
From Statistical Relational to Neural-Symbolic Artificial Intelligence

Luc De Raedt1,2 , Sebastijan Dumančić1 , Robin Manhaeve1 and Giuseppe Marra1

1KU Leuven, Department of Computer Science and Leuven.AI
2Örebro University, Center for Applied Autonomous Sensor Systems

{luc.deraedt, sebastian.dumancic, robin.manhaeve, giuseppe.marra}@kuleuven.be

Abstract
Neural-symbolic and statistical relational artificial
intelligence both integrate frameworks for learning
with logical reasoning. This survey identifies sev-
eral parallels across seven different dimensions be-
tween these two fields. These cannot only be used
to characterize and position neural-symbolic artifi-
cial intelligence approaches but also to identify a
number of directions for further research.

1 Introduction
The integration of learning and reasoning is one of the key
challenges in artificial intelligence and machine learning today,
and various communities have been addressing it. That is
especially true for the field of neural-symbolic computation
(NeSy) [Besold et al., 2017; d’Avila Garcez et al., 2019],
where the goal is to integrate symbolic reasoning and neural
networks. NeSy already has a long tradition, and it has
recently attracted a lot of attention from various communities
(cf. the keynotes of Yoshua Bengio and Henry Kautz on this
topic at AAAI 2020).

Another domain that has a rich tradition in integrating
learning and reasoning is that of statistical relational learning
and artificial intelligence (StarAI) [Getoor and Taskar, 2007;
De Raedt et al., 2016]. But rather than focusing on integrating
logic and neural networks, it is centred around the question
of integrating logic with probabilistic reasoning, more specifi-
cally probabilistic graphical models. Despite the common in-
terest in combining symbolic reasoning with a basic paradigm
for learning, i.e., probabilistic graphical models or neural net-
works, it is surprising that there are not more interactions
between these two fields.

This discrepancy is the key motivation behind this sur-
vey: it aims at pointing out the similarities between these
two endeavours and in this way it wants to stimulate cross-
fertilization. In doing so, we start from the literature on
StarAI, following the key concepts and techniques outlined in
a number of textbooks and tutorials such as [Russell, 2015;
De Raedt et al., 2016], because it turns out that the same
issues and techniques that arise in StarAI apply to NeSy as
well. As the key contribution of this survey, we identify
seven dimensions that these fields have in common and that
can be used to categorize both StarAI and NeSy approaches.

These seven dimensions are concerned with (1) directed vs
undirected models, (2) model vs proof-based inference, (3)
integrating logic with probability and/or neural computation,
(4) logical semantics, (5) learning parameters or structure,
(6) representing entities as symbols or sub-symbols, and (7)
the type of logic used. We provide evidence for our claim
by positioning a wide variety of StarAI and NeSy systems
along these dimensions and pointing out analogies between
them. This provides not only new insights into the relation-
ships between StarAI and NeSy, but it also allows one to carry
over and adapt techniques from one field to another. Thus
the insights provided in this paper can be used to create new
opportunities for cross-fertilization between StarAI and NeSy,
by focusing on those dimensions that have not been fully ex-
ploited yet. Of course, there are also important differences
between StarAI and NeSy, the most important one being that
the former operates more at the symbolic level, lending itself
naturally to explainable AI, while the latter operates more
at the sub-symbolic level, lending itself more naturally for
computer vision and natural language processing.

Unlike some other recent surveys or perspectives on neural-
symbolic computation [Besold et al., 2017; d’Avila Garcez et
al., 2019], the present survey limits itself to a logical and prob-
abilistic perspective, which it inherits from StarAI, and to de-
velopments in neural-symbolic computation that are consistent
with this perspective. Furthermore, it focuses on representative
and prototypical systems rather than aiming at completeness
(which would not be possible given the fast developments in
the field). Another early overview of neural-symbolic compu-
tation is that of [Bader and Hitzler, 2005]. Unlike the present
survey it focuses very much on a logical and a reasoning per-
spective. Today, the focus has shifted very much to learning.

The following sections of the paper each describe one di-
mension. We summarize various neural-symbolic approaches
along these dimensions in Table 1. For ease of writing, we
do not always repeat the references to these approaches in the
paper, the table mentions the key reference for each of them.

2 Directed vs Undirected
Within the graphical model community there is a distinction
between the directed and undirected graphical models [Koller
and Friedman, 2009], which has led to two distinct types of
StarAI systems. The first generalizes directed models, and

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4943



resembles Bayesian networks; the second generalizes undi-
rected models like Markov networks or random fields. The
key difference between the two is that the first class of mod-
els indicates a natural direction (sometimes the term “causal”
is used) between the different random variables, while the
second one does not.

In StarAI, the first category includes well-known represen-
tations such as plate notation [Koller and Friedman, 2009],
probabilistic relational models (PRMs) [Friedman et al., 1999],
probabilistic logic programs (PLPs) [De Raedt and Kimmig,
2015], and Bayesian logic programs (BLPs) [Kersting and
De Raedt, 2007]. Today the most typical and popular rep-
resentatives of this category are the probabilistic (logic) pro-
grams. The second category includes Markov Logic Networks
(MLNs) [Richardson and Domingos, 2006] and Probabilistic
Soft Logic (PSL) [Bach et al., 2017]. They specify a set of
weighted constraints, clauses or formulae.

From a logical perspective, the difference amounts to using
a form of definite clauses (as in the programming language
Prolog) versus the use of full clausal logic or even first order
logic. On the one hand, a definite clause is an expression of the
form h← b1 ∧ ...∧ bn where h and the bi are logical atoms of
the form p(t1, ..., tm), with p being a predicate of arity m and
the ti being terms, that is, constants, variables, or structured
terms of the form f(t1, ..., tn), where f is a functor and the
ti are again terms. On the other hand, full clausal logic also
allows for formulae of the form h1 ∨ ... ∨ hm ← b1, ..., bn.

