cognitive load in the flipped classroom: Definition, ra-

tionale and a call for research. Higher Education Research & Development, 34(1), 1-14.
https://doi.org/10.1080/07294360.2014.934336

Adcock, R., Alef, E., Amato, B., Ardis, M., Bernstein, L., Boehm, B., ... & Edson, R. (2009). Curriculum guidelines
for graduate degree programs in software engineering. Integrated Software and Systems Engineering Curriculum Se-
ries. New York: NY: ACM,

Almi, N. E. A. M., Rahman, N. A., Purusothaman, D., & Sulaiman, S. (2011). Software engineering education:
The gap between industry’s requirements and graduates’ readiness. In Proceedings of IEEE Symposium on
Computers & Informatics (ISCI), 542-547. https://doi.org/10.1109/ISCI.2011.5958974

Amresh, A., Carberry, A. R., & Femiani, J. (2013). Evaluating the effectiveness of flipped classrooms for teach-
ing CS1. In Proceedings of the 2013 IEEE Frontiers in Education Conference, 733-735.
https://doi.org/10.1109/FIE.2013.6684923

Azuma, M., Coallier, F., & Garbajosa, J. (2003, September). How to apply the Bloom taxonomy to software
engineering. In Proceedings of 11th Annual International Workshop on Software Technology and Engineering Practice,
IEEE, 117-122.

Begel, A. & Simon, B. (2008). Struggles of new college graduates in their first software development job. Pro-
ceedings of the 39th SIGCSE Technical Symposium on Computer Science Education, New York, NY, USA: ACM,
226–230. https://doi.org/10.1145/1352135.1352218

Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. International Society
for Technology in Education.

Bishop, J. L., & Verleger, M. A. (2013). The flipped classroom: A survey of the research. In ASEE National
Conference Proceedings, Atlanta, GA, 30(9), 1-18.

Corey, S. M. (1954). Action research in education. The Journal of Educational Research, 47(5), 375-380.

Cortese, C. G. (2005). Learning through teaching. Management Learning, 36(1), 87-115.
https://doi.org/10.1177/1350507605049905

Felder, R. M., Woods, D. R., Stice, J. E., & Rugarcia, A. (2000). The future of engineering education II. Teach-
ing methods that work. Chemical Engineering Education, 34(1), 26-39.

Fonseca, V. M. F., & Gómez, J. (2017). Applying active methodologies for teaching software engineering in
computer engineering. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 12(3), 147-155.
https://doi.org/10.1109/RITA.2017.2738178

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014).
Active learning increases student performance in science, engineering, and mathematics. Proceedings of the
National Academy of Sciences, 111(23), 8410-8415. https://doi.org/10.1073/pnas.1319030111

Gandhi, K. I. (2016). A teaching-learning model for software engineering courses through sensor-based cogni-
tive approach. International Journal of Engineering Education, 32(2), 915-926.

Gannod, G. C., Burge, J. E., & Helmick, M. T. (2008). Using the inverted classroom to teach software engineer-
ing. In Proceedings of the 30th International Conference on Software Engineering, New York, NY: ACM, 777-786.
https://doi.org/10.1145/1368088.1368198

Garg, K., Sureka, A., & Varma, V. (2015, December). A case study on teaching software engineering concepts
using a case-based learning environment. In 1st International Workshop on Case Method for Computing Education
(CMCE), 71-78. Retrieved from https://www.researchgate.net/publication/290084880_A_Case-
Study_on_Teaching_Software_Engineering_Concepts_using_a_Case-Based_Learning_Environment

https://doi.org/10.1080/07294360.2014.934336
https://doi.org/10.1109/ISCI.2011.5958974
https://doi.org/10.1109/FIE.2013.6684923
https://doi.org/10.1145/1352135.1352218
https://doi.org/10.1177/1350507605049905
https://doi.org/10.1109/RITA.2017.2738178
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.1145/1368088.1368198
https://www.researchgate.net/publication/290084880_A_Case-Study_on_Teaching_Software_Engineering_Concepts_using_a_Case-Based_Learning_Environment
https://www.researchgate.net/publication/290084880_A_Case-Study_on_Teaching_Software_Engineering_Concepts_using_a_Case-Based_Learning_Environment

Joy & VG

197

Garg, K., & Varma, V. (2008, April). Software engineering education in India: Issues and challenges. In Proceed-
ings of 21st Conference on Software Engineering Education and Training, CSEET’08. IEEE, 110-117.

Garg, K., & Varma, V. (2015, February). Systemic requirements of a software engineering learning environ-
ment. In Proceedings of the 8th India Software Engineering Conference, ACM, 147-155.

