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Representation of Polygonal Surfaces as Displaced Subdivision Surfaces
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Abstract: Problem statement: Displaced subdivision representation possessesndér of attractive
features for efficient and convenient processirgigdike editing, geometry compression, animation,
scalability and adaptive rendering of polygonal elsedIn this representation, a detailed surfaceehod
was built as a scalar-valued displacement map awsmnooth domain surface. The construction of the
smooth domain surface from a polygonal model wahallenging task in the conversion process.
Approach: For building the smooth domain surface, we progoae efficient algorithm that was
based onv3-subdivision scheme, memory efficient simplificatiand a linear time optimization
technique.Results: At some fixed level of detail, the vertex and ngée complexity of the displaced
surface generated by the proposed algorithm waled$arand so it resulted in better compressiongati
and transmission speedonclusion: The proposed algorithm created surfaces of bejteality,
computationally more efficient and occupied lessnoey as compared to the original algorithm by Lee.

Key words: Polygonal models, subdivision surfaces, displacgmep, geometry compression

INTRODUCTION Lee et al.*¥ define domain surface using Loop
subdivision schent&’. They employ a very slow and
Recent advances in scanning technologiesmemory consuming heuristic approach to simplify the
CAD/CAD systems and computer vision techniquesmesh followed by a time consuming energy
have made it possible to acquire 3D (three dimeradjo Minimization technique to optimize the vertex piosis
information that is widely represented in the foah SO as to closely fit the original surface. An aitive
polygonal surfaces, which are, now-a-days, widespre technique was proposed by Husseiral.*” to define
in various application areas of Computer Graphicssmooth domain surface, which exploit3-subdivision
(CG). A polygonal surface is typically represenseda techniqu€®, a memory efficient decimation approach
triangular mesh where geometry is encoded by threand a linear time optimization method. Although it
scalar values (x, y, z) per vertex and the conniggtof reduces significantly memory overhead and time
vertices is often irregular. As a result of recentcomplexity, the underlying simplification approaftr
developments in technology, the sizes of triangulacreating raw control mesh overestimates the geaenetr
meshes are growing rapidly. Sheer sizes and iraegul €rror and the optimization technique for optimizing
connectivity of such meshes put a threat tovertex positions results in creating small wiggleshe
manipulation,  transmission, storage, animationsmooth domain surface, which causes scalar oftdets
rendering and visualization of 3D information. greater magnitudes and so the compression ratiotis
Alternatively, a polygonal surface can be represgats SO good. The proposed technique deals with thigeiss
a displaced subdivision surface, which consistsaof Without noticeable increase in the complexity oé th
control mesh and a set of scalar offsets that defie  conversion process. The main differentiating fezdof
polygonal surface as a scalar displacement maptbeer the proposed algorithm are:
smooth domain surface generated from the control
mesh by subdivision. This surface representatiéer®f ¢ Reduced memory overhead
a number of advantages over the meshk Computational efficiency
representatidt?. Expressing terrain data as a heighte Better quality of generated surfaces and better
field over a plane is a simple example of displaced compression ratio
surface. Generalization of this concept to arbjtrar
surfaces involves the challenging problem of defini Related work: Semi-regular or subdivision
efficiently the underlying smooth domain surfacatth connectivity meshes offer many advantages, likgpm
locally closely fits the geometry of the given pgtyial  data structures and efficient processing for their
surface. manipulation, over the irregular setting where the
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connectivity of the vertices of a polygonal modehbt  simple topology. Also the representation of thefae
regular. Similar to the algorithms by Eddt al.”, as control mesh together with displacement mapis n
Krischnamurthy and Levdy' and Leeet al.'¥, the  straight forward.
proposed algorithm constructs a semi-regular mesh
from an irregular connectivity input mesh. Subdivision surfacess A subdivision surface is
The idea of representing a surface as aenerated by iteratively refining a coarse contneish
displacement function was first introduced by ddok  driven by a refinement operator. In each iteration,
Schroderet al.*"! used this idea to represent functionsrefinement operator not only refines the topolofyhe
of sphere. Leeet al® exploiting the idea of underlying mesh but also smoothes the geometryaand
displacement map, developed displaced subdivisioBuch it can be assumed to be composed of two types
surface representation for polygonal surfaces, whie  operators: topological or split operator and geoynet
usually encoded by polygonal meshes and validdsed i smoothing operator. Split operator performs refiaam
usefulness for efficient manipulation, storage,tiedi by introducing new vertices and thus new faceshin t
and transmission of polygonal surfaces in variousnesh. Smoothing operator smoothes the vertex
application areas. The conversion process propbged positions by taking averages of neighboring vertex
Leeet al."**is not only computationally complex but positions motivated by some smoothness criteri@ Th
also involves high memory overhead. They employ anewly inserted vertices are called odd verticesilenvh
time-consuming and memory extensive heuristicthe old vertices are referred to as even vertides.
approach based on quadric error mefficand half-  subdivision scheme that relocates only the oddoest
edge collapse for decimating the original polygonalis known as interpolating scheme, e.g., butterfly
surface to generate initial control mesh. Furtheeno schemé!, whereas the one that relocates not only odd
their method for optimizing the vertex positionsrige  vertices but even vertices as well is termed as
based on sampling a dense set of points from thapproximating scheme. The Loop subdivis§itn 4-8
original mesh and minimizing their squared distanoe  subdivisiof® and V3-subdivisiof*! are examples of
the subdivision surface is also computationallyyver approximating schemes that perform on triangle
complex. meshes; in this case the subdivision surface doegm
Similarly to Leeet al.*** and Guskovet al.”!  through the control mesh but approximates it.
presented an algorithm for representing a polygonal |n Loop subdivision scheme, refinement is
surface as a normal mesh by applying successively gerformed uniformly by a 1-4 split operator andtise
hierarchy of displacement maps to the underlyingyymber of faces increases by the factor of 4. Goptr

