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Abstract

Recently, person re-identification (re-ID) has at-
tracted increasing research attention, which has
broad application prospects in video surveillance
and beyond. To this end, most existing methods
highly relied on well-aligned pedestrian images and
hand-engineered part-based model on the coarsest
feature map. In this paper, to lighten the restric-
tion of such fixed and coarse input alignment, an
end-to-end part power set model with multi-scale
features is proposed, which captures the discrimi-
native parts of pedestrians from global to local, and
from coarse to fine, enabling part-based scale-free
person re-ID. In particular, we first factorize the
visual appearance by enumerating k-combinations
for all k of n body parts to exploit rich global
and partial information to learn discriminative fea-
ture maps. Then, a combination ranking module
is introduced to guide the model training with all
combinations of body parts, which alternates be-
tween ranking combinations and estimating an ap-
pearance model. To enable scale-free input, we fur-
ther exploit the pyramid architecture of deep net-
works to construct multi-scale feature maps with
a feasible amount of extra cost in term of mem-
ory and time. Extensive experiments on the main-
stream evaluation datasets, including Market-1501,
DukeMTMC-relD and CUHKO3, validate that our
method achieves the state-of-the-art performance.

1 Introduction

Person retrieval, a.k.a., person re-identification (re-ID), aims
at retrieving pedestrians across non-overlapping camera
views distributed at distinct locations. To calculate the simi-
larities between person images, visual features play a central
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Figure 1: Overview of the proposed PPS model with scale-free
feature learning. Given a set of feature maps, we enumerate k-
combinations for all £ of n horizontal body parts, which captures
global to local visual appearances for person retrieval. Furthermore,
skip connections (green arrows) are used to construct multi-scale
feature maps, which associate bottom, fine spatial, and weak seman-
tic features with top, coarse spatial, and strong semantic features
efficiently in a coarse-to-fine fashion (red arrows).

role. In the past decade, deep features have shown their su-
periority in person re-ID [Li et al., 2014; Chen et al., 2017a;
He er al., 2018]. Despite the remarkable progress, person
re-ID is still suffering from large variations on persons such
as pose, occlusion, clothes, background clutters, and detec-
tion failures. To handle such variations, recent advances have
advocated the use of part-level features to offer fine-grained
description [Sun et al., 2018; Suh et al., 2018].

A common practice for part-based models is to partition
the intermediate feature maps of an input image into multiple
horizontal parts uniformly [Sun et al., 2018]. Subsequently,
each partial region is used for identity classification indepen-
dently. To that effect, various architectures for partitioning
person images are exploited recently [Wang er al., 2018a;
Fu er al., 2019]. Such a pipeline has three key drawbacks:
Firstly, the overall performance seriously depends on how
well the pedestrian parts are aligned. Therefore, in challeng-
ing scenes, most existing methods suffer from part misalign-
ment due to inaccurate detection, pose variation, occlusion,
etc. Secondly, most methods attempt to combine features ex-
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tracted from different manually selected partial regions. Such
handcrafted designs require extra human efforts and may lead
to suboptimal solutions. Thirdly, most works only exploit
the coarsest feature map extracted from the top of the back-
bone network. Thus, spatial details in finer-resolution feature
maps are lost. In fact, finer-resolution feature maps contain
meaningful low-level information, such as colour and texture,
which are crucial to distinguish similar pedestrians.