Gary, K. (2015, September). Project-based learning. Computer, 48(9), 98-100.
https://doi.org/10.1109/MC.2015.268

Hadjerrouit, S. (2005a). Constructivism as guiding philosophy for software engineering education. ACM
SIGCSE Bulletin, 37(4), 45-49. https://doi.org/10.1145/1113847.1113875

Hadjerrouit, S. (2005b). Learner-centered web-based instruction in software engineering. IEEE Transactions on
Education, 48(1), 99-104. https://doi.org/10.1109/TE.2004.832871

Haigh, M. J., & Kilmartin, M. P. (1999). Student perceptions of the development of personal transferable skills.
Journal of Geography in Higher Education, 23(2), 195-206. https://doi.org/10.1080/03098269985461

Hamdan, N., McKnight, P., McKnight, K., & Arfstrom, K. (2015). A review of flipped learning. Retrieved from
https://flippedlearning.org/wp-content/uploads/2016/07/LitReview_FlippedLearning.pdf

Hofmann, H. F., & Lehner, F. (2001). Requirements engineering as a success factor in software projects. IEEE
Software, 18(4), 58. https://doi.org/10.1109/MS.2001.936219

Horton, D., Craig, M., Campbell, J., Gries, P., & Zingaro, D. (2014). Comparing outcomes in inverted and tradi-
tional CS1. In Proceedings of the 2014 Conference on Innovation & Technology in Computer Science Education, New
York, NY: ACM, 261-266.

Järvelä, S., & Järvenoja, H. (2011). Socially constructed self-regulated learning and motivation regulation in col-
laborative learning groups. Teachers College Record, 113(2), 350-374.

Jensen, J. L., Kummer, T. A., & Godoy, P. D. D. M. (2015). Improvements from a flipped classroom may simply
be the fruits of active learning. CBE—Life Sciences Education, 14(1), ar5. https://doi.org/10.1187/cbe.14-
08-0129

Karabulut-Ilgu, A., Jaramillo Cherrez, N., & Jahren, C. T. (2018). A systematic review of research on the
flipped learning method in engineering education. British Journal of Educational Technology, 49(3), 398-411.
https://doi.org/10.1111/bjet.12548

Kember, D., & Kwan, K. P. (2002). Lecturers’ approaches to teaching and their relationship to conceptions of
good teaching. In N. Hativa & P. Goodyear (Eds.), Teacher thinking, beliefs and knowledge in higher education (pp.
219-239). Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0593-7_10

Lethbridge, T. C. (2000). What knowledge is important to a software professional? Computer, 33(5), 44-50.
https://doi.org/10.1109/2.841783

Miller, C. S., & Dettori, L. (2008). Employers’ perspectives on it learning outcomes. In Proceedings of the 9th
ACM SIGITE Conference on Information Technology Education, ser. SIGITE ‘08. New York, NY, USA: ACM,
213–218. https://doi.org/10.1145/1414558.1414612

Mishra, A., Ercil Cagiltay, N., & Kilic, O. (2007). Software engineering education: Some important dimensions.
European Journal of Engineering Education, 32(3), 349-361. https://doi.org/10.1080/03043790701278607

O’Flaherty, J., & Phillips, C. (2015). The use of flipped classrooms in higher education: A scoping review. The
Internet and Higher Education, 25, 85-95. https://doi.org/10.1016/j.iheduc.2015.02.002

Paez, N. M. (2017). A flipped classroom experience teaching software engineering. In Proceedings of the 1st Inter-
national Workshop on Software Engineering Curricula for Millennials, IEEE Press, 16-20.
https://doi.org/10.1109/SECM.2017.6

Pieper, J., Lueth, O., Goedicke, M., & Forbrig, P. (2017, April). A case study of software engineering methods
education supported by digital game-based learning: Applying the SEMAT essence kernel in games and
course projects. In Global Engineering Education Conference (EDUCON), 2017 IEEE, 1689-1699.
https://doi.org/10.1109/EDUCON.2017.7943076

https://doi.org/10.1109/MC.2015.268
https://doi.org/10.1145/1113847.1113875
https://doi.org/10.1109/TE.2004.832871
https://doi.org/10.1080/03098269985461
https://flippedlearning.org/wp-content/uploads/2016/07/LitReview_FlippedLearning.pdf
https://doi.org/10.1109/MS.2001.936219
https://doi.org/10.1187/cbe.14-08-0129
https://doi.org/10.1187/cbe.14-08-0129
https://doi.org/10.1111/bjet.12548
https://doi.org/10.1007/978-94-010-0593-7_10
https://doi.org/10.1109/2.841783
https://doi.org/10.1145/1414558.1414612
https://doi.org/10.1080/03043790701278607
https://doi.org/10.1016/j.iheduc.2015.02.002
https://doi.org/10.1109/SECM.2017.6
https://doi.org/10.1109/EDUCON.2017.7943076

Activity Oriented Teaching Strategy

198

Rana, M. E., Saleh, O. S., & Ghazali, O. (2017). Cloud based software engineering learning environment:
Guidelines to host software engineering tools on the cloud. Journal of Theoretical and Applied Information
Technology, 95(3), 525.