The first type of rule forms the basis of programming and
database languages such as Prolog and Datalog. It is typically
used for forward or backward inference to prove that certain
atoms hold. The second type of clause specifies a more gen-
eral relationship between two sets of atoms, the ones in the
condition and in the conclusion part. While such clauses can
also be used in (resolution) theorem provers, they can also be
viewed as constraints that relate these two sets of atoms as is
common in Answer Set Programming [Gebser et al., 2012].
This difference reflects the kind of knowledge that the user has
about the problem. With directed models, one can express that
a set of variables has a direct “causal” influence on another
one, while with undirected ones one expresses a kind of (soft)
constraints on a set of variables, that is, that the variables are
related to one another. More details on these connections can
be found in [De Raedt et al., 2016].

Borrowing this view from StarAI, we can devise a first di-
mension for neural-symbolic approaches, which relies entirely
on the logical perspective outlined above.

The first category includes systems which retain the directed
nature of logical inference as they exploit backward chaining.
The most prominent members of this category are NeSy sys-
tems based on Prolog or Datalog, such as Neural Theorem
Provers (NTPs) [Rocktäschel and Riedel, 2017], NLProlog
[Weber et al., 2019], DeepProbLog [Manhaeve et al., 2018]
and DiffLog [Si et al., 2019]. Lifted Relational Neural Net-
works (LRNNs) [Šourek et al., 2018] and ∂ILP [Evans and
Grefenstette, 2018] are other examples of non-probabilistic
directed models, where definite clauses are compiled into a
neural network architecture in a forward chaining fashion. The
systems that imitate logical reasoning with tensor calculus,
Neural Logic Programming (NeuralLP) [Yang et al., 2017]

and Neural Logic Machines (NLM) [Dong et al., 2019], are
likewise instances of directed logic.

The undirected NeSy approaches consider logic as a con-
straint on the behaviour of a predictive model. A large
group of approaches, including Semantic Based regularization
(SBR) [Diligenti et al., 2017], Logic Tensor Networks(LTN)
[Donadello et al., 2017] and Semantic Loss (SL) [Xu et al.,
2018], exploits logical knowledge as a soft constraint over
the hypothesis space in a way that favours solutions con-
sistent with the encoded knowledge. SBR and LTN imple-
ment predicates as neural networks and translates the pro-
vided logical formulas into a real valued regularization by
means of fuzzy logic, while SL uses marginal probabilities
of the target atoms to define the regularization term and re-
lies on arithmetic circuits [Darwiche, 2011] to evaluate it
efficiently. Similarly, another group of approaches, including
Neural Markov Logic Networks (NMLN) [Marra and Kuželka,
2019] and Relational Neural Machines (RNM) [Marra et al.,
2020] extend MLNs, allowing factors to be implemented
as neural architectures. Finally, [Rocktäschel et al., 2015;
Demeester et al., 2016] compute ground atoms scores as dot
products between relation and entities embeddings; implica-
tion rules are then translated into a logical loss by means of a
continuous relaxation of the implication operator.

3 Model-based vs Proof-based Inference
The distinction between directed and undirected models is
closely related to the distinction between a model-theoretic
and proof-theoretic approach to inference. This is clear when
looking at the difference between Answer Set Programming
and the programming language Prolog. In the model theoretic
perspective, one first grounds out the clauses in the theory and
then calls a SAT solver (possibly after breaking cycles), while
in a proof-theoretic perspective one performs a sequence of
inference steps in order to obtain a proof.

Grounding is the step whereby a clause c (or formula) con-
taining variables {V1, ..., Vk} is replaced by all instances cθ
where θ is a substitution {V1 = c1, ...Vk = ck} and the ci are
constants (or other ground terms) appearing in the domain.
The resulting clause cθ is that obtained by simultaneously
replacing all variables by the corresponding constants. Usu-
ally the grounding process is optimised in order to obtain
only those ground clauses that are relevant for the considered
inference task.

Many StarAI systems use logic as a kind of template to
ground out the relational model in order to obtain a grounded
model and perform inference. This grounded model can be a
graphical model, or alternatively, a ground weighted logical
theory on which traditional inference methods apply, such
as belief propagation or weighted model counting. This is
used in well known systems such as MLNs, PSL, BLPs, and
PRMs. Some systems like PRMs and BLPs additionally use
aggregates, or combining rules, in order to combine multiple
conditional probability distributions into one using, e.g., noisy-
or.

Alternatively, one can follow a proof or trace based ap-
proach to define the probability distribution and perform infer-
ence. This is akin to what happens in probabilistic program-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4944



ming (cf. also [Russell, 2015]), in StarAI frameworks such as
PLPs, probabilistic databases [Van den Broeck et al., 2017]
and probabilistic unification based grammars such as Stochas-
tic Logic Programs (SLPs) [Muggleton, 1996]. Just like pure
logic supports the model-theoretic and proof-theoretic per-
spectives, both perspectives have been explored in parallel for
some of the probabilistic logic programming languages such
as ICL [Poole, 2008] and ProbLog [Fierens et al., 2015].

These two perspectives carry over to the neural-symbolic
methods. Approaches like NTPs, DeepProblog, ∂ILP and
DiffLog are proof-based. The probabilities or certainties that
these systems output are based on the enumerated proofs,
and they are also able to learn how to combine them. In
contrast, approaches of LRNN, LTNs, RNM, NMLN, NLM
and NeuralLP are all based on the model-theoretic perspective.
Learning in these models is done through learning the (shared)
parameters over the ground model and inference is based on
possible groundings of the model.