In order to overcome the above limitations, we propose
an end-to-end Part Power Set (PPS) Model, which enables
robust and scale-free part-based person re-ID, as shown in
Fig. 1. Firstly, to deal with misalignments of parts, our
method enumerates k-combinations for all k£ of n body parts
coming from a uniform partition, result in »_;'_, C* com-
binations in total. As illustrate in Fig. 2, the PPS model is
able to align discriminative parts in pedestrian images and
exploit global-to-partial information elegantly. Enumerat-
ing alignment of body parts with different scales and ra-
tios would have provided an almost infinite candidate set
of combinations. However, PPS efficiently filter the candi-
dates in accordance with a power set of 2" — 1 combina-
tions. Secondly, we introduce a combination ranking mod-
ule (CRM) to guide the model training with all combina-
tions of body parts. It considers inter-class relations by
constructing two subnets to perform pedestrian identifica-
tion and combination ranking in parallel. Compared with
manually-designed part-based models [Wang et al., 2018a;
Fu et al., 2019], this pivotal module relieves the requirement
of human efforts in designing specific part-based model, and
thus has potential to achieve global optimal. Thirdly, we
merge features extracted from different scales of CNNs with
a feasible amount of extra cost in terms of memory and time,
while gaining stronger abstract semantic as well as higher res-
olution features. In particular, before feeding features at dif-
ferent scales of the backbone network to PPS, we take advan-
tage of the feature maps from the top layers to enhance the
abstract semantics for the bottom layers. It derives from our
observation that, feature maps in the top layers have strong
abstract semantic but are coarse due to loss of details, while
maps in the bottom layers have fine resolutions but suffer
from lacking of abstract semantics.

In sum, the main contributions of this paper are three-fold:

e We propose an end-to-end part power set model by enu-
merating k-combinations for all k£ of n body parts, which
exploits, in an all-inclusive manner, from the global to
various levels of the partial information to learn discrim-
inative features.

e Our method introduces a combination ranking module
to guide the optimization to converge rapidly and stably,
which performs combination identification and ranking
in parallel. It replaces handcrafted designs and selec-
tions that require extra human efforts and may lead to
suboptimal solutions.

e We exploit multi-scale features of the backbone network
with single stream and image, to further boost the perfor-
mance. It is trained end-to-end by combining all scales
to enhance feature representation in a deeply supervised
fashion.

Images Combination Alignment Images Combination Alignment

For example, the discriminative parts (T-shirt) in the first image pairs
are misaligned by occlusion. While the discriminative parts (hand-
bag) in the second image pairs are misaligned by large pose vari-
ation. By enumerating different combinations of local parts, PPS
aligns the discriminative parts (red boxes).

We perform extensive quantitative evaluation on main-
stream datasets, including Market-1501, DukeMTMC-relD
and CUHKO3, with comparisons to cutting-edge methods.
Results show our method achieves the state-of-the-art perfor-
mance. Code and models will be made publicly available.

2 Related Work

Person re-ID. Deep learning methods have dominated per-
son re-ID in the last decade. Deep neural network is first
employed by Li et al. [Li et al., 2014] to determine if a pair
of input images belong to the same ID. Different loss func-
tions have been designed for network optimization, e.g., the
siamese loss [Radenovié et al., 2016], triplet loss [Hermans
et al., 2017], and quadruplet loss [Chen er al., 2017a]. Many
efforts focus on reducing the impact of the misalignment and
occlusion [Su et al., 2017; He et al., 2018].

Part-based Model. Several recent works propose to gener-
ate deep representation from body parts as fine-grained dis-
criminative features of pedestrians. Such part-based models
can be divided into three groups. The first one leverages ex-
ternal cues to partition pedestrian parts, e.g., assistance from
the latest progress on human pose estimation [Qian et al.,
2018; Suh et al., 2018; Su et al., 2017; Xu et al., 2018].
The second group utilizes attention-based methods to han-
dle the misaligned matching in re-ID [Li et al., 2018; Xu et
al., 2018]. The third group crops the intermediate feature
maps into pre-defined patches (i.e., patches) [Sun ez al., 2018;
Wang et al., 2018a; Fu et al., 2019]. However, most methods
usually require extra human efforts to examine and select the
combinations of parts, and thus may lead to suboptimal so-
lutions. To solve all these problems, we propose to factorize
the visual appearance by enumerating k-combinations for all
k of n body parts.

