
Extended Conjunctive Normal Form and
An Efficient Algorithm for Cardinality Constraints

Zhendong Lei1,2 , Shaowei Cai1,2∗ and Chuan Luo3

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
2School of Computer Science and Technology, University of Chinese Academy of Sciences, China

3Microsoft Research, China
{leizd, caisw}@ios.ac.cn

Abstract
Satisfiability (SAT) and Maximum Satisfiability
(MaxSAT) are two basic and important constraint
problems with many important applications. SAT
and MaxSAT are expressed in CNF, which is dif-
ficult to deal with cardinality constraints. In this
paper, we introduce Extended Conjunctive Normal
Form (ECNF), which expresses cardinality con-
straints straightforward and does not need auxiliary
variables or clauses. Then, we develop a simple and
efficient local search solver LS-ECNF with a well
designed scoring function under ECNF. We also de-
velop a generalized Unit Propagation (UP) based
algorithm to generate the initial solution for local
search. We encode instances from Nurse Rostering
and Discrete Tomography Problems into CNF with
three different cardinality constraint encodings and
ECNF respectively. Experimental results show that
LS-ECNF has much better performance than state
of the art MaxSAT, SAT, Pseudo-Boolean and ILP
solvers, which indicates solving cardinality con-
straints with ECNF is promising.

1 Introduction
Satisfiability problem (SAT) has gained a considerable atten-
tion with the advent of a new generation of solvers able to
solve large instances from real world problems. Maximum
Satisfiability (MaxSAT) is an optimization version of SAT
which also achieves great success thanks to the techniques
used in SAT. These impressive progress led to more and more
combinatorial optimization problems in real world situations
encoded into these propositional logic languages and solved
by applying a suitable SAT or MaxSAT solver.

Given a propositional formula expressed in the Conjunc-
tive Normal Form (CNF), SAT is concerned with satisfy-
ing all clauses, while MaxSAT is concerned with satisfying
as many clauses as possible. Partial MaxSAT (PMS) is a
generalization of MaxSAT, whose clauses are divided into
hard and weighted soft clauses and the goal is to find an
assignment that satisfies all the hard clauses and maximize
the total weight of satisfied soft clauses. There are many

∗Corresponding author

efficient PMS solvers, including SAT-based solvers [Naro-
dytska and Bacchus, 2014; Martins et al., 2014; Berg et
al., 2019; Nadel, 2019; Joshi et al., 2019; Demirovic and
Stuckey, 2019] and local search solvers [Cai et al., 2016;
Luo et al., 2017; Cai et al., 2017; Lei and Cai, 2018;
Guerreiro et al., 2019].

One of the most important drawbacks of these logical lan-
guages is the difficulty to deal with cardinality constraints.
Indeed, cardinality constraints arise frequently in the encod-
ing of many real world situations such as scheduling, logic
synthesis or verification, product configuration and data min-
ing. For the above reasons, many works have been done on
finding an efficient encoding of cardinality constraints in CNF
formulas [Sinz, 2005; Ası́n et al., 2009; Hattad et al., 2017;
Boudane et al., 2018; Karpinski and Piotrów, 2019].

Even though modern SAT and MaxSAT solvers are pow-
erful and the cardinality constraint encodings have also been
improved, MaxSAT and SAT solvers still do not perform well
when solving problems with cardinality constraints. Many
encoding methods have been proposed, but their perfor-
mance vary among different domains. Indeed, experiment
results from a few problems [Demirovic and Musliu, 2014;
Demirovic et al., 2019] indicate that none of these encoding
methods are obviously dominant.

In this work, we propose another solution to deal with
cardinality constraints. Instead of finding a better encod-
ing method, we propose Extended Conjunctive Normal Form
(ECNF), which is an extension of CNF. In SAT(MaxSAT) of
CNF, a clause is satisfied if it has at least one true literal, while
in SAT(MaxSAT) of ECNF, a clause is satisfied if it contains
a certain amount of true literals. Encoding cardinality con-
straints into ECNF is natural and simple without introducing
any additional variable or clause. The most important thing is
that techniques used in SAT or MaxSAT solvers can be easily
adapted to this model with minor modifications.

We define the ECNF versions of SAT and MaxSAT prob-
lems. Then we develop a local search solver LS-ECNF
for solving SAT and MaxSAT of ECNF formulas. A new
scoring function is used in LS-ECNF to adapt to the new
model. We also design a generalized Unit Propagation (UP)
based algorithm to get an initial solution for LS-ECNF. To
study the effectiveness of our method, we encode instances
from Nurse Rostering and Discrete Tomography Problems
into MaxSAT(SAT) of CNF with three different cardinal-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1141

ity constraint encodings respectively. We also encode these
instances into ECNF for comparison. Experimental results
show that LS-ECNF has great improvement in the encoding
efficiency, memory usage, speed and quality over the state of
the art MaxSAT, SAT, Pseudo-Boolean and even Integer Lin-
ear Programming (ILP) solvers.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces preliminary knowledge. Section 3 presents
the definition of ECNF and encoding rules from cardinality
constraints to ECNF. Section 4 presents the local search and
generalized UP-based algorithms. Experimental results are
presented in Section 5. Finally, we conclude the paper.