4 Logic vs Probability vs Neural
When two paradigms are integrated, examining which of the
base paradigms are preserved, and to which extent, tells us a lot
about the strengths and weaknesses of the resulting paradigm.
In StarAI, the traditional knowledge-based model construction
approach is to use the logic only to generate a probabilistic
graphical model. Thus the graphical model can be used to de-
fine the semantics of the model and also to perform inference.
This can make it more difficult to understand the effects of ap-
plying logical inference rules such as resolution. For instance,
in MLNs the addition of the resolvent of two weighted rules,
makes it hard to predict the effect on the distribution.

On the other hand, the opposite holds for PLPs and its
variants. While it is clear what the effect of a logical operation
is, it is often harder to directly identify and exploit properties
such as conditional or contextual independencies, which are
needed for efficient probabilistic inference.

The position on the spectrum between logic and probability
has a profound influence on the properties of the underlying
model. For NeSy, the spectrum involves not only logic and
neural networks, but also probability. It has been argued
that when combining different perspectives in one model or
framework, such as neural, logic and probabilistic ones, it is
desirable to have the originals or base paradigms as a special
case, see also [De Raedt et al., 2019].

The vast majority of current NeSy approaches focuses on
the neural aspect (i.e., they originated as a fully neural method
to which logical components have been added). Some of these
approaches like LTNs and TensorLog [Cohen et al., 2017] pur-
sue a kind of knowledge-based model construction approach
in which the logic is compiled away into the neural network
architecture. A different family of NeSy approaches, which
includes SL and SBR, turns the logic into a regularization
function to provide a penalty whenever the desired logical
theory or constraints are violated. This leads to the logic being
compiled into the weights of the trained neural network.

A small number of NeSy methods do retain the focus on
logic. Some of these methods start from existing logic (pro-
gramming) frameworks and extend them with primitives that

allow them to interface with neural networks and allow for
differentiable operations. Examples include DeepProbLog and
DiffLog. Other methods instead take an existing framework
and turn it into a differentiable version. The key inference
concepts are mapped onto an analogous concept that behaves
identically for the edge cases, but is continuous and differen-
tiable in non-deterministic cases. Such methods include ∂ILP,
∂4 [Bošnjak et al., 2017] and NTPs.

An aspect that significantly aids in developing a common
framework, and analysing its properties, is the development
of an intermediate representation language that can serve as
a kind of assembly language [Zuidberg Dos Martires et al.,
2019]. One such idea concerns performing probabilistic infer-
ence by mapping it onto a weighted model counting (WMC)
problem. This can then in turn be solved by compiling it into
a structure (e.g. an arithmetic circuit) that allows for efficient
inference. This has the added benefit that this structure is
differentiable, which can facilitate the integration between
logic based systems and neural networks. DeepProbLog, for
example, uses this approach.

5 Semantics
Traditionally, StarAI combines two semantics: a logical and a
probabilistic one. In the logical semantics, atoms are assigned
a truth value in the {true, false} set (i.e. {0, 1}). In a proba-
bilistic semantics, probability is defined as a measure over sets
of possible worlds, where each possible world is an assignment
of values to the random variables. This implies that a proba-
bilistic logic semantics defines probability distributions over
ground logical interpretations, that is, over sets of ground facts.
Prominent examples in StarAI are ProbLog (from the directed
side) and MLNs (from the undirected one). Incorporating
probabilistic semantics into a logical one is natural when one
wants to perform logical reasoning under uncertainty. More-
over, it “only” extends Boolean logic with probabilities, thus
it preserves the original logical semantics. However, this ex-
tension comes at the price of more complex inference, which
makes probabilistic StarAI models intractable in large scale
domains.

Another approach is to turn the logical operators into real-
valued functions, and in doing so relax the Boolean truth
values to the continuous [0, 1] interval. This introduces the se-
mantics of fuzzy logic (or soft logic), which is mathematically
grounded in the t-norm theory. The fuzzy semantics can be
used alone or in conjunction with the probabilistic one (e.g.
[Bach et al., 2017]). The algebraic and geometric properties of
t-norms (including especially convexity and differentiability)
results in a reduction in the complexity of logical and/or prob-
abilistic inference. However, differently from the probabilistic
case, the semantics of the original Boolean theory is not pre-
served. Indeed, the fuzzification procedure can introduce unde-
sirable effects. In particular, improper choices in the fuzzifica-
tion could lead to behaviours that are different from the ones
in the original theory [Giannini et al., 2018] and particular
attention should be paid to assessing that any desired property
is preserved. For example, when translating the implication
A→ B with its fuzzy material implication (i.e. ¬A∨B), one
may lose the transitivity property (e.g. the material implication

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4945



in the minimum logic). Another class of anomalies concerns
the way t-norms behave when aggregating a large number of
fuzzy truth degrees. An example is the n-ary Łukasiewicz
strong disjunction F⊕(x1, . . . , xn) = min(1, x1 + · · ·+ xn).
It can evaluate to 1 (i.e. true) also when all xi are very small
(i.e. false), e.g. n = 10 and xi = 0.1. The use of this operator
would lead to poor approximations when disjointing multiple
atoms, e.g. in existentially quantified formulas or in the aggre-
gation of several alternative proofs. [van Krieken et al., 2020]
analyse similar issues, also in connection to differentiability.