Multi-scale Feature Learning. Most existing methods typ-
ically consider only one resolution of person appearance by
a standard scale normalisation process. It discards the po-
tentially useful information of other different scales. To mine
complementary information across different scales, one of the
earliest endeavors is [Li er al., 2015], which jointly trains
multi-scale images. Recent works [Liu et al., 2016; Chen
et al., 2017b] use an image pyramid to build multi-scale fea-
tures by designing multi-scale streams. Instead, our method
works in a single stream with top-down pathway, i.e., taking a
single-scale image of an arbitrary size as input, which is more
feasible in termed of time and memory than [Liu erf al., 2016;
Chen et al., 2017b]. Qian et al. [Qian ef al., 2017] designs a
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Figure 3: Overview of the proposed model: Given a set of feature maps, our method first crops it into n strips horizontally. In this example,
we set nn to 4. Then global max and average pooling layers are applied to each strip. After that, we enumerate k-combinations for all k of n
strips. For each combination, another group of global max and average pooling layers are applied, followed by the element-wise sum. Then
a1l x 1 convolutional layer is added to get the final feature for each combination.

deep architecture, which has multiple streams with different
sizes of receptive fields. Our method is distinct from [Qian et
al., 2017] from the following two aspects. Firstly, our method
is independent of the backbone architecture. Secondly, the
output feature maps of our method are with proportional sizes
and strong semantics at multiple levels, in a fully convolu-
tional fashion.

3 The Method

3.1 Overview

Our method is designed from the following three aspects:
First, part power set model relaxes the requirement of well-
aligned body parts, and smoothly incorporates global-to-local
information by enumerating k-combinations for all £ of n
body parts. Secondly, a combination ranking module is in-
troduced to guide the training process to converge rapidly and
stably. Thirdly, we exploit multi-scale features with a feasible
amount of extra cost in terms of memory and time.

3.2 Part Power Set Model

Our model is built on a feature map M extracted from the
backbone network. M is a 3-dimensional tensor of the size
C x H x W, where C is the number of the channels, W
and H are the spatial width and height, respectively. The
feature map M is divided into n horizontal parts uniformly
with a fixed size of C' x (H/n) x W. Then we enumerate k-
combinations for all £ of n body parts, where 1 < k < n and
n is a hyper-parameter, as illustrate in the middle of Fig. 3.
It can be viewed as a specific global-to-local architecture, in
which each component captures the discriminative informa-
tion at different spatial scales. For example, n is set to 4 and
thus 15 combinations, i.e., 22:1 (i), are enumerated in to-
tal, which is also illustrated in Fig. 1. For each combination,
the feature map(s) of corresponding body part(s) is cropped
and concatenated. Then, global max and average pooling lay-
ers are applied to the feature maps of each combination, fol-
lowed by element-wise sum. A convolutional layer followed
by a batch normalization and a ReLU activation layer further
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reduces the dimension and produces the final feature vector
for the re-ID task.

However, due to the time and memory constraints, it is in-
feasible to directly crop and concatenate feature maps of cor-
responding body parts from feature maps of the backbone net-
work. The reason is clear: as the number of k-combinations
(1 < k < n) is the coefficient of the z* term in the poly-
nomial expansion of the binomial power (1 + z)", the total

number of available combinations is Y, (}) = 2" — 1,

where ({}) is abandoned. As a result, the size of intermediate

feature maps for all combinations before two pooling opera-
tions is C'(H/n)W >__, k(7). which is also the number of
elements that need to be stored in memory and be accessed
by each pooling operation.

To address the above limitations, we propose a novel
paradigm by reusing the pre-computed pooling values of each
part, as illustrate in Fig. 3. More specially, a group of global
max and average pooling layers are applied to the feature
maps of each body part to get two sets of vectors: u =
{w|l1 <i<nu eR%andov = {v;]1 <i<n,v; e R},
respectively. Then for each combination, the pooled vectors
of the corresponding body parts in v and v are picked and
reduced by another group of global max and average pool-
ing layers, respectively. Finally, an element-wise sum is ap-
plied to the output vectors. As the size of intermediate fea-
ture maps after first two pooling operations, is 2nC. This
paradigm significantly reduces the size of intermediate fea-
ture maps for all combinations from C(H/n)W Y}, k(7})
to 2C 3" _, k(7). And it minimizes the number of ele-
ments that the four pooling operations need to access to
2HWC +2C Y}, k(7). Thus, this paradigm is a tensor
decomposition to decouple the hyper-parameter n and spatial
size of feature maps HW'.