control mesh as it is subdivided. Though theiry, this 4.8 subdivision and3-subdivision schemes are
construction encodes most part of the geometry of 8.0 on 1-2 and 1-3 splits respectively and thesfa

]E)olytgonal med?.l as scal(;;\r Oﬁsfts' dh_ovvlever a tsm? row in number by the factors of 2 and 3, respebtiv
raction ot vertices needs veclor displacements .e., the process of increasing the number of fases

prevlt_alnt surface f[?(lndmg. . slower than that in Loop scheme; it follows that
ussainet al.””™ proposed a conversion method for loving 4-8 subdivisi dB-subdivisi
transforming polygonal mesh representation intoc P 0YINg subdivision ands-subcivision, one can
displaced subdivision surface; this method diffieosn have more levels Of, uniform resolution if a presed
the technique proposed by Leet al.™® in the target face complexny of the. generated mesh mast n
construction of smooth domain surface. It explaits €Xceed a certain number. This reason leads usptoiex
simple and efficient heuristic based simplification4-8 Subdivision or\/.?f-subdwlsmn.. Because for 4-8
method and linear time optimization approach tohpus subdivision, the position mask of infinite positiof a
the vertices of the raw control mesh. Though itvertex is not straight forward, so we emploi-
drastically reduces computational and memorysubdivision as a tool to define smooth domain serfa
overhead, it creates small wiggles in the smoothaln ~ for displaced subdivision representation and in the
surface and thus results in scalar offsets of targefollowing paragraphs, we give an overview of this
magnitudes and so the compression ratio is not.gonod scheme, for detailed discussion and analysis of the
this study, an alternative technique has been meho scheme, please consthit
which overcomes this problem. For arbitrary control meshes3-subdivision yields
Won and Charlf’ presented an algorithm that the limit surface to be Calmost everywhere except for
directly reconstructs displaced subdivision surflioen  the extraordinary vertices (valencé 6) where the
unorganized points. This method is fairly efficiémit it  smoothness is at least.CThis scheme has stencils of
is limited only to a small class of surfaces havingminimum size and maximum symmétty;
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In V3-subdivision scheme, split operator divides MATERIALSAND METHODS
each triangle at level | into three new triangles b
inserting a new vertex at its center, introducihgeé Now, we elaborate the main techniques used by the