Neural-symbolic approaches can easily be categorized along
the same lines. Neural enhancements of the logic semantics
either use neural networks to turn perceptive input to a logical
atom, or relax the logical reasoning through tensor calculus.
An instance of the former is ABL [Dai et al., 2019], which use
logical abduction to provide the feedback for a neural model
processing the perceptive input. Tensor calculus approaches,
such as NLM and NeuralLP, interpret predicates as tensors
grounded over all constants in a domain and interpret clauses
as a product of those matrices.

Neural enhancements of the probabilistic semantics usually
parameterize the underlying distribution in terms of neural
components. In particular, DeepProbLog exploits neural pred-
icates to compute the probabilities of probabilistic facts as the
output of neural computations over vectorial representations
of the constants, which is similar to SL in the propositional
counterpart. NMLN and RNM use neural potentials in order
to implement factors (or their weights) as neural networks.
[Rocktäschel et al., 2015] computes marginal probabilities as
logistic functions over similarity measures between embed-
dings of entities and relations.

In neural enhancements of the fuzzy semantics, neural net-
works produce continuously-valued truth assignments. The
differentiability of the t-norms allows to easily integrate neu-
ral frameworks. In particular, SBR and LTN turn atoms into
neural networks taking as inputs the feature representation
of the constants and returning the corresponding truth value.
Similarly, in LRNN, ∂ILP, DiffLog and [Wang and Pan, 2019],
the scores of the proofs are computed by using fuzzy logic
connectives.

Finally, a large class of methods [Minervini et al., 2017;
Demeester et al., 2016; Cohen et al., 2017; Weber et al., 2019]
relaxes logical statements in a numeric way, without giving
any other specific semantics. Here, atoms are assigned scores
in R computed by a neural scoring function over embeddings.
Numerical approximations are then applied either to combine
these scores according to logical formulas or to aggregate
proofs scores. The resulting neural architecture is usually
differentiable and, thus, trained end-to-end. It is however hard
to interpret the numbers generated by such approaches.

6 Structure vs Parameter Learning
StarAI distinguishes between two types of learning: structure
learning, which corresponds to learning the logical clauses of
the model [Kok and Domingos, 2005], and parameter learning
in which the probabilities or weights of the clauses have to be
estimated [Gutmann et al., 2008; Lowd and Domingos, 2007].
The former is typically achieved by means of a combinatorial

search over the space of possible clauses, while in the latter
one an expert user provides a set of informative clauses for
which only the probabilities have to be estimated.

Learning in NeSy approaches blurs this distinction and
is positioned somewhere mid-ground: the model structure
is learned though parameter learning. In contrast to StarAI
parameter learning in which the user carefully selects the
informative clauses, the set of clauses in NeSy approaches is
typically enumerated from the user-provided rule templates of
predefined complexity. As such, the enumerated rules contain
noisy and erroneous patterns that are corrected by learning the
corresponding probabilities or weights. The structure learning
is therefore not performed explicitly as none of the given rules
is removed. While it is certainly possible to extract the most
important clauses, the inference is still performed considering
all the enumerated clauses. Examples of such systems include
NTPs, ∂ILP, DeepProbLog, NeuralLP and DiffLog. A related
way of learning the structure is that of program sketching,
in which a user provides a sketch of the target model and
leaves certain parts of the model unspecified. The learning
task corresponds to filling the blanks. NeSy systems based on
sketching, such as DeepProbLog and ∂4, perform a simplified
version of sketching in which they fill in a single operation
instead of an entire program.

A substantial number of approaches tries to leverage the
best of both worlds. These ideas include using neural models
to guide the symbolic search [Kalyan et al., 2018; Ellis et
al., 2018a; Valkov et al., 2018], or using a neural model to
produce a program that is then executed symbolically [Ellis et
al., 2018b; Mao et al., 2019].

7 Symbols vs Sub-symbols
Perhaps the biggest difference between StarAI and neural
methods is how they represent entities. StarAI generally repre-
sents entities by constants (symbols). However, neural meth-
ods are unable to represent symbols directly and exactly, and
therefore represent them with sub-symbolic formats, such as
vectorized representations. For instance, vectorized represen-
tations can be created through one-hot encodings, inherent
numerical properties of symbols (e.g. the pixel data of an
image), or by learning a mapping from one-hot encodings to
a dense feature space. This, of course, has an impact on the
generalizability of the system towards unseen entities, as no
vectorized representation is available for an unseen entity.

An especially interesting aspect of NeSy methods is that
they combine the best of both worlds by introducing a vari-
ety of ways to combine symbols and sub-symbols for task
representation and reasoning. The idea of mapping entities
onto sub-symbols is made very explicit in LTNs, where in
a first step, all symbols are replaced with sub-symbols. In
DeepProbLog, entities are represented using symbols, but they
sometimes have sub-symbolic representations that are only
used inside the neural networks. Similarly, in [Lippi and Fras-
coni, 2009] and RNM, MLNs are conditioned on a feature
representation of constants (e.g. images, audio signals). Fi-
nally, among those models exploiting learned embeddings,
we find [Rocktäschel et al., 2015; Minervini et al., 2017;
Demeester et al., 2016].

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4946



A powerful and elegant mechanism for reasoning about
symbols matching in logic is unification. For instance, the
atomic expressions p(a, Y ) and p(X, b) can be unified using
the substitution {X = a, Y = b}. Unification not only works
for constants but also for structured terms f(t1, ..., tn) where f
is a structured term and the ti are constants, variables or struc-
tured terms themselves. While unification is not supported by
standard neural networks, matching of the symbols can be per-
formed based on their similarity in embedding space. Entities
are typically embedded in some metric space, and represented
through their embeddings, that is, through sub-symbols. Rea-
soning typically proceeds by performing algebraic operations
(such as vector addition) on these embeddings, and consider-
ing the similarity between two entities by using their distance
in embedding space. It is quite interesting to see to what extent
current neural-symbolic approaches support unification on the
one hand, and to what extent the use of embeddings has been
integrated into the neural-symbolic logics as a kind of soft
equality or unification

This idea was implemented in NTPs and NLProlog as soft or
weak unification. In these systems, two entities can be unified
if they are similar, and not just if they are identical. As such,
this system can interweave both symbols and sub-symbols
during inference. For each entity, an embedding is learned and
their similarity is determined based on the distance between
the embeddings using a radial basis function. However, this
potentially adds a lot of different proof paths, which can result
in computational issues for larger programs. This problem
was solved in later iterations of the system [Minervini et al.,
2020].

