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Abstract—Eddy Current Techniques (ECT) for Non-Destructive
Testing and Evaluation (NDT/NDE) of conducting materials is
one of the most application-oriented field of research within
electromagnetism. In this work, a novel approach is proposed in
order to characterize defects on metallic plates in terms of their
depth and shape, starting from a set of experimental measurements.
The problem is solved by means of a hybrid classification system
based on Computation with Words (CWs) and Fuzzy Entropy
(FE). They extract information about the specimen under test from
the measurements. Main advantages of proposed approach are
the introduction of CWs as well as the usage of the FE based
minimization module, in order to improve flaw characterization by a
low computational complexity system.

1. INTRODUCTION TO THE PROBLEM

Non Destructive Testing (NDT) plays a remarkable role within the
framework of defect identification in metallic plates, with special
regard to those sectors where the integrity of the material is strictly
required. As a consequence, the detection of defects together with the
relevant shape classification provides the operator useful information
about the actual mechanical integrity of the specimen [1, 2]. Direct
[3–5] and inverse problems [6, 7] exploiting eddy current tests are
well known in scientific literature. At the state-of-the-art, the open
problems involve in-depth location and shape determination of a defect
starting from experimental measurements. Both of them are ill-posed
inverse problems, because of differently shaped defects, located into
the inspected material at an unspecified deepness, can rise to totally
similar signals. The conventional approaches to classification, which
assign a specific class for each defect, are often inadequate because each
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defect may embrace more than a single class. Fuzzy Set theory, which
has been developed to deal with imprecise information, can provide a
more appropriate solution to this problem. This paper aims to deal
with the classification of defects, both Inner (ID) (the probe lies on the
same side of the plate where the defect is located) and Outer (OD) ones
(probe and defect are on opposite sides of the plate), in terms of their
depth. An approach based on CWs has been introduced, so obtaining
banks of “IF...THEN” fuzzy rules, in virtue of which the system under
investigation behaves as a linguistic structure. In CWs, a word is
viewed as a label of a granule, i.e., a fuzzy set of points drawn together
by similarity, with the fuzzy set playing the role of a fuzzy constraint
on a variable. The premises are expressed as propositions in a natural
language. For computational purposes, the propositions are expressed
as canonical forms. They serve to evidence the fuzzy constraints,
which are implicit in the premises. The inference rules are exploited
to propagate the constraints from premises to conclusions. In order to
point out the goodness of the procedure, a comparison with traditional
FISs with Sugeno’s inferences-type has been taken into account. In
addition, a novel approach is proposed by considering a sort of fuzzy
clustering with a FE calculus to characterize the shape of analyzed
defect. In particular, the fuzzy formulation of Shannon entropy is
used to obtain mathematical and experimental models of a Fuzzy
machine for pattern recognition, with optimal inference capabilities
and minimal entropy values. In particular, to get the minimal number
of rules describing the system behavior, we have implemented a suitable
FIS with Minimal FE (MFE). This paper is organized as follows: after
a Section 2 theoretically describing the exploited non-destructive and
heuristic techniques, the collected experimental database is presented
in Section 3. Then, the achieved best results are presented in Section 4.
Finally, some conclusions are drawn.

2. A BRIEF THEORETICAL INTRODUCTION

Eddy current technique is a non-destructive methodology based on
Foucault theory. It is caused by a moving magnetic field intersecting a
conductor or vice-versa. The relative motion causes a circulating flow
of electrons, or current, within the conductor. These circulating eddies
of current create electromagnets with magnetic fields that oppose the
change in the external magnetic field, according to the Lenz’s law.
The stronger the magnetic field, or greater the electrical conductivity
of the conductor, the greater the currents developed and the greater
the opposing force. An eddy current is a swirling current set up in
a conductor in response to a changing magnetic field. By Lenz’s
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law, the current swirls in such a way as to create a magnetic field
opposing the change; to do this in a conductor, electrons swirl in a
plane perpendicular to the magnetic field. Because of the tendency of
eddy currents to oppose, eddy currents cause energy to be lost. More
accurately, eddy currents transform more useful forms of energy, such
as kinetic energy, into heat, which is generally much less useful [8, 9].