To empower our model to be sufficiently discriminative, a
softmax cross-entropy identification loss is introduced in the
fully-connected layer, which has the feature vector of combi-
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Figure 4: (a): Overview of the combination rank module. FC, Mul and Sum denote the fully-connected, element-wise product and sum
pooling layer, respectively. (b): Overview of the multi-scale feature learning scheme. Given a set of feature maps from different scales, we
construct a deeper, finer and better semantic feature representation. This figure is best viewed in color.
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where N;,, and N;, are the number of images and person
identities, respectively. And y;, W', and f§(I;) denote the
identity of the i-th image, the weight matrix of the fully-
connected layer for the y;-th identity, and the feature vector
of the ¢-th image in the c-th combination, respectively. On the
other hand, a triplet loss based metric learning is imposed to
the feature maps:
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where I; and I f have the same identity, I; and I;* are the im-
ages of different identities, d(-) is the normalized Euclidean
distance, [-]; is the hinge loss, and § denotes the margin
hyper-parameter to control the distance differences.

The extra computations are mainly on fully connected lay-
ers, which classify each combination. The extra FLOPs
[Molchanov et al., 2017] are computed as: (2" —1)(2/—1)0O,
where I = 128 is the input feature size and O = 752 is
the number of identity in Market1501. The extra FLOPs are
6 x 10% and 0.2 x 10° for n = 5 and n = 10, respectively,
while the original ResNet50 has 3.8 x 10 FLOPs. Therefore,
the increased computational complexity is marginal.

3.3 Combination Ranking Module

The proposed PPS model is imposed to classify each com-
bination in the power set independently. However, the dis-
criminative powers of different partial combinations are not
the same. We except that the model highlights discrimina-
tive combinations during learning. To this end, we alternate
between ranking all combinations and estimating an appear-
ance model using the weighted combinations. More con-
cretely, we construct two subnets to perform such simulta-
neous identity classification and combination ranking, as il-
lustrate in Fig. 4(a). The first subnet outputs an identity
score for each combination individually. In particular, we
get the j-th identity prediction probability for c-th combi-
nations by applying a fully-connected layer to the fe_a;ture

? —

vector, followed by a softmax operator, defined as: s =

exp (Wi (1))
SN exp ((Wid)T fg (1)
the fully-connected layer. The second subnet has a similar
structure with the first one. However, in order to rank combi-
nations, we use a different axis for normalization in the soft-

ra\T rc
z:X? ((Wv L Iot )> where W74
" Lexp (W) (1)
is the weight matrix of the fully-connected layer in the sec-
ond subnet. The ranking matrix s"* is then used to weight the
identity matrix s’ by taking the element-wise (Hadamard)
product: s = §"¢ © s’ It’s noted that in CRM, all com-
binations share the same parameters, i.e., W' and W"®. Fi-
nally, a cross-entropy loss function can be applied to s™*?.
However, the computed loss may fail to converge and oscil-
lates model parameters continuously, since each combination
is competed to each other. Therefore a sum pooling layer is
further applied: s7*" = Zin 1 s”d which unifies the iden-
tity prediction vector to a single scalar for each identity. Then
we define the loss function LCRM as:
Nim

N > logsim, 3)
=1

where y; is the identity of the i-th image.