8 Type of Logic
StarAI approaches have explored various types of logical rep-
resentations, following a natural ordering [De Raedt, 2008;
Flach, 1994] starting with propositional logic (symbols with-
out arguments), to relational logic (with only constants and
variables as terms, without any structured terms) which forms
the basis for the Datalog database language, to general first
order logic, and then to logic programs as in the program-
ming language Prolog. Logic programs are usually re-
stricted to definite clauses. The semantics of a definite
clause program is given by its least Herbrand model, the
set of all ground facts that are logically entailed by the pro-
gram. This contrasts with the standard semantics of first order
logic that would also allow for other models. This differ-
ence carries over to StarAI, where probabilistic logic pro-
grams and Markov Logic inherit their semantics from logic
programming, respectively first order logic. This explains,
for instance, why Markov Logic’s semantics boils down to
a maximum entropy approach when a theory has multiple
models (such as a ∨ b), cf. [De Raedt and Kimmig, 2015;
De Raedt et al., 2016] for more details. On the other hand,
logic programs are also the basis for the programming lan-
guage Prolog, which implies that they can be used to specify
traditional programs such as sorting and data structures such
as lists through structured terms. This is relevant especially
for those approaches to neural-symbolic computation that are
used to synthesize programs from examples.

NeSy approaches follow the same natural expressivity order
of the underlying logics. For instance, SL focuses only on
the propositional setting. On the other hand, ∂ILP, NTPs and
DiffLog are based on Datalog, which belongs to relational
logic segment. LTNs and SBR use fuzzy logic to translate a
general first-order logic theory into a training objective, either
isolated or in conjunction with a supervised criterion. Just like
Markov Logic, also RNM and NMLN use first-order logic to
generate a random field. Finally, DeepProbLog, NLProlog and
LRNN are examples of neural-symbolic logic programming
frameworks.

The chosen type of logic has a significant impact on infer-
ence and learning. The more expressive a logic, the harder
the inference and learning become. For instance, for structure
learning, the space of possible clauses for structure learning
typically becomes exponentially larger as a more expressive
class of logic is used. At the same time, many theories re-
quire a certain level of representation expressivity and cannot
be expressed using simpler types of logic. For instance, pro-
grams cannot be represented using relational and propositional
representations.

9 Open Challenges
To conclude, we list a number of challenges for NeSy, which
deserve, in our opinion, more attention.
Semantics The statistical relational AI community and the
probabilistic graphical model communities have devoted a lot
of attention to the semantics of its models. This has resulted
in a number of clear choices (such as directed vs. undirected,
trace-based vs. possible world [Russell, 2015]), with corre-
sponding strengths and weaknesses, which has allowed to clar-
ify the relationships between the different models. Workshops
have been held on that topic1. Furthermore, some researchers
have investigated how to transform one type of model into
another [Jaeger, 2008]. At the same time, the framework of
weight model counting has emerged as a common assembly
language for inference in many of these languages. The situa-
tion in neural-symbolic computation today is very much that of
the early days in statistical relational learning, in which there
were many competing formalisms, (sometimes characterized
as the statistical relational learning alphabet soup). It would be
great to get more insight into the semantics of neural-symbolic
approaches and their relationships. This survey hopes to con-
tribute towards this goal.
Probabilistic reasoning Although relatively few methods
explore the integration of logical and neural methods from a
probabilistic perspective, we believe that a probabilistic ap-
proach is a very good way to integrate the two [De Raedt
et al., 2019], but many open questions remain. Probabilis-
tic inference is computationally more expensive than other
approaches discussed in this paper. It would be interesting
in future work to determine exactly what the benefit of this
probabilistic approach is, and in which circumstances it arises.
Fuzzy semantics The selection of the t-norm fuzzy logic
and the corresponding translation of the connectives is very
heterogeneous in the literature.It is often not well clear which

1For instance, https://pps2018.luddy.indiana.edu/

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4947

https://pps2018.luddy.indiana.edu/


Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5 Dimension 6 Dimension 7

(D)irected
(U)ndirected

(M)odel-based
(P)roof -based

(L)ogic
(P)robability
(N)eural

(L)ogic
(P)robability
(F)uzzy

(P)arameter
(S)tructure

(S)ymbols
(Sub)symbols

(P)ropositional
(R)elational
(FOL)
(LP)

∂ILP [Evans and Grefenstette, 2018] D P L+N F P + S S R

DeepProbLog [Manhaeve et al., 2018] D P L+P+N P P S+Sub LP

DiffLog [Si et al., 2019] D P L+N F P+S S R

LRNN [Šourek et al., 2018] D P L+N F P+S S+Sub LP

LTN [Donadello et al., 2017] U M L+N F P Sub FOL

NeuralLP [Yang et al., 2017] D M L+N L P S R

NLM [Dong et al., 2019] D M L+N L P+S S R

NLProlog [Weber et al., 2019] D P L+P+N P P+S S+Sub LP

NMLN [Marra and Kuželka, 2019] U M L+P+N P P+S S+Sub FOL

NTP [Rocktäschel and Riedel, 2017] D P L+N L P+S S+Sub R

RNM [Marra et al., 2020] U M L+P+N P P S+Sub FOL

SL [Xu et al., 2018] U M L+P+N P P S+Sub P

SBR [Diligenti et al., 2017] U M L+N F P Sub FOL

Tensorlog [Cohen et al., 2017] D P L+N P P S+Sub R

Table 1: Taxonomy of a (non-exhaustive) list of NeSy models according to the 7 dimensions outlined in the paper.