2 Preliminary
Given a set of n Boolean variables {x1, x2, ..., xm}, a
literal is either a variable xi or its negation ¬xi. A clause
is a disjunction of literals which can be represented as a
set of literals. A conjunctive normal form (CNF) formula
F = C1 ∧ C2 ∧ ... ∧ Cm is a conjunction of clauses which
can be represented as a multiset of clauses. A complete truth
assignment is a mapping that assigns to each variable either 0
or 1.

In CNF, a clause is satisfied if it has at least one true lit-
eral, and falsified otherwise. SAT problem is concerned with
satisfying all clauses, while MaxSAT problem is concerned
with satisfying as many clauses as possible. Given a CNF
formula, the Partial MaxSAT (PMS) problem, in which some
clauses are declared to be hard and the rest are declared to
be soft, is the problem of finding an assignment such that all
hard clauses are satisfied and maximizes the total number of
satisfied soft clauses. In Weighted PMS (WPMS), each soft
clause is associated with a positive integer as its weight, and
the goal is to satisfy all hard clauses and maximize the total
weight of satisfied soft clauses.

Note that, if the problem contains only hard (resp. soft)
constraints, the obtained problem is SAT (resp. MaxSAT). If
the problem contains both hard and soft constrains, the result-
ing problem is Partial MaxSAT.

A unit clause is a clause containing only one literal. The
unit propagation technique is quite simple: For a given CNF
formula, we collect all unit clauses in it, and then assume that
variables are set to satisfy these unit clauses. That is, if the
unit clause {vi} appears in the formula, we set vi to true; and
if the unit clause {¬vi} appears in the formula, we set vi to
false. We then condition the formula on these settings. The
iterative application of this rule until no more unit clauses
remain is called unit propagation (UP).

2.1 Cardinality Constraints
Cardinality constraints impose limits on the truth values as-
signed to literals. These are atLeast k[xi : xi ∈ X],
atMost k[xi : xi ∈ X] and exactly k[xi : xi ∈ X],
which constraint that at least, at most and exactly k liter-
als out of the specified ones must or may be assigned to
true. For clarity and consistency, and as the constraints
atMost k[xi : xi ∈ X] can be equivalently rewritten as
an atLeast (m− k)[¬xi : xi ∈ X] and exactly k[xi :
xi ∈ X] can be rewritten as atLeast k[xi : xi ∈ X] and

atLeast (m− k)[¬xi : xi ∈ X], we only consider the
atLeast k constraints. Usually, each cardinality constraint
c has a penalty multiplier λ(c).

We differentiate hard and soft cardinality constraints. Hard
cardinality constraints are the ones that must be satisfied. Soft
cardinality constraints are the ones that can be falsified with
a penalty to the cost. In our case, the penalty is proportional
to the severity of the violation. Specifically, the penalty is the
product of the multiplier λ and the degree of violation (which
is the minimum number of variables in the clause that need to
be flipped in order to meet the cardinality constraint). For ex-
ample, for the soft constraints atLeast 3[x1, x2, x3, x4] with
penalty multiplier λ, the assignment (x1, x2, x3, x4)=(1, 1, 0,
1) would incur no penalty, while assignment (1, 1, 0, 0) and
(0, 1, 0, 0) would incur a penalty of 1*λ and 2*λ respectively.

2.2 Encoding Cardinality Constraints into CNF
Different methods of encoding cardinality constraints into
CNF have been studied. We choose three most famous encod-
ing methods in recent years: cardinality networks, sequential
encoding and pigeon-hole encoding.

Sequential encoding: The main idea behind the sequen-
tial encoding is to encode the sum of the considered variables
and then forbid certain output values. It needs O(k ∗ m)
auxiliary clauses and variables where k is the cardinality
of the constraint and m is the number of the variables of
the constraint. Generalized arc consistency is maintained by
unit propagation. For more details, we refer the reader to
[Boudane et al., 2018; Sinz, 2005].

Cardinality networks encoding: Cardinality networks
generate helper variables that are used to sort all the consid-
ered truth assignments and then insert clauses which forbid
certain outputs. Generalized arc consistency is maintained by
unit propagation. It needs O(m ∗ log22(k)) auxiliary clauses
and variables. For more details on the encoding, we refer the
reader to [Boudane et al., 2018; Ası́n et al., 2009].

Pigeon-hole encoding: The semantic of the cardinality
constraint can be equivalently expressed as the problem of
putting k pigeons into n holes. We use the improved version
obtained by breaking the symmetries and this version also
maintains generalized arc consistency. It needsO(k∗(m−k))
auxiliary clauses and variables. More details can be found in
[Boudane et al., 2018; Hattad et al., 2017].

These encondings are proposed to encode hard cardinality
constraints into SAT. Actually, they can also be applied to en-
code soft cardinality constraints. In [Demirovic and Musliu,
2014; Demirovic et al., 2019], they showed how to encoding
soft constraints into MaxSAT and we take the same methods.
The number of auxiliary variables and clauses used for en-
coding a soft cardinality constraint is almost the same as the
ones used for a hard cardinality constraint.