7 where ¢ is the weight matrix of

max operator: S;; =

Lcrm =

3.4 Multi-Scale Feature Learning

To overcome the major limitation of multi-scale discrimina-
tive feature learn as we analyzed in Section 1, inspired by
[Honari ef al., 20161, we introduce a multi-scale deep feature
architecture to capture the determinative feature of pedestri-
ans from coarse to fine, as illustrated in Fig. 4(b). Specif-
ically, for ResNets, we use the feature maps output by the
last residual block of the last 4 stages to construct multi-scale
feature maps by the following steps: Firstly, starting from the
coarsest feature map, we use a 1 x 1 convolutional layer to
reduce the channel dimensions, and upsample the spatial res-
olution by a factor of 2. The reduced channel dimensions
and upsampled spatial resolution are determined by the cor-
responding bottom feature maps. Secondly, the upsampled
maps are merged with the corresponding bottom feature maps
by element-wise addition with skip connection. We iterate the
above two steps until all feature maps from the backbone net-
work are traversed. Finally, the output feature maps are fed to
PPS model for re-ID. To enforce direct and early supervision
for both the output layer and the new layers, instead of us-
ing only the last feature map, we impose re-ID to all the new
feature maps including the coarsest map from the backbone
network with shared parameters.
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4 Experimental Evaluation

4.1 Dataset and Evaluation Protocol

Market-1501. Market-1501 [Zheng et al., 2015] contains
bounding boxes from a person detector, which have been se-
lected based on their intersection-over-union overlap with an-
notated bounding boxes. It has 1, 501 persons and is split into
training/test sets of 12, 936/19, 732 images.

DukeMTMC-reID. DukeMTMC-relD [Ristani et al.,
2016; Zheng et al., 2017] is a subset of Duke-MTMC
for person re-ID. It contains 36,411 annotated images of
1,812 different identities captured by eight high-resolution
cameras. A total of 1,404 identities are observed by at least
two cameras, and the remaining 408 identities are distractors.
The training set contains 16, 522 images of 702 identities and
the test set contains the other 702 identities.

CUHKO03. CUHKO3 [Li et al., 2014] consists of 14,097
cropped images from 1,467 identities. For each identity, im-
ages are captured from two cameras, and there are about 5 im-
ages for each view. Two ways are used to produce the cropped
images, i.e., human annotation and detection DPM. We fol-
low the new training/test protocol, which has 767 identities
for training and 700 identities for testing. Datasets named as
labelled and detected are both used for training and testing.

Evaluation metrics. We adopt the Cumulative Matching
Characteristics (CMC) at Rank-1, Rank-5, and Rank-10, and
mean Average Precision (mAP). It is worth noting that all our
results are obtained in a single-query setting. For the pro-
posed method, no re-ranking is used in all the experiments.

4.2 Implementation Details

Our experiments are implemented based on the Caffe2 frame-
work. For the backbone network, we use Resnet50 initialized
with the weights pretrained on ImageNet. We remove the
last fully-connected layer and the average pooling layer and
set the stride of last resent conv5_1 from 2 to 1. The fea-
ture maps are reduced to a 128-dimensional vector using a
1 x 1 convolutoinal layer, followed by Batch Normalization
and ReL.U layers. We also apply dropout with a ratio of 0.2 on
the output feature vector before the fully-connected layer. All
images are resized into a resolution of 384 x 128 by follow-
ing [Sun et al., 2018]. The training images are augmented
with horizontal flipping. We use a step strategy with mini-
batch Stochastic Gradient Descent (SGD) to train the neural
networks on a Tesla V100 GPU. Parameters of the maximum
number of epochs, batch size, momentum, weight decay fac-
tor and base learning rate are set as 120, 64, 0.9, 0.0005 and
0.01, respectively. The base learning rate is dropped by a half
every 10 epochs from epoch 60 to epoch 90. The learning
rate for all new layer is set to 10x the base learning rate. The
margin in the triplet loss is 1.4 in all our experiments. Multi-
loss dynamic training [Zheng er al., 2019] is also used. We
use the normalized feature for retrieval evaluation.