properties of Boolean logic a model is preserving, while there
is the general tendency to consider fuzzy logic a continu-
ous surrogate of Boolean logic without considering the well-
known differences in semantics. There is a clear need for
further studies in this field. On one hand, one could want to
define new models which are natively fuzzy, thus not requiring
the translation from Boolean logic. On the other hand, an
interesting research direction concerns the characterisation
of what is a good fuzzy approximation of Boolean logic in
relation to a set of properties that one wishes to preserve.

Applications The current NeSy systems are not yet very
mature from an application perspective and there are no real
showcase applications yet. However, there have been promis-
ing proof-of-concepts in various fields. First, knowledge-
base completion is a natural application for NeSy methods as
the knowledge base is inherently symbolic and neural meth-
ods can be leveraged to generalise over the facts and pre-
dict those that are missing [Rocktäschel and Riedel, 2017;
Donadello et al., 2017]. Second, NeSy has contributed
to various computer vision tasks by incorporating back-
ground knowledge in, for instance, image segmentation
and semantic image interpretation [Donadello et al., 2017;
Alirezaie et al., 2019]. Lastly, NeSy methods were used
to aid natural language tasks such as question answering
and visual question answering [Weber et al., 2019; Yi et al.,
2018], where the latter is also closely related to the com-
puter vision domain. Some of the methods mentioned show
some promising early results in the domain of inductive pro-
gramming [Evans and Grefenstette, 2018; Si et al., 2019;
Rocktäschel and Riedel, 2017], although they are still limited
when compared to standard inductive logic programming sys-
tems. Developing real-life applications of NeSy is one of the

most challenging and pressing open questions for the field.

Structure learning While significant progress has been
made on learning the structure of purely relational models
(without probabilities), learning StarAI models remains a ma-
jor challenge due to the complexity of inference and the com-
binatorial nature of the problem. Incorporating neural aspects
complicates the problem even more. NeSy methods have cer-
tainly shown potential for addressing this problem (Section 6),
but the existing methods are still limited and mostly domain-
specific which impedes their wide application. For instance,
the current systems that support structure learning require user
effort to specify the clause templates or write a sketch of a
model.

Scaling inference Scalable inference is a major challenge
for StarAI and therefore also for NeSy approaches with an
explicit logical or probabilistic reasoning component. Inves-
tigating to which extent neural methods can help with this
challenge by means of lifted (exploiting symmetries in mod-
els) or approximate inference, as well as reasoning from the
intermediate representations [Abboud et al., 2020], are promis-
ing future research directions.

Data efficiency A major advantage of StarAI methods, as
compared to neural ones, is their data efficiency – StarAI meth-
ods can efficiently learn from small amounts of data, whereas
neural methods are data hungry. On the other hand, StarAI
methods do not scale to big data sets, while neural methods can
easily handle them. We believe that understanding how these
methods can help each other to overcome their complementary
weaknesses, is a promising research direction.

Symbolic representation learning The effectiveness of
deep learning comes from the ability to change the representa-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4948



tion of the data so that the target task becomes easier to solve.
The ability to change the representation on the symbolic level
as well would significantly increase the capabilities of NeSy
systems. This is a major open challenge for which neurally
inspired methods could help achieve progress [Cropper, 2019;
Dumančić et al., 2019].

Acknowledgements
Robin Manhaeve and Sebastijan Dumančić are funded by the
Research Foundation-Flanders (FWO). This work has also
received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and in-
novation programme (grant agreement No [694980] SYNTH:
Synthesising Inductive Data Models) and the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

References
[Abboud et al., 2020] Ralph Abboud, İsmail İlkan Ceylan, and

Thomas Lukasiewicz. Learning to reason: Leveraging neural
networks for approximate DNF counting. In AAAI, 2020.

[Alirezaie et al., 2019] Marjan Alirezaie, Martin Längkvist,
Michael Sioutis, and Amy Loutfi. Semantic referee: A
neural-symbolic framework for enhancing geospatial semantic
segmentation. Semantic Web, 10, 2019.

[Bach et al., 2017] Stephen H. Bach, Matthias Broecheler, Bert
Huang, and Lise Getoor. Hinge-loss markov random fields and
probabilistic soft logic. J. Mach. Learn. Res., 18, 2017.

[Bader and Hitzler, 2005] Sebastian Bader and Pascal Hitzler. Di-
mensions of neural-symbolic integration - A structured survey.
CoRR, abs/cs/0511042, 2005.

[Besold et al., 2017] Tarek R. Besold, Artur S. d’Avila Garcez, Se-
bastian Bader, Howard Bowman, Pedro M. Domingos, Pascal Hit-
zler, Kai-Uwe Kühnberger, Luı́s C. Lamb, Daniel Lowd, Priscila
Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung
Poon, and Gerson Zaverucha. Neural-symbolic learning and rea-
soning: A survey and interpretation. CoRR, abs/1711.03902,
2017.

[Bošnjak et al., 2017] Matko Bošnjak, Tim Rocktäschel, Jason
Naradowsky, and Sebastian Riedel. Programming with a dif-
ferentiable forth interpreter. In ICML, 2017.