3 Extended Conjunctive Normal Form
In this section, we introduce Extended Conjunctive Normal
Form. We first give the definitions and notations below.

Extended Conjunctive Normal Form. ECNF is extended
from CNF as follows. (1) In ECNF, each clause is associated
with a positive integer cardinality[c] as its cardinality. (2)

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1142

In ECNF, all cardinality constraints are expressed in the form
of atLeast k constraints. (3) A clause is satisfied iff it has
at least cardinality[c] true literals. (4) In addition, as with
CNF, we differentiate hard and soft clauses. Each soft clauses
s is associated with an integer as its penalty multiplier λ[s].

SAT of ENCF formulas. Given an ECNF formula, the
definition of SAT remains the same, i.e., to decide whether all
clauses can be satisfied, and provide an satisfying assignment
if the answer yes.

PMS of ENCF formulas. Given a ECNF formula and an
assignment α to its variables, let num true l[s] denote the
number of true literals in clause s, the penalty of a falsified
soft clause s is defined as
penalty[s] = λ[s] · (cardinality[s]− num true l[s]).

Note that we adopt penalty of the linear form, which is
adopted in most works dealing with cardinality constraints.
But the penalty can be defined using other forms of functions,
according to the original problems.

The PMS problem of ECNF formulas, is to find an assign-
ment to satisfy all hard clauses, and to minimize the total
penalty of falsified clauses. An assignment α is feasible if
all hard clauses are satisfied, and the cost of α, denoted by
gcost(α), is the total penalty of falsified soft clauses under α.

For convenience, we denote SAT and Partial MaxSAT
problems for ECNF formulas as ESAT and EPMS respec-
tively. If all cardinality of clauses in an ECNF formula is
1, it becomes a CNF formula.

Encoding method. We describe our method of en-
codng cardinality constraints into ECNF as follows. In our
method, we rewrite atMost k and exactly k constraints as
atLeast k constraints (described in Section 2.1), and thus we
only need to consider the encoding of atLeast k constraints.
• For a hard cardinality constraint atLeast k[xi : xi ∈
X], generate a hard clause c := {xi : xi ∈ X} with
cardinalty[c] = k.
• For a soft cardinality constraint atLeast k[xi : xi ∈ X]

and the penalty multiplier λ, generate a soft clause s :=
{xi : xi ∈ X} with cardinalty[s] = k and λ[s] = λ.

4 Local Search Algorithm for EPMS
We introduce a simple local search algorithm LS-ECNF and
then propose a generalized unit propagation based decimation
algorithm to generate the initial solution. Note that, LS-ECNF
can be used to solve both ESAT and EPMS problems.

Clause weighting techniques are very common in local
search algorithms for SAT and MaxSAT. We propose a new
weighting scheme for EPMS and the weight maintained by
clause weighting techniques is denoted by w(c)1.

The clause weighting scheme is named as Weighting-
EPMS, and works as follows: For each hard clause c, we
associate an integer number as its weight which is initialized
to 1; for each soft clause s, we use λ[s] as its initial weight.
Whenever a “stuck” situation is observed, that is, we cannot
decrease the cost by flipping any variable, the clause weights
are updated as follows.

1This w(c) is introduced by our algorithm, and is not a part of
the instance.

• with probability 1 − sp: for each falsified hard clause
c, w(c) := w(c) + 1; for each falsified soft clause c,
w(c) := w(c) + 1 if w(c) < ζ (ζ = 1000 in our experi-
ment).

• with probability sp (smoothing probability): for each
satisfied clause c, w(c) := w(c)− 1;

Local search algorithms use scoring functions and heuris-
tics to guide the search. The most common used scoring
function is perhaps the score of variables. In local search
for MaxSAT, the score of a variable x is the increase of total
weight of satisfied clauses caused by flipping x. In EPMS, the
penalty differs according to the severity of the violation, so
the traditional scoring functions in local search for MaxSAT
are not suitable for EPMS.

Definition 1. (Penalty weight of falsified clauses) For
each clause c in EPMS (either hard or soft clause), if
num true l[c] < cardinality[c], it incurs a penalty of
w(c) · (cardinality[c]− num true l[c]).

Definition 2. (Score in LS-ECNF) In LS-ECNF, the score
of a variable x, denoted by score(x), is the decrease of total
penalty weight of falsified clauses caused by flipping x.

Here is an example. Consider a hard clause c =
{x1, x2, x3, x4, x5} with cardinality[c] = 3, and sup-
pose its current weight is 2, given the assignment
(x1, x2, x3, x4, x5) = (1, 0, 0, 0, 0), score(x2) = 2 and
score(x1) = −2 according to our scoring function in
LS-ECNF. For another assignment (1, 0, 1, 1, 0), score(x2)
is 0 as the number of true literals num true l[c] =
cardinality[c].

4.1 The LS-ECNF Algorithm
Our local search algorithm for EPMS (Partial MaxSAT under
ECNF), denoted by LS-ECNF, is presented below. In the be-
ginning, LS-ECNF generates a complete assignment α, and
the best found solution α∗ is initialized as ∅.