A practical application of eddy current phenomenon is just the
identification of faults in mechanical integrity of metallic specimen.
In this case, a presence of flaw, for instance, disturbs the normal
distribution of current within the material, causing a brusque variation
of the measured electromagnetic field. Within this framework, an AC
electric current tends to flow at the skin of the conductor. The depth
below the surface of the conductor at which the current density decays
to 1

e of the current density at the surface (JS), i.e., the so called skin

depth d, is determinable as d =
√

2ρ
ωµ , where ρ is the resistivity of

conductor, ω is the pulse of current and µ is the absolute magnetic
permeability of conductor. It is the well known skin effect. Nowadays,
characterize a defect starting from measured electromagnetic quantities
is an open question, even because the problem is complicated by
its ill-posedness. In fact, totally different defects can rise to similar
eddy current signals. Therefore, it is necessary to regularize the
inverse problems, for example by using heuristic techniques based on a
“learning by sample” method. In the remaining body of this section,
our proposed approach will be theoretically described.

2.1. The Fundamental Theory of CWs Approach

Computing is centered on manipulation of numbers and symbols.
In contrast, Computation with Words (CWs) is a methodology in
which the objects of computation are words and propositions drawn
from a Natural Language (NL) [10, 11]. CWs is a necessity when
the available information is so much imprecise to justify the use of
number and when there is a tolerance for imprecision which can be
exploited to achieve tractability, robustness, low solution cost and
better rapport with reality. A basic generic problem in CWs consists
of a collection of propositions, namely an Initial Data Set (IDS),
expressed in a NL, which can be replied by using a namely Terminal
Data Set (TDS) with the same language. The problem is to derive
TDS from IDS. For this purpose, we translate the IDS propositions
into their canonical forms, which collectively represent antecedent
constraints. By using some rules for constraint propagation, antecedent
constraints are reformulated into consequent constraints. Finally,
consequent constraints are translated into a NL by means of linguistic
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Figure 1. Conceptual structure of CWs.

approximation, yielding the terminal data set (Fig. 1). Therefore, two
core issues: representation and propagation of fuzzy constraints. The
former is based on the test score semantics: a proposition p in a NL
can be expressed as a network of fuzzy constraints. In particular,
they can be represented in the form X isr R. This expression is the
canonical form of p, where X is the constrained variable, R is the
constraining relation and isr is the so called variable copula, defining
the relation between R and X. More specifically, the role of R in relation
to X is defined by the value of the discrete variable r (Fig. 1). Once
the propositions into the IDS are expressed in their canonical form,
the groundwork is laid for fuzzy constraint propagation. The rules
governing fuzzy constraints propagation (latter core in CWs) effectively
are the rules of inference in FISs. In addition, it is helpful to have rules
governing fuzzy constraint modification. In particular, if X is m A X
is f(A) where m is a sort of linguistic modifier such as not, very, more
or less, and f(A) defines the way in which m modifies A. For instance,
if m=not then f(A)=A’ (complement) and if m=very then f(A)=2A
(left square), where µ2A(u) = (µA(u))2. The principal rule governing
constraint propagation is a generalized extension principle which in
schematic form may be represented as:

f(X1, X2, ..., Xn) is A
q(X1, X2, ..., Xn) is q(f−1(A))

(1)

In this expression, X1, X2, ..., Xn are database variables; the term
above the line represents the constraint induced by the IDS; and the
term below the line is TDS expressed as a constraint on the query
q(X1, X2, ..., Xn). In the latter constraint, f−1(A) denotes the pre-
image of the fuzzy relation A under mapping f : U → V , where A is a
fuzzy subset of V and U is the domain of f(X1, X2, ..., Xn). Expressed
in terms of the membership functions of A and f−1(A), the generalized
extension principle reduces derivation of the TDS to the solution
of the constrained maximization problem µq(X1, X2, ..., Xn)(ν) =
supu (µA(f(u1, u2, ..., un))) in which u1, u2, ..., un are constrained by
ν = q(u1, u2, ..., un).
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2.2. An Overview of FE Minimization