[Cohen et al., 2017] William W. Cohen, Fan Yang, and Kathryn
Mazaitis. Tensorlog: Deep learning meets probabilistic dbs. CoRR,
abs/1707.05390, 2017.

[Cropper, 2019] Andrew Cropper. Playgol: Learning programs
through play. In IJCAI 2019, 2019.

[Dai et al., 2019] Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-
Hua Zhou. Bridging machine learning and logical reasoning by
abductive learning. In NeurIPS, 2019.

[Darwiche, 2011] Adnan Darwiche. Sdd: A new canonical repre-
sentation of propositional knowledge bases. In IJCAI, 2011.

[d’Avila Garcez et al., 2019] Artur S. d’Avila Garcez, Marco Gori,
Luı́s C. Lamb, Luciano Serafini, Michael Spranger, and Son N.
Tran. Neural-symbolic computing: An effective methodology for
principled integration of machine learning and reasoning. FLAP,
6, 2019.

[De Raedt and Kimmig, 2015] Luc De Raedt and Angelika Kimmig.
Probabilistic (logic) programming concepts. Machine Learning,
100, 2015.

[De Raedt et al., 2016] Luc De Raedt, Kristian Kersting, Sriraam
Natarajan, and David Poole. Statistical Relational Artificial Intelli-
gence: Logic, Probability, and Computation. Morgan & Claypool
Publishers, 2016.

[De Raedt et al., 2019] Luc De Raedt, Robin Manhaeve, Sebastijan
Dumančić, Thomas Demeester, and Angelika Kimmig. Neuro-
symbolic= neural+ logical+ probabilistic. In NeSy @ IJCAI, 2019.

[De Raedt, 2008] Luc De Raedt. Logical and relational learning.
Springer, 2008.

[Demeester et al., 2016] Thomas Demeester, Tim Rocktäschel, and
Sebastian Riedel. Lifted rule injection for relation embeddings.
In EMNLP, 2016.

[Diligenti et al., 2017] Michelangelo Diligenti, Marco Gori, and
Claudio Saccà. Semantic-based regularization for learning and
inference. Artif. Intell., 244, 2017.

[Donadello et al., 2017] Ivan Donadello, Luciano Serafini, and Ar-
tur S. d’Avila Garcez. Logic tensor networks for semantic image
interpretation. In IJCAI, 2017.

[Dong et al., 2019] Honghua Dong, Jiayuan Mao, Tian Lin, Chong
Wang, Lihong Li, and Denny Zhou. Neural logic machines. In
ICLR, 2019.

[Dumančić et al., 2019] Sebastijan Dumančić, Tias Guns, Wannes
Meert, and Hendrik Blockeel. Learning relational representations
with auto-encoding logic programs. In IJCAI, 2019.

[Ellis et al., 2018a] Kevin Ellis, Lucas Morales, Mathias Sablé-
Meyer, Armando Solar-Lezama, and Josh Tenenbaum. Learn-
ing libraries of subroutines for neurally-guided bayesian program
induction. In NeurIPS, 2018.

[Ellis et al., 2018b] Kevin Ellis, Daniel Ritchie, Armando Solar-
Lezama, and Josh Tenenbaum. Learning to infer graphics pro-
grams from hand-drawn images. In NeurIPS, 2018.

[Evans and Grefenstette, 2018] Richard Evans and Edward Grefen-
stette. Learning explanatory rules from noisy data. J. Artif. Intell.
Res., 61, 2018.

[Fierens et al., 2015] Daan Fierens, Guy Van den Broeck, Joris
Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda
Janssens, and Luc De Raedt. Inference and learning in probabilis-
tic logic programs using weighted boolean formulas. Theory and
Practice of Logic Programming, 15, 2015.

[Flach, 1994] Peter Flach. Simply Logical: Intelligent Reasoning by
Example. John Wiley & Sons, Inc., 1994.

[Friedman et al., 1999] Nir Friedman, Lise Getoor, Daphne Koller,
and Avi Pfeffer. Learning probabilistic relational models. In
IJCAI, 1999.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Benjamin
Kaufmann, and Torsten Schaub. Answer set solving in practice.
Synthesis lectures on artificial intelligence and machine learning,
6, 2012.

[Getoor and Taskar, 2007] L. Getoor and B. Taskar, editors. An
Introduction to Statistical Relational Learning. MIT Press, 2007.

[Giannini et al., 2018] Francesco Giannini, Michelangelo Diligenti,
Marco Gori, and Marco Maggini. On a convex logic fragment for
learning and reasoning. IEEE TFS, 27, 2018.

[Gutmann et al., 2008] Bernd Gutmann, Angelika Kimmig, Kristian
Kersting, and Luc De Raedt. Parameter learning in probabilistic
databases: A least squares approach. In ECML&PKDD, 2008.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4949



[Jaeger, 2008] Manfred Jaeger. Model-theoretic expressivity anal-
ysis. In Luc De Raedt, Paolo Frasconi, Kristian Kersting, and
Stephen Muggleton, editors, Probabilistic Inductive Logic Pro-
gramming - Theory and Applications, volume 4911 of LNCS.
Springer, 2008.

[Kalyan et al., 2018] Ashwin Kalyan, Abhishek Mohta, Oleksandr
Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani. Neural-
guided deductive search for real-time program synthesis from
examples. In ICLR, 2018.

[Kersting and De Raedt, 2007] Kristian Kersting and Luc De Raedt.
Bayesian logic programming: Theory and tool. In L. Getoor
and B. Taskar, editors, An introduction to Statistical Relational
Learning. MIT Press, 2007.