new edges that connect the new vertex to eachsof ifproposed conversion process.
three vertices and re-balancing the valence of even
vertices by flipping every old edge that conneets t Creating initial control mesh: The first step is to build
even vertices. In the following discussiohngeans the initial control meshM®; it must be built with the goal
position of a vertex at level I. that its normal space locally closely approximattes
Smoothing operator consists of two rules: one fomormal space of the given polygonal surface becéuse
odd vertices and one for even vertices. The smogthi ensures that the resulting subdivision surface lipca
rule for odd vertices fg!- closely fits the given surface. For this purpose,use a
fast, simple, memory efficient and feature presegvi
1 error metric that automatically preserves locale t
pr==(+g+nR) Q) normal space of the original polygonal mddeind a
3 sequence of half-edge collapse transformations to
simplify the triangle mesh. Here we give a brief
i.e., an odd vertex'ﬁ is simply inserted at the center of description of the algorithm, for detailed accoafithe
the triangleA(p!, p', p() at level I. Let hbe an even algorithm please consliit The cost of an arbitrary

vertex with valence n and)pp/, p., ... , pi being its  half-edge collapse transformati@g :vs— Vi
1-ring neighbors, its position "pat level I+1 is
determined by the following rufé: Cost(g, = >, O~ .
IDT Tes‘
- o n-1
p*=@-a,)p +T”izolﬁ (@ where:
AW = The area of the triangle t

_4-2cos(at /n) o N ni, A, = The current normal (not unit normal) and the
where, a, = 9 - The limit position of a original unit normal to the triangle t
vertex p means the position that it attains as4. The T, = The set of all triangles incident on vertex v
limit position of any vertex 'pcan be determined T, = The set of triangles which share the edge e

directly using the following limit position rufé: (Fig. 1)

/ \| 4

b = @-B,)d +%Zd 3)

where, B—% The position of a vertex' gan be

determined at subdivision level m where m>| exjohgjt ‘\\// "
the following rulé*!: o N P
P =vrp + Q- y)F (4)  Fig. 1: Edge collapse operation—w; eliminates the

triangles T, incident on g (shown in dark
gray) and changes the orientation of the
remaining trianglesT, -T, . Collapse of the

be used in our conversion process to build theseoar edge g maps typically the triangle t = {vvi,
control mesh for displaced subdivision represeomati v} O T, -Tesonto the triangle t = {, va, Vo};

With the help of the technique describeB®inthe . -

L for computing the distortion caused by t the
tangent masks fox/3 -subdivision can be calculated to deviation of the normal to t (which is current
be (¢, 6, 6.+, Gy and(c, . G, G, G, Where normal to t) is calculated with respect to the
¢ =cos(2ti/n) original normal to t
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Half-edge collapse transformations are applied  For eachp, OM°, there exists an equation similar

|tr$rat|r:/ellg In ? g.reerz]dy mangler until the_error_?d(;vv;\ hto (7) and so we get a large sparse system of arder
thresho \;a ue; t te_gree y dproce_;sdls Sw € Thg Nyvhere r is the number of vertices in the controbme
measure of geometric error described above. re olving this system for |3, we get their positions

no need _to employ any heuristic to ensure the loc hich cause the subdivision surface to pass through
preservation of the normal space of the originatleho The subdivision surface must interoolate the
during the decimation process because the erraiianet b P