4.3 Comparison with State-of-the-Art Methods

Market-1501. Tab. 1 shows the performance comparison
between our method and the state of the arts on Market-1501.
It can be observed that, being facilitated by the proposed
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Method
DaRe

| mAP  Rank1 Rank5 Rank 10

[Wang et al., 2018b] | 74.2 88.5
DuATM [Sietal,2018] | 76.6 914
HA-CNN [Lietal,2018] | 75.7 91.2 - -
KPM [Shen et al., 2018c] | 75.3 90.1 96.7 97.9
AACN [Xuetal,?2018] | 66.9 85.9 - -
GSRW [Shen eral.,2018a] | 82.5 92.7 96.9 98.1
DNN_CRF [Chen et al., 2018] | 81.6 93.5 - -
CamStyle [Zhong et al., 2018] | 71.6 89.5 - -
MLFN  [Chang et al., 2018] | 74.3 90.0 - -
AOS [Huang er al., 2018] | 70.4 86.5 - -
BraidNet [Wang er al., 2018¢c] | 69.5 83.7 - -

97.1 -

HAP2S [Yueral,2018] | 74.5 89.7 - -
PN-GAN [Qian eral., 2018] | 72.6 89.4 - -
PCB [Sun et al., 2018] | 77.4 92.3 97.2 98.2
PCBRPP  [Suneral,2018] | 81.6 93.8 97.5 98.5
SGGNN  [Shen e al., 2018b] | 82.8 923 96.1 97.4
Local CNN [Yang et al., 2018] | 77.7 91.5 - -
HPM [Fuetal., 2019] | 82.7 94.2 97.5 98.5
PPS | 8532 9434  97.68 98.72

Table 1: Comparison results (%) on Market-1501.

Method
DaRe

| mAP  Rank1 Rank5 Rank 10

[Wang et al., 2018b] | 63.0 79.1 -
DuATM [Sieral,2018] | 64.6 81.8 90.2 -
HA-CNN [Lietal,2018] | 63.8 80.5 - -
KPM [Shen et al., 2018c] | 63.2 80.3 89.5 91.9
AACN [Xuetal,?2018] | 59.2 76.9 - -
GSRW [Shen et al.,2018al | 66.4 80.7 - -
DNN_CRF [Chen et al., 2018] | 69.5 84.9 - -
CamStyle [Zhong et al., 2018] | 57.6 78.3 - -
MLFN  [Chang et al.,2018] | 74.3 90.0 - -
AOS [Huang er al., 2018] | 62.1 79.2 - -
BraidNet [Wang er al., 2018¢c] | 59.5 76.4 - -
HAP2S [Wangeral., 2018¢c] | 62.6 80.3
PN-GAN [Qianetal., 2018] | 53.2 73.6
PCB [Sun et al.,2018] | 66.1 81.8 - -
PCBRPP [Sunetal, 2018] | 69.2 83.3 - -
SGGNN [Shen et al., 2018b] | 68.2 81.1 88.4 91.2
Local CNN [Yang et al., 2018] | 62.8 81.0 - -

MGN [Wang et al., 2018a] | 78.4 88.7 - -
HPM [Fueral,2019] | 74.3 86.6 - -
PPS | 7594 8820  95.39 95.83

Table 2: Comparison results (%) on DukeMTMC-relD.

method, our performance surpasses all the state-of-the-art ap-
proaches in all the evaluation metrics. We have improved the
baseline method namely the PCB model [Sun et al., 2018] by
7.92% and 2.04% in terms of mAP and Rank-1, respectively.
It shows that both our PPS model play a crucial role beyond
the backbone architecture. Fig. 5 shows the top-10 ranking
results for some exemplar queries. It demonstrates that the
proposed model is more robust to pose variation, blur, and
occlusion than the baseline.

DukeMTMC-reID. Tab. 2 shows the performance com-
parison between our approach and the state of the arts on
DukeMTMC-reID. Our method consistently achieves com-
petitive performance on all metrics. In particularly, we
achieve absolute improvement of 9.84% and 6.40% for mAP
and Rank-1, respectively, compared with the baseline PCB
model. It demonstrates the effectiveness of the proposed PPS
model on person re-ID.

CUHKO03. Performance comparison on CUHKO3 is shown
in Tab. 3. We report the results with two types of boxes: man-
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PCB

PPS

Figure 5: Top-1 y images on
indicate that images have the same/different identities as the query.