In a pattern classification problem, ujk is the level of fuzzy membership
of j-th defect to k-th class (k ∈ IN; k = 1, 2, ..., N). Let N
classes are given, the shading-type partition produces N informative
layers representing membership levels of the defects to the selected
classes. Shannon index [12] has been widely applied to evaluate the
fuzziness degree of a fuzzy classification. Entropy of a defect, H, i.e.
its amount of statistic information, is H =

∑N
k=1 ujkln(ujk) where

ln(ujk) = 0 when ujk = 0 [13]. According to fuzzification of Shannon
Entropy principle, a new FE-based approach has been considered for
implementing a Minimal Fuzzy Entropy Decisional Model (MFEDM)
for each considered feature. In order to build each MFEDM, the
following algorithm has been considered:
(i) let X = {x1, x2, ..., xn} an universal set of pattern space elements;
(ii) let Ã be a k-elements fuzzy set (k < n) defined on an interval

of pattern space; membership degree mapping of xi elements into
the fuzzy set Ã is denoted as µÃ(xi);

(iii) let C1, C2, ..., Cm be the m classes into which the n elements arc
divided;

(iv) let SCj (xn) represent a set of elements of j-th class into the
universal set X;

(v) let us define Dj as the match degree with the fuzzy set Ã
for elements of j-th class in an interval, where j = 1, 2, ...,m:

Dj =

∑
x∈SCj

(xn)
µÃ(x)

∑
x∈X

µÃ(x)
;

(vi) let us define FE of elements of j-th class in an interval FECj (Ã) =
−Dj log2(Dj);

(vii) let us define FE (non-probabilistic entropy) in an universal set X
for elements in an interval FE(Ã) =

∑m
j=1 FECj (Ã). Therefore,

the term match degree for Dj has been coined.
In order to explain the applicative algorithm of previously proposed
mathematical model, let us consider an l-dimensional pattern p ∈
X, p = {p1, p2, ..., pl} (train pattern), which is composed by l features
(inputs) and belongs to class Cj , 1 ≤ j ≤ m. A Fuzzy System is
obtained from a train patterns’ set by subtractive clustering, with a
user-defined number of fuzzy membership functions (FMFs) for each
input (nfmf ). Considering the r-th input (1 ≤ r ≤ l) of each train
pattern pt, let us define a number of intervals equal to (nfmf + 1):
interval boundaries are defined as follows: left-most interval boundaries
are [min(pt, r), c1]; boundaries of each s-th internal interval are
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[cs−1, cs+1]; right-most interval boundaries are [cnfmf−1,max(pt, r)].
For each s-th interval, FE(Ãs) is calculated according to the previously
presented equations: thus FE of considered r-th input (FEr) is the
summation of all FE(Ãs), s = 1, 2, ..., (nfmf + 1). It is the total
amount FEtot of FE. When FEtot has a minimum, the procedure is
stopped and the relative FIS is returned. It is a particular FIS, having
the lowest number of rules and Minimal FE (MFE), without loosing
on generality and on informative content.

3. THE EXPERIMENTAL DATABASE

Experimental measurements have been carried out at Non Destructive
Testing Lab, DIMET Department, Universitá “Mediterranea” of
Reggio Calabria.

First of all, in order to characterize the existing flaws in terms of
their shapes, hole shaped, cylindrical cavity shaped and rectangular
shaped artificial defects have been considered on INCONEL600
specimens (140×140×1.25 mm). INCONEL600 is an alloy composed
by 70% nichel, 15% chrome and 8% iron, having an excellent resistance
to corrosion and high temperatures, with σ = 105, µ = µ0). The
applied sensor was a Fluxset c©-type probe [14], longitudinally moved
over the specimen by means of a 0.5 mm-step automatic scanning
procedure. A driving signal - triangular shape, 125 kHz frequency,
2Vpp amplitude — was applied to saturate the core material inside the
probe. External sinusoidal exciting currents of 292 mA rms (frequency
1 kHz), 503 mA rms (frequency 1023 Hz) and 170 mA rms (frequency
5 kHz) have been exploited for hole, cylindrical cavity and rectangular
defects respectively. A set of 29 measurements has been carried out in
order to retrieve a dataset useful for our experimentations. Different
exciting settings of Fluxset c© are very important in order to quantify
the point-to-point trend of the magnitude of the pick-up voltage ‖Vp‖.
In this case, in fact, the skin depth phenomenon requires a balancing
between exciting frequency and electric conductivity of used material,
in order to reach significant examination depths. Consequently, both
the exciting currents and frequencies were set in order to span the
whole of depth of each specimen. Subsequently, the collected dataset
has been used in order to train and test a suitable FIS with a MFE for
defect’s shape recognition. In order to train our FIS, a pre-processing
action of feature extraction has been taken into account. In particular,
both for magnitude and phase of Vp, the following statistical quantities
(features) have been calculated: average, standard deviation, skewness
and kurtosis. For each feature, it has been considered the ratio between
the value computed on the area in which the defect takes place and
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Table 1. Codify used to train the FIS for flaw characterization in
terms of deepness.

