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Abstract
Epistemic negation not along with default nega-
tion ¬ plays a key role in knowledge representa-
tion and nonmonotonic reasoning. However, the
existing approaches behave not satisfactorily in that
they suffer from the problems of unintended world
views due to recursion through the epistemic modal
operator K or M (KF and MF are shorthands for
¬notF and not¬F , respectively). In this paper
we present a general approach to epistemic nega-
tion which is free of unintended world views and
thus offers a solution to the long-standing problem
of epistemic specifications which were introduced
by [Gelfond, 1991] over two decades ago.

1 Introduction
Negation is a key mechanism in answer set programming
(ASP) for reasoning with incomplete knowledge. There are
multiple types of negation: default negation, strong negation,
and epistemic negation. By abuse of notation, in this paper
we use ¬, ∼, and not to denote these three negation opera-
tors, respectively. When default negation is available, strong
negation is easily compiled away using new predicate sym-
bols [Gelfond and Lifschitz, 1991] and thus it can be omitted.
The default negation ¬F of a formula F expresses that there
is no justification for adopting F in an answer set and thus F
can be assumed false by default in the answer set; in contrast,
the epistemic negation notF of F expresses that there is no
evidence proving that F is true, i.e., F is false in some answer
set. Justification in ASP is a concept defined over every in-
dividual answer set, while provability is a meta-level concept
defined over a collection of answer sets, called a world view
[Gelfond, 1991]. This means the two types of negation are
orthogonal operations, where default negation works locally
on each individual answer set, and epistemic negation works
globally at a meta level on each world view.

With both default and epistemic negation, ASP is enabled
to reason with different incomplete knowledge. For exam-
ple, we can use the rule innocent(X) ← not guilty(X) to
express the presumption of innocence, which states that one

∗This paper is an extended abstract of the article [Shen and Eiter,
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is presumed innocent if there is no evidence proving s/he is
guilty. We can also use rules of the form¬p(X)← not p(X)
to explicitly state Reiter’s closed-world assumption (CWA)
[Reiter, 1978], i.e., if there is no evidence proving p(X) is
true we jump to the conclusion that p(X) is false.

However, observe that most of the existing answer set se-
mantics, such as those defined in [Gelfond and Lifschitz,
1991; Pearce, 2006; Pelov et al., 2007; Truszczynski, 2010;
Bartholomew et al., 2011; Faber et al., 2011; Ferraris et al.,
2011; Shen et al., 2014], only support default negation and
they do not allow for epistemic negation.

Epistemic negation and specifications. In fact, the need for
epistemic negation was long recognized in ASP by Gelfond
in the early 1990s [Gelfond, 1991; 1994] and recently re-
visited in [Gelfond, 2011; Truszczynski, 2011; Kahl, 2014;
Kahl et al., 2015; del Cerro et al., 2015]. In particular, [Gel-
fond, 1991] showed that formalization of CWA using default
and strong negations with rules of the form∼p(X)← ¬p(X)
as presented in [Gelfond and Lifschitz, 1991], is problematic.
He then proposed to address the problem using two epistemic
modal operators K and M. Informally, for a formula F , KF
expresses that F is true in every answer set, and MF ex-
presses that F is true in some answer set; here MF can be
viewed as shorthand for ¬K¬F .

In the sequel, by an object literal we refer to an atom A
or its strong negation ∼A; a default negated literal is of the
form ¬L, and a modal literal is of the form KL, ¬KL, ML
or ¬ML, where L is an object literal.