Algorithm 1: LS-ECNF
Input: EPMS instance F , cutoff
Output: A feasible assignment α of F and its cost, or “no

feasible assignment found”
1 begin
2 α := an initial complete assignment; α∗ := ∅;
3 while elapsed time < cutoff do
4 if @ falsified hard clauses & gcost(α) < gcost∗

then α∗ := α; gcost∗ := gcost(α) ;
5 if D := {x|score(x) > 0} 6= ∅ then
6 v := a variable in D with the highest score;
7 else
8 update weights of clauses by Weighting-EPMS;
9 if ∃ falsified hard clauses then

10 c := a random falsified hard clause;

11 else c := a random falsified soft clause;
12 v :=the variable with highest score in c;

13 α := α with v flipped;

14 if α∗ is feasible then return (gcost∗, α∗);
15 else return “no feasible assignment found”;

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1143

After that, a loop (lines 3-13) is executed to iteratively
modify α until a given time limit is reached. During the
search, whenever a better feasible solution is found, the best
feasible solution α∗, and gcost∗, are updated accordingly
(line 4). At each iteration, if the set D of the variables with
score bigger than zero is not empty, LS-ECNF picks the vari-
able with the greatest score in D breaking ties by time stamp.

If there is no such variable, which means the search got
stuck, LS-ECNF updates clause weights according to the
Weighting-EPMS scheme, and picks a variable from a fal-
sified clause. Specifically, it chooses a clause randomly from
falsified hard clauses if any, and from falsified soft clauses
otherwise. Then, LS-ECNF picks the variable with the great-
est score in the clause and flips it.

Finally, when the loop terminates upon reaching the time
limit, LS-ECNF returns gcost∗ and α∗ if α∗ is a feasible so-
lution. Otherwise, it returns “no feasible assignment found”.

4.2 UP-based Algorithm for EPMS
Unit Propagation (UP) has been used in SAT and MaxSAT
solvers. Actually, UP can also be applied to EPMS with some
modifications. Following the line of UP-based decimation
[Cai et al., 2017], we integrate UP to design a decimation
algorithm for EPMS, and use it to produce initial assignments
for LS-ECNF.

Definition 3. Generalized Unit Clause For a hard (resp.
soft) clause c, if its cardinality is bigger or equal than the
number of literals in c, then c is a generalized hard (resp.
soft) unit clause.

Generalized Unit Propagation: For a given ECNF for-
mula, we collect all generalized unit clauses in it, and all the
literals in these generalized unit clauses are set to true. Then
the formula is simplified accordingly.

The GUP-based decimation algorithm is outlined in Algo-
rithm 2 , and is described below. The algorithm works it-
eratively by assigning variables one by one (line 2-9) until
no unassigned variables are left. In each step, it is divided
into three situations. (1) Firstly, if there exist a generalized
hard unit clause c, the algorithm picks a hard unit clause ran-

Algorithm 2: GUP-Decimation
Input: EPMS instance F
Output: An assignment of variables in F

1 begin
2 while ∃ unassigned variables do
3 if ∃ generalized hard unit clauses then
4 pick a generalized hard unit clause randomly

and perform generalized unit propagation ;

5 else if ∃ generalized soft unit clauses then
6 pick a generalized soft unit clause randomly

and perform generalized unit propagation ;

7 else
8 x := pick an unassigned variable randomly;
9 assign x with a random value v, simplify F

accordingly;

10 return the resulting assignment to variables of F ;

domly and performs a generalized unit propagation step using
c. (2) Secondly, if there is no generalized hard unit clause but
soft ones, the algorithm picks a soft unit clause randomly and
works in the same manner as in the first situation. (3) Lastly,
if there is no generalized unit clause, then the algorithm picks
an unassigned variable x, assigns it randomly, and simplifies
the formula accordingly.

5 Experimental Evaluation
We model Nurse Rostering and Tomography Problem into
ECNF formulas. We also encode these two problems into
CNF formula with three famous encoding types (sequential
encoding, cardinality networks encoding and pigeon-hole en-
coding), Pseudo-Boolean (PB) and Integer Liner Program-
ming (ILP) for comparison. Note that, we encode the orig-
inal instances as PB or ILP instances directly which is fair for
comparison. These two problems are described as follows.

Nurse-Rostering Problem (NRP): These are well-known
problem instances from the second international nurse roster-
ing competition (INRC2) [Ceschia et al., 2015]. We chose
to focus on this specific problem formulation as it provides
a number of instances that include challenging and realistic
scheduling problems, while still being intuitive and straight-
forward to use. The overall goal is to find an optimal roster
for a number of nurses, shift types, where every nurse may
either work a single shift or have a day off on each day of
a given scheduling period. Of course, that this arrangement
should satisfy a set of constraints including both hard and soft
ones. Finally, the objective function of a candidate solution is
defined as the sum of penalty of all violated soft constraints.
In this work, the penalty multiplier of each soft constraint is
set to 1. The size of NRP instances varies according to the
number of nurses and the length of scheduling period. In our
experiments, the number of nurses ranges from 30 to 120 and
the length of scheduling period ranges from 12 to 24 weeks.