Radermacher, A., Walia, G., & Knudson, D. (2014). Investigating the skill gap between graduating students and
industry expectations. In Companion Proceedings of the 36th International Conference on Software Engineering, ACM,
(291-300). https://doi.org/10.1145/2591062.2591159

Reddy, Y. R., & Nori, K. V. (2014, April). Teaching software product engineering in undergraduate computing
curriculum. In Software Engineering Education and Training (CSEE&T), 2014 IEEE 27th Conference, 175-
178. https://doi.org/10.1109/CSEET.2014.6816798

Reza, S., & Baig, M. I. (2015). A study of inverted classroom pedagogy in computer science teaching. Interna-
tional Journal of Research Studies in Educational Technology, 4(2), 19-30.
https://doi.org/10.5861/ijrset.2015.1091

Ross, D. T., & Schoman, K. E. (1977). Structured analysis for requirements definition. IEEE Transactions on
Software Engineering, SE-3(1), 6-15. https://doi.org/10.1109/TSE.1977.229899

Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A rational account of pedagogical reasoning: Teaching by,
and learning from, examples. Cognitive Psychology, 71, 55-89.
https://doi.org/10.1016/j.cogpsych.2013.12.004

Shaw, M. (2005). Software engineering for the 21st century: A basis for rethinking the curriculum. Technical Re-
port CMU-ISRI-05–108.

Tai, C. H., Leou, S., & Hung, J. F. (2015). The effectiveness of teaching indigenous students mathematics using
example-based cognitive methods. Journal of Interdisciplinary Mathematics, 18(4), 433-448.
https://doi.org/10.1080/09720502.2015.1023547

Tillmann, N., De Halleux, J., & Xie, T. (2011, May). Pex4Fun: Teaching and learning computer science via social
gaming. In Software Engineering Education and Training (CSEE&T), 2011 24th IEEE-CS Conference, 546-
548.

Varma, V., & Garg, K. (2005). Case studies: The potential teaching instruments for software engineering educa-
tion. In Quality Software, 2005 (QSIC 2005). Fifth International Conference, IEEE, 279-284.

Yadav, S. S., & Xiahou, J. (2010, June). Integrated project based learning in software engineering education. In
Educational and Network Technology (ICENT), 2010 International Conference, IEEE, 34-36.

https://doi.org/10.1145/2591062.2591159
https://doi.org/10.1109/CSEET.2014.6816798
https://doi.org/10.5861/ijrset.2015.1091
https://doi.org/10.1109/TSE.1977.229899
https://doi.org/10.1016/j.cogpsych.2013.12.004
https://doi.org/10.1080/09720502.2015.1023547

Joy & VG

199

APPENDIX

SCHOOL OF ENGINEERING, CUSAT
STUDENT OPINION SURVEY

Declaration by the Researchers

This opinion survey is conducted to collect the students’ feedback about new teaching
strategy carried out for teaching software engineering. The data collected will be used
only for research purpose.

Name of degree: M.Tech- Software Systems Semester and Year: S1, 2017

(Put tick mark in appropriate position .If your answer is ‘Yes’, write the benefits/outputs
you attained. If your answer is ‘No’, write down the hindering factors.)

1. Have you studied Software engineering/equivalent courses at undergraduate level?
Yes /No
If ‘yes’, point out the factors that you have experienced with the new teaching strate-
gy in the advanced level?

2. Have you completed your out-class activities on time? Yes / No
3. Whether the learning materials shared for out-of-class learning was appropriate and

helpful in completing the in-class activities? Yes /No
4. Do you think the project artifacts (SRS, SDD, and Test Plan) created helped you to

enhance your practical knowledge? Yes/No
5. Whether the activities behind the creation of project artifacts improved your skills to

work in a project context within a team? Yes/No
6. Do you think the individual presentations helped you to improve your presentation

and communication skills? Yes/No
7. Whether the examples used by the instructor in the class room were appropriate and

helpful to understand the concepts clearly? Yes/No
8. Do you feel the new teaching strategy (Teaching by-flipped classroom, examples,

project artifacts, and presentations) is beneficial when compared with traditional
teaching? Yes/No

Activity Oriented Teaching Strategy

200

BIOGRAPHIES
Jeevamol Joy is a Research Scholar at Cochin University of Science and
Technology, Kerala, India. She earned her undergraduate degree from
Mahatma Gandhi University, India and master’s degree from Manon-
maniam Sundaranar University, Tamil Nadu, India. She worked as an IT
System Analyst in Retail domain for 8 years at UST Global, Technopark,
India. Her research areas include project-based learning, recommender
systems and e-learning.

Renumol V G, PhD, is a Professor and Head of the Department of In-
formation Technology at Cochin University of Science and Technology,
India. She has earned her undergraduate and postgraduate degrees from
the same University. She received her Ph.D. from Indian Institute of
Technology, Madras, India and received Post-Doctoral Fellowship from
Indian Institute of Technology, Mumbai, India. Her research area in-
cludes Cognitive Psychology in Education, Computing Education, Edu-
cational Technology and ICT in Special Education.

	Activity Oriented Teaching Strategy for Software Engineering Course: An Experience Report
	Abstract
	Introduction
	Related Work
	Design of the AOTS Experiment
	Flipped Classroom
	Teaching by Example
	Project Role-play for Artifacts Development
	Student Seminars

	Evaluation and Results
	By Evaluating Project Artifacts
	Evaluation of In-Class Activities in the Flipped Classroom
	Student Opinion Survey

	Conclusion and Future Work
	References
	Appendix
	Biographies