described above automatically does this job, foremo vertices oM® so that it can locally closely fit the given
detail, please consfit The normal at each vertex is polygonal surface because the vertices/Sfare on the
approximated as the average of the normal vectors tpolygonal surface as it has been created usingelaie
the faces inT, . Original normal of each vertex is collapses. So in the above mentioned system ofidine

computed using the original polygonal model at aequations,p’'s are taken to be the vertices B’ and
preprocessing stage and is stored for further ssiog.  the solution of the system yields their optimalifoss
The normal vectors can also be computed using tangep,'s,

masks forV3-subdivision scheme but we found that it The problem with this approach is that it resirts

does not make any difference. excessive undulations in the smooth domain surféae.
L o L discourage such undulations and improve the quafity
Optimization of the initial control mesh: Subdivision resulting smooth domain surface, we introduce

of the initial control meshM®causes the generated additional degrees of freedom and then set these
subdivision surface to shrink becaw&subdivision is degrees of freedom by optimizing some energy
an approximating scheme, for detail cof$lit The  fnctional subject to the linear constraints (8)e W

smooth subdivision surface locally closely fits theexploit the energy functional proposed®inwhich is
original surface only when it passes through théic&s  yafined as:

of the initial control mesh because these vertigesn
the original surface. To force the subdivision ao€f to _ »
pass through these vertices, there is a need tjusta E‘;De (8)
the positions of these vertices; this objective is
accomplished by exploiting a kind of optimization

technique; in the sequel we present the detailhisf t Where:

technique. E = The set of all edges of the control mesh
The optimization technique for readjusting theDe = The difference between the normal vectors to the
vertex positions of the initial control mesh is &@aon triangular faces incident on the edgarel can be
\3-subdivision rule described by Eq. 4. This rute, i expressed as:
particular, for m = 1, | = 0 and’ p can be expressed
as: De :(‘)iep‘ +depj+(‘d(epk+depl
PEYap + (@-y,)F (5)
Where:
But according to the smoothing rule for eveniPi» P, Po P} = Vertices of the triangles incident on
vertices specified by Eq. 2: edge e
1 Q)ie = Ale
o« i
p'=(-a,)p+-23 p (6) ‘
n iz ; _ g
w, =
A|ij
From (5) and (6), we obtain the following equation " 1A,
= £ K
1 o ht ’ AkiiA"J
“p+—=n = (1— 7
3P ngp. 1-v,)F (@) o _ by
AkjiAIij

where, p~ is the limit position of the vertexp and p 2 The signed area of the triangle (I, j, k)

(i=1,2,...,n)are 1-ring neighbors of p. le
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_ where, n,=> (W), &= > w, for the
k J ‘ eJE(i) {eDE(i)|jOv(e)}
interpretation of E(i) and V(e) Fig. 2, VF(i) andi)Vare
the sets of vertices in the flapped 1-ring neighbod
1 and 1-ring neighborhood of the vertex(pig. 2) and
i (A1, A2, As, ..., Ay) IS the vector of Lagrange multipliers,

. ) ) r being the number of vertices m°. Eq. 9 and 10 are
Fig. 2: (Left) Stencil of edge e, V() ={B , P P} IS two rows of a large linear system of order 2r. Sitte
the set of vertices in the stencil. (Right) Thesset e of nonzero entries in each row is much smnall
of vertices V() and VF() in 1-iNg yhan 1 5o the system is a sparse linear systewiein
r!e|ghborhood (dark shaded) and n flapped Lot this, the problem of optimizing the vertex pasis
fing nelghborhood_ (dark and light ShadEddecomposes into the solutions of three independent
W'Fh(.)Ut R). respectively, of the vertex; @nd sparse linear systems, one for each of x-, y- and z
E()) is the set of bold edges coordinates. We solve each of the system using
biconjugate gradient methBd, which yields an
acceptable solution in O(r) time.