[Gelfond, 1991] considered disjunctive logic programs
with modal literals, called epistemic specifications, which
consist of rules of the form

L1 ∨ · · · ∨ Lm ← G1 ∧ · · · ∧Gn (1)

where each L is an object literal and each G is an object lit-
eral, a default negated literal, or a modal literal. A normal
epistemic specification consists of rules of the above form
with m = 1. Given a collection A of interpretations as an
assumption, a logic program Π is transformed into a modal
reduct ΠA w.r.t. A by first removing all rules with a modal
literal G that is not true in A, then removing the remaining
modal literals. The assumption A is defined to be a world
view of Π if it coincides with the collection of answer sets of
ΠA under the semantics of [Gelfond and Lifschitz, 1991].
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The problem with recursion through K. More recently,
[Gelfond, 2011] addressed the problem that applying the
above approach to handle modal literals may produce unin-
tuitive world views due to recursion through K. For example,
consider a logic program Π = {p← Kp}. The rule expresses
that for any collection A of answer sets of Π and any I ∈ A,
if p is true in all answer sets in A, then p is true in I . This
amounts to saying that if p is true in all answer sets, then p is
always true (in particular in all answer sets). Obviously, this
rule is not informative and does not contribute to construc-
tively building any answer set; thus it can be eliminated from
Π, leading to Π = ∅. As a result, Π is expected to have a
unique answer set ∅. However, {p} would be an answer set of
Π when applying the approach of [Gelfond, 1991]. To illus-
trate, consider an assumption A = {{p}}, i.e., p is assumed
to be true in all interpretations in A. Then, Kp is true in A
and we obtain the modal reduct ΠA = {p}. This reduct has
a unique answer set {p}, which coincides with the assump-
tion A. Thus A is a world view of Π under [Gelfond, 1991].
Observe that this world view has an epistemic circular justifi-
cation that can be expressed as

∃I∈A p ∈ I ⇐ Kp ⇐ ∀I∈A p ∈ I (2)

where the arrow ⇐ stands for “is due to.” That is, p being
true in an interpretation I = {p} of the world view A is due
to Kp being treated true in the program transformation for
the modal reduct ΠA (via the rule p← Kp), which in turn is
due to p being assumed to be true in all interpretations of A.

In general, a world viewA is said to have an epistemic cir-
cular justification if some object literal L being true in some
interpretation I ∈ A is due to KL (or its equivalent modal lit-
erals expressing that L is true in every interpretation J ∈ A)
being treated true in the program transformation for the modal
reduct of Π w.r.t.A. This means that L being true in some in-
terpretation of A is due to L being assumed to be true in all
interpretations of A.

The problem with recursion through M. In addition to the
problem of unintended world views due to recursion through
K, the approaches of [Gelfond, 2011; 1991] may also have
unintended world views due to recursion through M. Con-
sider the logic program Π = {p ← Mp}, which expresses
that for any world view A and any I ∈ A, if p is true in
some answer set in A, then p is true in I . This amounts to
saying that if p is true in some answer set, then p is true in
every answer set. Under the approaches of [Gelfond, 2011;
1991] this program has two world views, {{p}} and {∅}.
Naturally, the question is whether both are intuitive; ide-
ally, we have only one world view. If, for example, p ex-
presses “something goes wrong,” then the program could be
viewed as a paraphrase of Murphy’s law: “if something can
go wrong, it will go wrong,” and accordingly, the intuitive
world view is {{p}}.
Recent advance. Recent work of [Kahl, 2014; Kahl et al.,
2015; del Cerro et al., 2015] suggests that indeed {{p}}
should be the only world view of the program Π = {p ←
Mp}. In fact, Kahl [2014] and later Kahl et al. [2015] exten-
sively studied the problems of unintended world views due
to recursion through K and M and proposed a new program

transformation by appealing to nested expressions defined
by [Lifschitz et al., 1999]. However, our careful study re-
veals that applying the approach to some logic programs with
recursion through M may also produce unintended world
views.