Discrete Tomography Problems: This set of bench-
marks we have used is the one introduced in [Bailleux and
Boufkhad, 2003]. The idea is to first generate an N ∗N grid
in which some cells are filled and some others are not. The
problem consists in finding out which are the filled cells using
only the information of how many filled cells there are in each
row, column and diagonal. For that purpose, variables xij are
used to indicate whether cell (i, j) is filled. And cardinal-
ity constraints impose how many filled cells there are in each
row, column and diagonal. We generate 170 benchmarks (10
instances for each size N = 10, 20...90, 100, 150, ..., 400).
Note that, the discrete tomography problem only contains
hard cardinality constraints, and thus is a SAT problem.

We compare our algorithm against five state of the art al-
gorithms including SAT, MaxSAT, Pseudo-Boolean and ILP
solvers.

• SATLike: [Lei and Cai, 2018] is the best local search
solver for WPMS and won two unweighted categories of
incomplete track in MSE (MaxSAT Evaluation) 2018.

• Loandra: [Berg et al., 2019] won two unweighted cate-
gories, and was ranked 2nd in two weighted categories
of incomplete track in MSE 2019.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1144

Instance LS-ECNF Loandra Open-WBO
size car seq pig car seq pig pb

cmin cmin cmin cmin cmin cmin cmin cmin
30*12 103 360 191 188 804 432 460 2099
30*16 131 N/A 806 1253 922 799 1356 15798
30*20 182 990 659 379 1393 913 1039 21649
30*24 195 2143 918 775 1592 1188 1377 24455
40*12 67 753 421 293 988 631 656 19871
40*16 100 1185 702 382 1505 844 1045 25936
40*20 126 2223 1084 1535 2073 1211 1483 32684
40*24 148 4059 1279 1581 2482 1654 2007 39089
50*12 64 2213 824 555 1804 1002 926 25039
50*16 144 3424 1236 1137 2515 1437 1816 33239
50*20 122 N/A 1426 2390 4266 1832 3706 41403
50*24 225 N/A 2098 3016 N/A 2182 4231 50032
60*12 185 2740 1052 793 2173 1323 1143 32153
60*16 86 5202 1599 2588 5948 1684 2506 39480
60*20 326 N/A 2137 2999 N/A 2286 3996 52754
60*24 131 N/A 2740 N/A N/A 3086 5770 60130
80*12 188 4472 1330 2206 2829 1692 2006 34481
80*16 222 5003 2097 2318 3750 2113 3674 45573
80*20 324 N/A 2779 3895 N/A 2729 4924 57075
80*24 319 N/A N/A N/A N/A 3116 6373 68923
100*12 82 N/A 1623 2428 N/A 1521 1932 46241
100*16 75 N/A N/A 4243 N/A 2354 4384 61607
100*20 140 N/A N/A N/A N/A N/A 5734 76860
100*24 112 N/A N/A N/A N/A N/A 7197 92128
120*12 89 N/A N/A 4659 N/A N/A 5416 58755
120*16 131 N/A N/A N/A N/A N/A N/A 79248
120*20 159 N/A N/A N/A N/A N/A N/A N/A
120*24 203 N/A N/A N/A N/A N/A N/A N/A

Table 1: Experiment results of comparing LS-ECNF with the state
of the art solvers on nurse-rostering problem. Time limit is 300s

• TT-Open-WBO-inc: [Nadel, 2019] won two weighted
categories of incomplete track in MSE 2019. We com-
pare with the best version Open-WBO-Inc-BMO, and we
denote it as Open-WBO for convenience. In addition,
Open-WBO can also be used to solve Pseudo-Boolean
problems. We mark this version as pb.

• CADICAL: [SAT Race 2019] ranked first in the
SAT (satisfiable instances) track and second in the
SAT+UNSAT track (of the SAT Race 2019).

• Gurobi: [Gurobi Optimization, 2019] is one of the most
powerful mathematical optimization solvers. We use
both the complete and heuristic versions which are de-
noted as comp and heur respectively.

LS-ECNF is implemented in C++ and compiled by g++
with -O3 option. Our experiments were conducted on a server
using Intel Xeon E7-8850 v2 @2.30GHz, 2048GB RAM,
running Ubuntu 16.04.5 Linux operation system. We adopt
various time limits, including 300 seconds and 3600 seconds
on nurse rostering problem, and the time limit is 3600 sec-
onds on discrete tomography problems. For nurse rostering
problem, in each run, the solver prints successively the best
solution it has found so far. For each instance, cmin is the
cost of the best feasible solution found. Discrete tomogra-
phy problems are decision problems, so we show the time
of finding the feasible solution of each instance. For each

LS-ECNF Loandra Open-WBO Gurobi
car seq pig car seq pig pb comp heur

cmin cmin cmin cmin cmin cmin cmin cmin cmin cmin
100 144 121 161 487 376 421 899 80 80
125 174 149 160 600 460 552 1419 115 115
168 245 230 238 869 631 753 2624 136 136
189 274 308 260 1165 886 908 3219 174 174
58 136 100 123 679 446 504 1993 49 73
92 208 179 187 968 751 785 3229 76 83