Hole shaped defect Cylindrical cavity Crack

1 2 3

the value computed on the whole of signal (inputs of FIS procedure).
Each pattern has been related to a modeling of flaw’s shape and a
sort of user-defined codify (outputs of FIS procedure) as shown in
Fig. 2 and Table 1. Finally, the collected dataset has been split
into a train (trainDB) and a test (testDB) databases: the former
composed by 25 patterns, the latter composed by remaining patterns.
Fig. 2 clearly depicts the ill-posedness of the problem for defect’s shape
characterization starting from experimental eddy current measures. In
fact, let us denote how holes and cylindrical cavities shows similar
trend of correspondent eddy current signal, in spite of the different
geometric characterizations. Differences in magnitude of plotted ‖Vp‖
are due to the exciting frequency and current.
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Figure 2. Magnitude of ‖Vp‖ and geometrical modeling for: a) an hole
shaped defect; b) a cylindrical cavity shaped defect; c) a rectangular
crack defect.
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Subsequently, plates with rectangular cuts (0.2x5 mm), having
depths of 20%, 40%, 60% and 100% of the plate thickness respectively,
have been inspected in order to implement a CWs based system able
to estimate the deepness of a flaw. Also in this case, 29 full scannings
were run. The following quantities were selected (inputs of procedure):
the peak-to-peak value of voltage’s phase (� (V )peak, [degree]); the
exciting current iexc ([mA]). Each input pattern has been linked to
the corresponding flaw’s depth by using a suitable class codification
(output of procedure).

4. PERFORMANCES OF THE EXPLOITED MODELS

4.1. CWs for Deepness of Defects

As a first step in CWs procedure to identify defects on metallic plates,
we need to introduce a concept of granule which, typically, is defined as
a fuzzy set of points drawn together by similarity. In our application,
the input set is represented by exciting current and the phase of the
pick-up signal, whereas the output is the class of defect’s depth (Fig. 3).
A suitable granulation with a gaussian membership function has been
chosen for each class. Starting from a bank of fuzzy rules, e.g., if
exciting current if large and phase is very small then class is small, it is
possible to represent fuzzy constraints using the Explanatory Database
(ED) procedure (Fig. 1) in order to write fuzzy rules by CWs. The
exciting current is a Parameter that defines the Characteristic exciting.
According to proposition “exciting current is large”, ED is the
following: ED=Characteristic exciting[Parameter; Field]+Large[Field;
µ]. Here Characteristic exciting is a relation involving Parameter
and Field, Large is a relation involving Field and the membership
degree. Then the proposition p1 = X1 is R1 = “current
is large” becomes FieldCharacteristic exciting[Parameter=current] is
Large[Field; µ]. Likewise, the proposition p2 = X2 is R2 = “phase
is verysmall” becomes FieldCharacteristic exciting[Parameter=phase]
is Verysmall[Field; µ]. Output of the first rule is q = X0 is S=
“class is small”; ED is DepthCharacteristic defect[Parameter=class]
is Small[Depth; µ]. The final resulting rule is the following: If

FieldCharacteristic exciting[Parameter=current] is Large[Field; µ] and

FieldCharacteristic exciting[Parameter=phase] is Verysmall[Field; µ]
then DepthCharacteristic defect[Parameter=class] is Small[Depth; µ].