Polygonal surface as a displacement map: Optimized
control mesh M is subdivided up to level k using
refinement operators of/3-subdivision. Then, each
vertex of the resulting surfaceN6s pushed to its limit
position using limit position rule ofi3-subdivision to
obtain the smooth surface*Mvhich serves as a domain
for representing the given polygonal surface madeh
displacement map. The normal at each vertex is
Fig. 3: Error distribution showing the difference computed. The position of each verteop M and its
between the original model and the smoothnormal n; define the straight line p(t) = p tn; the
domain surface created by proposed methodength of the line segment between the verteand p
(left) and the one (right) publishedf Left of  (the vertex where the line pierces the originafae)
the figure shows error ramp, error increaseds the magnitude of the scalar offset, which isitpasif
from zero (blue) to maximum (red) intersection occurs in the direction of the outward

normal otherwise it will be negative. This line may
The areas and the length are computed aftefaye multiple intersections or the original surfacay

applying hinge map on the stencil of the edge 8.() e griented in the wrong direction with respecttis
taking eas hinge and rotating one of the triangular facege it the directed line is intersected at mdrart one

frijisthear:eli Ileidgctt?()eng:ageecgtjggeitOtr?oetr gife' d?ggosg point, then we pick the one that is closest todbmain
9y y 9e surface. In the second case we reject the intéosect

excessive undulations in the smooth domain surfacel,o compute the intersections efficiently. we malke u
but also smoothes and preserves locally the normal P y:

space of the control mesh and so it results inebett of OBB tree data structufe
compression ratio.

Now the problem of optimizing the vertex
positions of M°is equivalent to the problem of
optimizing the energy functional (8) subject to the
linear constraints (7). Employing the method of
Lagrange multipliers, this problem is equivalentthe
solution of the following system of linear equaton

RESULTS

Now, we describe the details of the algorithm that
converts polygonal surface into the corresponding
displaced subdivision surface representation (DSR).
Following is the detail of the algorithm:

Conversion_to_DSR()

e+ Y. dp+ Y. h)\k +l)\1 =0 9) Input:  Polygonal surface model M (V,F)
IVEG) kv M 3 Output: Displaced subdivision surface DSS 2,(M
DY), where M is the optimized control
1p+in Y p-@-y, )F=0 (10) mesh and b offset values at subdivision
3 N 1ovi) level k
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%« Create_|Initial_Control_Mesh (M) DISCUSSION

Our implementation of the proposed algorithm has
been tested on many public domain polygonal surface

— Compute_Offset_Values (M, 'y models. Here, we discuss the performance of the

The optimized control mesh Mand the offset algorithm using only two typical benchmark models.

values

B form the displaced subdivision surface

representation (DSR): Compression ratio: The V3-subdivision technique

where,

and refinement operators, respectively, of3-

subdivi

Figure 4 demonstrates the different stages of thQ

0 increases the number of vertices by a factor of 2,
DSR = SSM" + D whereas Loop subdivision increases this number by a
factor of 3 after each subdivision step. Leteal.™*!
use Loop subdivision. So the size of the set o$etff
values- D-produced by the proposed method is less
y 33% as compared to the one generated by the

$ and $ are matrix forms of limit position rule

sion.

algorithm and the output of the algorithm for VenusMethod of Leest al ** Also, it is obvious from error

model.

Fig. 4:

Fig. 5:

Figure 5 shows the conversion of horse model distribution shown in Fig. 3 that most of the offse
values are close to zero and the range of thesewvdd