121 293 346 285 1599 1096 752 6730 N/A N/A
142 343 385 359 1858 1497 941 39089 123 N/A
59 136 149 120 1123 695 813 3720 52 N/A

140 433 296 230 1794 1043 1374 6271 N/A N/A
114 1021 632 335 2603 1832 1582 41403 N/A N/A
210 2154 1463 429 3025 2182 2259 50032 N/A N/A
172 419 240 271 1959 1145 1024 6293 164 N/A
82 490 285 182 2573 1431 2103 39480 N/A N/A

313 3506 1068 617 3581 2286 1923 52754 280 N/A
123 3796 1894 871 3581 2699 3263 60130 N/A N/A
183 396 275 286 2425 1692 1463 8490 172 175
214 898 1884 1385 3756 2113 2198 45573 198 211
308 2296 1680 697 4657 2729 3263 57075 N/A N/A
319 4662 2238 1588 4603 3116 3327 68923 N/A N/A

75 1137 486 126 3410 1521 1668 46241 72 75
72 2913 1476 633 4781 2354 3065 61607 N/A N/A

130 7949 2662 N/A N/A 3833 5734 76860 N/A N/A
105 9682 3444 5283 N/A 4151 4083 92128 N/A N/A

83 4567 1753 638 5869 2788 3054 58755 N/A N/A
127 10200 2973 2101 14643 3663 4633 79248 N/A N/A
154 16325 N/A 5630 17283 5118 9696 98526 N/A N/A
185 N/A N/A 7803 20410 5960 11504 117653 N/A N/A

Table 2: Experimental results of comparing LS-ECNF with the state
of the art solvers on nurse-rostering problem. Time limit is 3600s

SAT and MaxSAT solver, we use three cardinality encodings
marked as car, seq, pig respectively. In bold we present the
best results for each instance.

5.1 Experiment Results on NRP
The experiment results on nurse rostering benchmarks are
presented in Tables 1 and 2. When the time limit is 300
seconds, Gurobi (both complete and heuristic versions) fail
to find feasible solutions on all these instances, so we do
not report their results. LS-ECNF is the best solver, finding
better solutions than other solvers, and usually much faster.
When the time limit is 3600 seconds (Table 2), MaxSAT and
Pseudo-Boolean algorithms still perform much worse than
LS-ECNF. In the meantime, Gurobi can find a good feasible
solution for the small instances. However, as the scale of the
problem increases, the probability to find a feasible solution
drops significantly. When the number of nurses increases to
100, Gurobi can hardly find any feasible solution.

Note that, CaDiCaL is a SAT solver, so we do not report
its results on this optimization problem. Also, SATLike fails
to find feasible solutions on almost all instances, so its results
are not reported, either.

5.2 Experiment Results on DTP
Experiment results on discrete tomography problem are pre-
sented in Table 3. The MaxSAT version of Open-WBO is

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1145

Instance LS-ECNF SATLike Loandra Open-WBO CADICAL Gurobi
car seq pig car seq pig pb car seq pig comp heur

N*N time time time time time time time time time time time time time
10*10 <0.01 0.05 0.05 0.06 0.07 0.05 0.05 <0.01 <0.01 <0.01 <0.01 0.03 0.03
20*20 <0.01 21.48 N/A N/A 3.99 0.64 0.64 8.08 1.05 0.6 1.92 0.16 0.26
30*30 <0.01 66.81 N/A N/A 17.21 4 N/A 328.30 74.91 19.38 4.84 0.45 1.29
40*40 <0.01 N/A N/A N/A N/A N/A N/A N/A N/A 76.13 N/A 1.96 2.42
50*50 0.01 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 11.81 7.56
60*60 0.01 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.87 3.40
70*70 0.03 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 2.01 3.21
80*80 0.03 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 3.63 4.74
90*90 0.05 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 4.57 6.10
100*100 0.06 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 5.64 7.73
150*150 0.32 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 27.90 33.62
200*200 3.46 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 71.43 114.06
250*250 5.60 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 158.90 238.78
300*300 17.63 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 319.20 332.98
350*350 64.62 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 537.99 866.60
400*400 114.43 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1339.50 1159.98

Table 3: Experimental Results on Discrete Tomography Problems.

much poorer than the PB version, so we only report the re-
sults of PB version. The results are impressive. All MaxSAT,
SAT and PB solvers can only solve small instances with size
N ≤ 40, while LS-ECNF solves all these instances very
quickly. LS-ECNF finds solutions in 1 second when the size
N ≤ 150. Though Gurobi (both complete and heuristic ver-
sions) can also solve all these instances, the running time of
Gurobi is more than 10 times that of LS-ECNF.

In addition, we also compared our algorithm with local
search SAT solver CCAnr [Cai et al., 2015], complete SAT
solver MapleLCMDistChronoBT-DL [SAT Race 2019] and
PB solver RoundingSAT [Elffers and Nordström, 2018] on
discrete tomography problems. All these solvers fail to solve
instances with sizeN > 40, so we did not report their results.