Our contributions. In this paper, we address the above prob-
lems of unintended world views and provide a satisfactory
solution to epistemic negation as well as epistemic specifica-
tions of [Gelfond, 1991]. Our main contributions are briefly
summarized as follows:

1. We use modal operator not to directly express epistemic
negation and define general logic programs consisting of rules
of the form H ← B, where H and B are arbitrary first-order
formulas possibly containing epistemic negation. Modal for-
mulas KF and MF are viewed as shorthands for ¬notF
and not¬F , respectively, and thus epistemic specifications
of [Gelfond, 1991] are a special class of general logic pro-
grams.
2. We propose to apply epistemic negation to minimize the

knowledge in world views of a general logic program Π, i.e.,
we apply epistemic negation to arbitrary closed first-order
formulas F with respect to a world view and assume notF in
Π to be true in the world view whenever possible; we refer to
this idea as knowledge minimization with epistemic negation.
It is analogous to applying default negation to minimize the
knowledge in answer sets, i.e., one applies default negation
to arbitrary ground atoms A with respect to an answer set and
assumes ¬A to be true in the answer set whenever possible
(CWA or minimal models); this is referred to as knowledge
minimization with default negation. To this end, we intro-
duce a novel and very simple program transformation based
on epistemic negation and present a new definition of world
views, which is free of both the problem of unintended world
views due to recursion through K and the problem due to M.
The proposed approach to evaluating epistemic negation can
be used to extend any existing answer set semantics with epis-
temic negation.
3. We show that deciding whether a propositional program

has epistemic answer sets based on the well-known FLP an-
swer set semantics [Faber et al., 2011] is Σp

3-complete and
whether a propositional formula is true in every epistemic an-
swer set of some world view is Σp

4-complete in general.

2 Logic Programs with Epistemic Negation
We take a first-order logic language LΣ with equality. ByNΣ

we denote the set of all ground terms of Σ, and byHΣ the set
of all ground atoms. Formulas are constructed from atoms
using the connectives ¬,∧,∨,⊃,>,⊥, ∃, ∀ as usual. Closed
formulas contain no free variables. An interpretation I is a
subset ofHΣ such that for any ground atom A, I satisfies A if
A ∈ I , and ¬A if A 6∈ I . The notion of satisfaction/models of
a formula in I is defined as usual. T entails a closed formula
F , denoted T |= F , if all models of T are models of F .

Epistemic formulas are formulas extended with epistemic
negations of the form notF , where F is a formula.

Definition 1 A general logic program is a finite set of rules
of the form H ← B, where H and B are epistemic formulas.
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For a rule r : H ← B we refer to B and H as the body
and head of r, denoted body(r) and head(r), respectively. A
normal epistemic program consists of rules of the form

A0 ← A1 ∧ ... ∧Am ∧ notAm+1 ∧ ... ∧ notAn (3)

where n ≥ m ≥ 0 and each Ai is an atom without equal-
ity and function symbols except constants. A propositional
program Π contains no variables, no function symbols except
constants, and no equalities. The Herbrand base of Π is de-
fined as usual. Any subset of the Herbrand base is a Herbrand
interpretation of Π.

A closed instance of a rule in Π is the rule with all free vari-
ables replaced by constants occurring in Π. The grounding
of Π, denoted ground(Π), is the set of all closed instances
of all rules in Π. For every epistemic negation notF in
ground(Π), we assume that F is a closed formula.

Definition 2 Let A be a set of interpretations and I ∈ A.

1. Let F be a closed formula. Then notF is true in A
(or A satisfies notF ) if F is false in some J ∈ A, and
false, otherwise. I satisfies notF if notF is true in A.

2. I satisfies a closed epistemic formula E if I satisfies E
as in first-order logic except that the satisfaction of epis-
temic negations in E is determined by (1).

3. I satisfies a closed instance r of a rule if I satisfies
head(r) whenever I satisfies body(r).

4. A is a collection of models of a logic program Π if every
I ∈ A satisfies all rules in ground(Π). A model I ∈ A
is minimal if there is no model J ∈ A with J ⊂ I .

Proposition 1 Let Π be a logic program and Π¬ be Π with
all epistemic negations notF replaced by default negations
¬F . For any interpretation I , A = {I} is a collection of
models of Π iff I is a model of Π¬.

The following theorem lays a theoretical basis for our novel
program transformation introduced in the next section.

Theorem 1 Let Π be a logic program such that for every
notF in ground(Π) F is true in every model of Π. Let Π¬

be Π with every epistemic negation notF replaced by default
negation ¬F . Then Π and Π¬ have the same models.