Labelled Detected
Method mAP  Rank T | mAP  Rank1
DaRe [Wang er al., 2018b] | 60.2 64.5 58.1 61.6
HA-CNN [Lietal,?2018] | 41.0 44.4 38.6 41.7
MGCAM [Song et al.,2018] | 50.2 50.1 46.9 46.7
MLFN  [Chang et al., 2018] | 49.2 54.7 47.8 52.8
AOS [Huang et al., 2018] - - 433 471
PCB [Sun et al., 2018] - - 54.2 61.3
PCBRPP [Suneral.,2018] 57.5 63.7

Local CNN [Yang et al., 2018] | 53.8 58.7 51.6 56.8
MGN [Wang er al., 2018a] | 67.4 68.0 66.0 66.8
HPM [Fueral,2019] | 57.5 63.1 - -

PPS | 72.66 75.64 | 70.56 73.75
Table 3: Comparison results (%) on CUHKO3 using new protocol .

ually labeled and detected. We achieve an mAP of 72.66%
for manually labeled boxes, outperforming the previous best
mAP reported in [Wang er al., 2018a; Yang er al., 2018] by
5.26% and 18.86%, respectively. It is noted that CUHKO3
is the most challenging benchmark among the three datasets.
And the result indicates that our proposed PPS model is more
robust than all other methods.

4.4 Ablation Study

Influence of the body part number. As showed in Tab. 4,
with fewer body partitions n < 3, the performance drops dra-
matically, due to that local feature is not fully exploited. With
an increasing n (n < 6), the performance consistently boosts
and converges to about 83% in terms of mAP. It is excepted
that the more local feature is exploited, the more PPS model is
robust to the misalignment of body parts. When n increases
to 10, which enumerates 1,023 (2'° — 1) combination and
extracts 1,023 different local feature, it is observed that the
performance drops about 5% to 11% in terms of mAP. We ar-
gue that imposing too many combinations to identify person
may cause the optimization being hard to converge.

Impact of combination ranking module. As shown in
Tab. 4, CRM is able to improve the performance especially
with a large n. Results also demonstrate that CRM refines the
model to focus on discriminative combinations. Our method
achieves the best performance when n is set to 5.

Multi-scale feature versus single-scale feature. Finally,
we explore the multi-scale features to help re-ID. Tab. 4
shows that the proposed multi-scale architecture improves the
results by 0.29% to 0.81% in terms of mAP.
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n  Lcm MS Lt | mAP  rankl rank5 rank 10 time(ms)
1 74.13  89.04 95.46 97.27 8
2 80.09  92.58 97.48 98.31 9
3 82.77  93.65 97.86 98.66 10
4 82.89  93.38 97.36 98.34 12
5 83.48 93.82  97.65 98.57 15
6 82.79 9344 9739 98.43 24
7 78.11 90.91 96.67 97.68 45
8 76.13  90.47 96.17 97.48 86
9 7430  89.76 96.05 97.39 164
10 7232  88.66 95.81 97.30 329
2 v 81.02 92.89 97.51 98.31 9
3 v 83.02 93.72  97.80 98.67 10
4 v 83.23  93.56 97.89 98.57 12
5 v 83.59 93,59 97.51 98.49 17
6 v 83.07 93.05 97.15 98.34 26
7 v 80.80 9249  97.18 98.22 47
8 v 77.10  91.72 96.59 97.60 86
9 v 7522  89.79  96.23 97.54 169
10 v 74.32  89.66 9591 97.55 333
5 v 83.91 93.65 97.66 98.58 34
5 v v 84.50 94.39 97.66 98.61 34
5 v v 85.03 95.27 97.67 98.71 17
5 v v v 85.32 94.34 97.68 98.72 34

Table 4: Ablation study of our method on Market-1501.
5 Conclusion

In this paper, we propose an end-to-end part power set model
for part-based person retrieval, which is robust to misalign-
ment of body parts. In particular, a combination ranking mod-
ule is introduced to perform identify classification and com-
bination ranking in parallel. We further exploit how to extract
scale-free features with deep supervision, which has received
little attention so far. Extensive experiments demonstrate that
our method substantially outperforms the state of the arts.
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