5.3 Experiment Analysis
In our experiments, GUP-based algorithm can improve the
performance over LS-ECNF in more than 70% instances on
NRP. And for DTP, using GUP-based algorithm can save
more than 20% running time. Generally, techniques from
SAT and MaxSAT can be beneficial for ESAT and EPMS
solvers. Indeed, we can develop a DPLL framework for
ECNF problems. During the propagation, a variable x is pick
to be assigned. For a clause c s.t. l ∈ c where l is x or
its negation, if l is true, than num true l[c] is increased by
1, otherwise, l is removed from c. If |c| = cardinality[c],
then c is a generalized unit clause and all the rest literals in c
should be set to true. If |c| < cardinality[c], which means
there is a conflict, then backtracking is executed.

5.4 Relationship Between ECNF with CNF and PB
ECNF extends CNF by introducing the concept of
cardinality. One can encode cardinality constraints into
ECNF without any auxiliary variables and clauses. In Ta-
ble 4, we present the average number of variables and clauses
of each encoding. We can see that, encoding cardinality con-
straints into ECNF is more compact and efficiency. Because
that ECNF and CNF share almost the same data structure,

Benchmark ECNF CNF
car seq pig

variables
NRP 1.2 ∗ 105 6.7 ∗ 106 5.3 ∗ 106 1.9 ∗ 106
DTP 1.1 ∗ 104 3.9 ∗ 106 5.6 ∗ 106 2.8 ∗ 106
clauses
NRP 2.8 ∗ 105 1.0 ∗ 107 2.1 ∗ 107 4.0 ∗ 106
DTP 8.9 ∗ 102 5.9 ∗ 106 2.4 ∗ 107 5.7 ∗ 106

Table 4: Averaged number of variables and clauses of each encoding

techniques used for problems of CNF (e.g. SAT) can be used
for problems of ECNF (e.g. ESAT). ECNF can be considered
as a special case of Pseudo-Boolean Optimisation (PBO). In
PBO, each literal of each constraint is associated with an in-
teger number as its weight (e.g. 2x1 + 3x2 − 4x3 > 2). If all
the weight of literals is 1, it becomes an ECNF formula.

6 Conclusion
We proposed an extension of CNF formulas, which can easily
deal with cardinality constraints without any auxiliary vari-
able and clause. We also designed an efficient local search
algorithm and a generalized UP-based algorithm for ECNF.
Experiments results showed that our solver is much better
than all state of the art SAT, MaxSAT, PB and ILP solvers
for nurse rostering problems and discrete tomography prob-
lems. The strong results show that we opened a promising
direction to solve cardinality constraints. We would like to
encode other combinatorial problems with cardinality con-
straints into ECNF and design a more efficient solver.

Acknowledgements
This work is supported by Beijing Academy of Artificial In-
telligence (BAAI) and Youth Innovation Promotion Associa-
tion, Chinese Academy of Sciences [No. 2017150].

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1146

References
[Ası́n et al., 2009] Roberto Ası́n, Robert Nieuwenhuis, Albert Oliv-

eras, and Enric Rodrı́guez-Carbonell. Cardinality networks and
their applications. In International Conference on Theory and
Applications of Satisfiability Testing, pages 167–180, 2009.

[Bailleux and Boufkhad, 2003] Olivier Bailleux and Yacine
Boufkhad. Efficient CNF encoding of boolean cardinality con-
straints. In Principles and Practice of Constraint Programming
- CP 2003, 9th International Conference, CP 2003, Kinsale,
Ireland, September 29 - October 3, 2003, Proceedings, pages
108–122, 2003.

[Berg et al., 2019] Jeremias Berg, Emir Demirovic, and Peter J.
Stuckey. Core-boosted linear search for incomplete maxsat.
In Louis-Martin Rousseau and Kostas Stergiou, editors, Inte-
gration of Constraint Programming, Artificial Intelligence, and
Operations Research - 16th International Conference, CPAIOR
2019, Thessaloniki, Greece, June 4-7, 2019, Proceedings, vol-
ume 11494 of Lecture Notes in Computer Science, pages 39–56.
Springer, 2019.

[Boudane et al., 2018] Abdelhamid Boudane, Saı̈d Jabbour, Bad-
ran Raddaoui, and Lakhdar Sais. Efficient sat-based encodings
of conditional cardinality constraints. In LPAR-22. 22nd Interna-
tional Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning, Awassa, Ethiopia, 16-21 November 2018,
pages 181–195, 2018.

[Cai et al., 2015] Shaowei Cai, Chuan Luo, and Kaile Su. Ccanr: A
configuration checking based local search solver for non-random
satisfiability. In Marijn Heule and Sean A. Weaver, editors, The-
ory and Applications of Satisfiability Testing - SAT 2015 - 18th
International Conference, Austin, TX, USA, September 24-27,
2015, Proceedings, volume 9340 of Lecture Notes in Computer
Science, pages 1–8. Springer, 2015.

[Cai et al., 2016] Shaowei Cai, Chuan Luo, Jinkun Lin, and Kaile
Su. New local search methods for partial maxsat. Artif. Intell.,
240:1–18, 2016.

[Cai et al., 2017] Shaowei Cai, Chuan Luo, and Haochen Zhang.
From decimation to local search and back: A new approach to
maxsat. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pages 571–577, 2017.