small, so the proposed method results in higher
g \ 4 compression ratios.
]
y

/s =" \

; | Quality of the generated surfaces. For objective

‘\\ \\ vy evaluation of the displaced subdivision surfaces
\ generated by the proposed algorithm, we use mean
square geometric error 4Land compute it using well-
known IEI-CNR metro tod. Column 5 of Table 1
shows [* as the percentage of the diagonal of the
bounding box for various models. It is apparent tha
surfaces generated by the proposed method compare
well with the original polygonal surfaces. Becatlse
(Top row: left) Original Venus model M (# implementation of the algorithm by Let al.* is not
faces 268,686; size on disk 9.67 MB) and (Topavailable in public domain, we cannot make
row: Right) Displaced subdivision surface comparison directly with it in terms of quality.
(#faces 64476, size on disk 460-24 KB for Anyhow, according to the error statistics reporité%f]
control mesh and 336 KB for displacement(Table 1), I error is 0.027 for Venus model with
map). Bottom row demonstrates the four phasesontrol mesh consisting of 748 faces and displaced
of the conversion process: (bottom row: Left) subdivision surface having 191488 faces, whereiss th
raw control meshM® (#faces 796), (bottom €rror in our case is 0.011 (Table 1) in spite of th
row: Middle left) optimized control mesh 91  displaced subdivision surface being smaller in .size
(bottom row: Middle right) smooth domain Though this is not exact comparison, it gives ihesi
surface § k = 4 obtained by subdividing  that quality of the displaced subdivision surfaces

and (bottom row: right) displacement field that 9enerated by the proposed method is better. It is
encodes the difference of M anfl S obvious from Fig. 3 that the proposed method

performs better even than the one proposéd im

%‘ terms of the quality.
(4 /\ | Table 1: Sizes of the original model, correspondiigplaced Mesh
’ \

(3 zy

<' ‘,4\ > \ )“,‘(\ /§ N > \ (DM) and control mesh (CM) are given as the nundfer
y P! ) J 3 4 J .‘J\ triangle faces
‘ ] Size of M Size of S Size of M ,
Horse model (courte_sy cyber-ware): (Left) '\Hﬂgi(j (Z;ZZS) (gﬁ;Zs) (fgfgces) (?%32
Original T: 96966, (middle) smooth domain Rrappit 134074 64476 796 0.015
surface, § = 4, T: 64476, (right) displaced Venus 268686 64476 796 0.011
subdivision surface Ball joint 274120 85536 1056 0.015
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Table 2: Execution times (sec) : _vertex; the simplification approach adapted in this

Process Horse  Rabbit Venus Balljoint proposal stores original normal for the calculatinin

g'gt‘iﬂg’t‘itg]” 18-2? Zg-ig 48-?2 511-32 error metric whereas it is stored by the methdd'ifor

Sampling 14.05 14.88 27.89 2g0g  heuristic used for locally preserving the normahcsp

Total (sec) 31.05 38.53 78.27 80.40 Note that the memory requirements of the proposed
scheme are almost the same as those of the method

Table 3: Execution times (min) taken froth proposed iAo

Process Armadillo Venus Bunny Dinosaur

Size (#F) 210,944 100,000 69,451 342,138 CONCLUSION

Simplification 61 28 19 115

Optimization 25 11 11 43 An efficient technique has been presented for

Sampling 2 2 1 5

building smooth domain surface for displaced
subdivision surface representation, which is noly on

Time complexity: For creating initial control mesh, the fast and memory ef'f|C|ent.but also generate§ duxqgia
method proposed by Lest al 2 involves computing surfaces .of be'Fter quality an'd resuI.tS in hlgher
the parameterization of the original polygonal aoef ~ COMPpression ratio. As our main contribution is an
using MAPS during the simplification process and a efficient method for the construction of smooth édm
large number of comparisons to ensure that the alorm surface, so the displaced subdivision surfacesrgeste
space of the original polygonal surface is locallyby the proposed method offer all those benefithaae
preserved. And they optimize the initial controlghe ~been demonstrated by Lee al.™, i.e., compression,
by solving a nonlinear optimization problem. In editing, animation and scalability. The only lintita
comparison, our approach doesn't involve anyof this algorithm is that at the moment it is appble
constraint to insure local preservation of norndce  only to closed polygonal surface models.
while simplification and our optimization techniqise
based on the linear problem of solving three sparse REFERENCES
linear systems. This analysis shows that the rgnin
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