[Kok and Domingos, 2005] Stanley Kok and Pedro Domingos.
Learning the structure of markov logic networks. In ICML, 2005.

[Koller and Friedman, 2009] Daphne Koller and Nir Friedman.
Probabilistic Graphical Models - Principles and Techniques. MIT
Press, 2009.

[Lippi and Frasconi, 2009] Marco Lippi and Paolo Frasconi. Predic-
tion of protein beta-residue contacts by markov logic networks
with grounding-specific weights. Bioinform., 25, 2009.

[Lowd and Domingos, 2007] Daniel Lowd and Pedro Domingos.
Efficient weight learning for markov logic networks. In
ECML&PKDD, 2007.

[Manhaeve et al., 2018] Robin Manhaeve, Sebastijan Dumančić,
Angelika Kimmig, Thomas Demeester, and Luc De Raedt. Deep-
problog: Neural probabilistic logic programming. In NeurIPS,
2018.

[Mao et al., 2019] Jiayuan Mao, Chuang Gan, Pushmeet Kohli,
Joshua B. Tenenbaum, and Jiajun Wu. The neuro-symbolic con-
cept learner: Interpreting scenes, words, and sentences from natu-
ral supervision. In ICLR, 2019.

[Marra and Kuželka, 2019] Giuseppe Marra and Ondrej Kuželka.
Neural markov logic networks. CoRR, abs/1905.13462, 2019.

[Marra et al., 2020] Giuseppe Marra, Michelangelo Diligenti,
Francesco Giannini, Marco Gori, and Marco Maggini. Relational
neural machines. In ECAI in press, 2020.

[Minervini et al., 2017] Pasquale Minervini, Thomas Demeester,
Tim Rocktäschel, and Sebastian Riedel. Adversarial sets for
regularising neural link predictors. In UAI, 2017.

[Minervini et al., 2020] Pasquale Minervini, Matko Bošnjak, Tim
Rocktäschel, Sebastian Riedel, and Edward Grefenstette. Differ-
entiable reasoning on large knowledge bases and natural language.
In AAAI, 2020.

[Muggleton, 1996] Stephen Muggleton. Stochastic logic programs.
Advances in inductive logic programming, 32, 1996.

[Poole, 2008] David Poole. The independent choice logic and be-
yond. In Probabilistic Inductive Logic Programming - Theory and
Applications, volume 4911 of LNCS. Springer, 2008.

[Richardson and Domingos, 2006] Matthew Richardson and Pe-
dro M. Domingos. Markov logic networks. Machine Learning,
62, 2006.

[Rocktäschel and Riedel, 2017] Tim Rocktäschel and Sebastian
Riedel. End-to-end differentiable proving. In NIPS, 2017.

[Rocktäschel et al., 2015] Tim Rocktäschel, Sameer Singh, and Se-
bastian Riedel. Injecting logical background knowledge into
embeddings for relation extraction. In NAACL HLT, 2015.

[Russell, 2015] Stuart Russell. Unifying logic and probability. Com-
munications of the ACM, 58, 2015.

[Si et al., 2019] Xujie Si, Mukund Raghothaman, Kihong Heo, and
Mayur Naik. Synthesizing datalog programs using numerical
relaxation. In IJCAI, 2019.

[Valkov et al., 2018] Lazar Valkov, Dipak Chaudhari, Akash Srivas-
tava, Charles A. Sutton, and Swarat Chaudhuri. Houdini: Lifelong
learning as program synthesis. In NeurIPS, 2018.

[Van den Broeck et al., 2017] Guy Van den Broeck, Dan Suciu, et al.
Query processing on probabilistic data: A survey. Foundations
and Trends® in Databases, 7, 2017.

[van Krieken et al., 2020] Emile van Krieken, Erman Acar, and
Frank van Harmelen. Analyzing differentiable fuzzy logic op-
erators. CoRR, abs/2002.06100, 2020.

[Wang and Pan, 2019] Wenya Wang and Sinno Jialin Pan. Integrat-
ing deep learning with logic fusion for information extraction.
CoRR, abs/1912.03041, 2019.

[Weber et al., 2019] Leon Weber, Pasquale Minervini, Jannes
Münchmeyer, Ulf Leser, and Tim Rocktäschel. Nlprolog: Rea-
soning with weak unification for question answering in natural
language. In ACL, 2019.

[Xu et al., 2018] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang,
and Guy Van den Broeck. A semantic loss function for deep
learning with symbolic knowledge. In ICML, 2018.

[Yang et al., 2017] Fan Yang, Zhilin Yang, and William W Cohen.
Differentiable learning of logical rules for knowledge base reason-
ing. In NIPS, 2017.

[Yi et al., 2018] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Tor-
ralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-symbolic
vqa: Disentangling reasoning from vision and language under-
standing. In NeurIPS, 2018.

[Zuidberg Dos Martires et al., 2019] Pedro Zuidberg Dos Martires,
Vincent Derkinderen, Robin Manhaeve, Wannes Meert, Angelika
Kimmig, and Luc De Raedt. Transforming probabilistic programs
into algebraic circuits for inference and learning. In Program
Transformations for ML Workshop at NeurIPS, 2019.

[Šourek et al., 2018] Gustav Šourek, Vojtech Aschenbrenner, Filip
Zelezný, Steven Schockaert, and Ondrej Kuželka. Lifted relational
neural networks: Efficient learning of latent relational structures.
J. Artif. Intell. Res., 62, 2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4950


	Introduction
	Directed vs Undirected
	Model-based vs Proof-based Inference
	Logic vs Probability vs Neural
	Semantics
	Structure vs Parameter Learning
	Symbols vs Sub-symbols
	Type of Logic
	Open Challenges