[Ceschia et al., 2015] Sara Ceschia, Nguyen Dang Thi Thanh,
Patrick De Causmaecker, Stefaan Haspeslagh, and Andrea
Schaerf. Second international nurse rostering competi-
tion (INRC-II) - problem description and rules -. CoRR,
abs/1501.04177, 2015.

[Demirovic and Musliu, 2014] Emir Demirovic and Nysret Musliu.
Modeling high school timetabling as partialweighted maxsat. In
LaSh 2014: The 4th Workshop on Logic and Search (a SAT/ICLP
workshop at FLoC 2014), July 18, Vienna, Austria, 2014.

[Demirovic and Stuckey, 2019] Emir Demirovic and Peter J.
Stuckey. Techniques inspired by local search for incomplete
maxsat and the linear algorithm: Varying resolution and
solution-guided search. In Thomas Schiex and Simon de Givry,
editors, Principles and Practice of Constraint Programming -
25th International Conference, CP 2019, Stamford, CT, USA,
September 30 - October 4, 2019, Proceedings, volume 11802 of
Lecture Notes in Computer Science, pages 177–194. Springer,
2019.

[Demirovic et al., 2019] Emir Demirovic, Nysret Musliu, and Fe-
lix Winter. Modeling and solving staff scheduling with partial
weighted maxsat. Annals OR, 275(1):79–99, 2019.

[Elffers and Nordström, 2018] Jan Elffers and Jakob Nordström.
Divide and conquer: Towards faster pseudo-boolean solving.
In Jérôme Lang, editor, Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden, pages 1291–1299.
ijcai.org, 2018.

[Guerreiro et al., 2019] Andreia P. Guerreiro, Miguel Terra-Neves,
Inês Lynce, José Rui Figueira, and Vasco M. Manquinho.
Constraint-based techniques in stochastic local search maxsat
solving. In Thomas Schiex and Simon de Givry, editors, Prin-
ciples and Practice of Constraint Programming - 25th Interna-
tional Conference, CP 2019, Stamford, CT, USA, September 30 -
October 4, 2019, Proceedings, volume 11802 of Lecture Notes in
Computer Science, pages 232–250. Springer, 2019.

[Gurobi Optimization, 2019] LLC Gurobi Optimization. Gurobi
optimizer reference manual, 2019.

[Hattad et al., 2017] Soukaina Hattad, Saı̈d Jabbour, Lakhdar Sais,
and Yakoub Salhi. Enhancing pigeon-hole based encoding of
boolean cardinality constraints. In Proceedings of the 9th In-
ternational Conference on Agents and Artificial Intelligence,
ICAART 2017, Volume 2, Porto, Portugal, February 24-26, 2017,
pages 299–307, 2017.

[Joshi et al., 2019] Saurabh Joshi, Prateek Kumar, Sukrut Rao, and
Ruben Martins. Open-wbo-inc: Approximation strategies for in-
complete weighted maxsat. J. Satisf. Boolean Model. Comput.,
11(1):73–97, 2019.

[Karpinski and Piotrów, 2019] Michal Karpinski and Marek Pi-
otrów. Encoding cardinality constraints using multiway merge
selection networks. Constraints, 24(3-4):234–251, 2019.

[Lei and Cai, 2018] Zhendong Lei and Shaowei Cai. Solving
(weighted) partial maxsat by dynamic local search for SAT. In
Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden., pages 1346–1352, 2018.

[Luo et al., 2017] Chuan Luo, Shaowei Cai, Kaile Su, and Wenx-
uan Huang. CCEHC: an efficient local search algorithm for
weighted partial maximum satisfiability. Artif. Intell., 243:26–
44, 2017.

[Martins et al., 2014] Ruben Martins, Vasco M. Manquinho, and
Inês Lynce. Open-wbo: A modular maxsat solver,. In Theory and
Applications of Satisfiability Testing - SAT 2014 - 17th Interna-
tional Conference, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, pages
438–445, 2014.

[Nadel, 2019] Alexander Nadel. Anytime weighted maxsat with
improved polarity selection and bit-vector optimization. In
Clark W. Barrett and Jin Yang, editors, 2019 Formal Methods
in Computer Aided Design, FMCAD 2019, San Jose, CA, USA,
October 22-25, 2019, pages 193–202. IEEE, 2019.

[Narodytska and Bacchus, 2014] Nina Narodytska and Fahiem
Bacchus. Maximum satisfiability using core-guided maxsat reso-
lution. In Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada., pages 2717–2723, 2014.

[Sinz, 2005] Carsten Sinz. Towards an optimal CNF encoding of
boolean cardinality constraints. In Principles and Practice of
Constraint Programming - CP 2005, 11th International Confer-
ence, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings,
pages 827–831, 2005.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1147

	Introduction
	Preliminary
	Cardinality Constraints
	Encoding Cardinality Constraints into CNF

	Extended Conjunctive Normal Form
	Local Search Algorithm for EPMS
	The LS-ECNF Algorithm
	UP-based Algorithm for EPMS

	Experimental Evaluation
	Experiment Results on NRP
	Experiment Results on DTP
	Experiment Analysis
	Relationship Between ECNF with CNF and PB

	Conclusion