We obtain a bank of modified rules applying a sort of manipulation
of fuzzy constraints. For example, a typical rule can be written as:
If FieldCharacteristic exciting[Parameter=current] is Large[Field; µ]
and FieldCharacteristic exciting[Parameter=phase] is Small[Field; µ2]
then DepthCharacteristic defect[Parameter=class] is Small[Depth; µ]
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Figure 3. Representation of input-output set: a) exciting current; b)
phase of the pick-up voltage; c) deepness of defect.

where µ2 is the approximation of the “very” operator. In this way, due
to the manipulation constraints, the number of rules obtained by CWs
are lower than the ones obtained by a classical fuzzy subclustering.
By using the Matlab c© Fuzzy Toolbox, we have implemented a code
allowing an automatic extraction of a bank of fuzzy rules with CWs.
In order to emphasize the goodness of the obtained results, we have
compared CWs and traditional fuzzy subclustering for the specimens
under study. In particular, Table 2 summarizes the comparison in
terms of accuracy for determining the correct defect depth. It is
possible to denote how, for subsuperficial defects, CWs has a better
behavior than fuzzy clustering. The error increases as in-depth location
of the defect, up to becomes equal for CWs as well as for fuzzy
subclustering. By the way, global results obtained with CWs are better
than the ones obtained by fuzzy subclustering (Table 3).
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Table 2. Errors (%) for each depth.

Defect depth (%) Error with CWs (%) Error with

fuzzy subclustering (%)

20 0 3.85

40 2.93 3.8

60 4.34 5.15

100 5.85 5.85

Table 3. Comparison of global results between CWs and fuzzy
subclustering.

Method Global error (%)

CWs 3.281

Fuzzy subclustering 4.662

Table 4. Characteristic of best MFEFIS.

Minimal FE No. of inputs No. of outputs No. of fuzzy rules

151.312 8 1 5

Table 5. Shape recognition results by using the best MFEFIS.

Specimen Pattern Kind of defect Actual class Estimated class

Rectangular 1 Cylindrical cavity 2 2
steel plate

Multilayer 5 Hole 1 1
steel plate

JSAEM 13 Crack 3 3

JSAEM 22 Crack 3 5

4.2. MFE for Defect Shape Recognition

The procedure has been applied to an array of {trainDB, testDB}
databases’ couples, built by mixing the collected 29 patterns. As
described in the previous Section 3, each trainDB database is composed
by 25 patterns, and the remaining 4 patterns (a cylindrical cavity-,
a hole- and two rectangular-shaped defects) compose the testDB
database. The best performances allowed to obtain a complete shape-
recognition of the 3 differently shaped ECT testing: characteristics of
related FIS retrieved by considering the MFE (MFEFIS) are resumed
in Table 4.
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5. CONCLUSIONS

In this paper, a novel approach for defects characterization in metallic
plates is proposed. It examines flaws in terms of their depth and
shape starting from a set of experimental measurements. Particularly,
CWs have been taken into account to solve the problem of “multi-
membership” of defects to several categories. An hybrid system based
on CWs and MFE has been used. The former stage determines the
defect’s depth and quickly classify the results with low-computational
complexity algorithms. Table 3 shows the global errors carried out by
traditional fuzzy subclustering and CWs procedures. Let us remark
how a CWs based fuzzy system has a lower computational complexity
than a FIS obtained by using fuzzy subclustering. It is due to a sort
of compaction of fuzzy rules carried out by CWs method.

Moreover, MFEFIS providing best shape-recognition perfor-
mances has been able to detect in an exactly way the class of 3 testing
defects (see Table 5). Wrong classification proposes an estimated class
with a never-used codify: it should be solved by using a thresholding
procedure on the MFEFIS outputs. Proposed experimentation shows
a suitable use of Soft Computing approach in order to solve the inverse
problem of flaw shape identification in metallic plates. In particular,
use of Fuzzy Inference with the minimization of Fuzzy Entropy allowed
to obtain a quick model, useful for real-time applications, having a low
computational load. At the same time, proposed MFEFIS guarantees
maintenance of useful information, avoiding to consider unnecessary
features and so giving a good automatic solution or the “curse of di-
mensionality” problem.
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