3 Epistemic Program Transformation
In ASP, a common technique for defining semantics is to
transform a logic program into a reduct that is free of nega-
tion or modal operators. For a normal logic program Π, the
seminal GL-reduct ΠI w.r.t. a given interpretation I is ob-
tained from ground(Π) by removing first all rules whose
bodies contain a default negation ¬A with A ∈ I , and
then all ¬A from the remaining rules [Gelfond and Lifs-
chitz, 1988]. Similarly, when Π is a logic program extended
with modal operators K and M, transformations w.r.t. a given
set A of interpretations are defined in [Gelfond, 1991; 2011;
Truszczynski, 2011; Kahl, 2014] by eliminating/replacing all
modal literals in ground(Π) in terms of whether or not they
are true in A. Note that these existing definitions of program
transformations are based on an assumption, which is either a

given interpretation or a given set of interpretations, and de-
fault negations or modal literals in a logic program are evalu-
ated against the assumption.

In this paper we aim to apply epistemic negation to mini-
mize the knowledge in a world view of a logic program Π by
assuming every epistemic negation notF in Π to be true in
the world view whenever possible. To this end, we define pro-
gram transformations in an alternative way, which is based on
an assumption that is a given set of epistemic negations, in-
stead of a given set of interpretations.

Definition 3 For a logic program Π, let Ep(Π) denote the set
of all epistemic negations notF in ground(Π). A guess of
epistemic negations for Π is a subset Φ of Ep(Π).

Intuitively for every notF ∈ Φ, it is guessed that F
couldn’t be proved true, and for every notF ∈ Ep(Π) \ Φ,
it is guessed that F would be proved true. Recall that an
epistemic negation notF expresses that there is no evidence
proving that F is true, where F is proved true if it is true in
every answer set of some world view.

Once a guess Φ is given, we can transform program Π
by replacing all epistemic negations in terms of Φ. There
would be different replacements for epistemic negations,
which would lead to different program transformations. The
simplest yet unreflected one is to replace notF with > if
notF ∈ Φ, and with⊥, otherwise. It turns out that this trans-
formation incurs both the problem of unintended world views
due to recursion through K and the problem due to recursion
through M, analogously to the cases in [Gelfond, 1991].

The key idea of our program transformation is that we first
assume that the guess on all notF ∈ Φ is correct and thus
replace them with >. Then, for every notF ∈ Ep(Π) \ Φ,
instead of replacing it with ⊥, we replace it with ¬F . The
intuition and rationale for the latter replacement is: if Φ is
a correct guess, once all epistemic negations notF ∈ Φ in
ground(Π) are replaced with >, which leads to a new pro-
gram Π>, for every notF in Π>, the formula F is supposed
to be true in every answer set of Π>. Let ΠΦ be Π> with each
notF replaced by ¬F ; then by Theorem 1, where model is
analogously replaced by answer set, we expect that Π> and
ΠΦ have the same answer sets. This rational justification of
the replacements for epistemic negations leads to the follow-
ing novel program transformation.

Definition 4 Let Φ ⊆ Ep(Π) be a guess of epistemic nega-
tions for a logic program Π. The epistemic reduct ΠΦ of
Π w.r.t. Φ is obtained from ground(Π) by replacing every
notF ∈ Φ with >, and every notF ∈ Ep(Π) \Φ with ¬F .
Π is consistent w.r.t. Φ if ΠΦ is consistent.

In the Introduction we mentioned that a world view A is
said to have an epistemic circular justification if some object
literal L being true in some interpretation I ∈ A is due to KL
being treated true in the program transformation w.r.t. A. In
our language, KL is shorthand for ¬notL, and in our pro-
gram transformation w.r.t. a guess Φ, ¬notL will be either
treated ¬> (when notL ∈ Φ), which evaluates to false, or
treated ¬¬L (when notL ∈ Ep(Π) \Φ), which evaluates to
L. This means that our program transformation would never
incur epistemic circular justifications and thus guarantees that
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world views based on the epistemic reducts will be free of the
problem with recursion through K.

4 A General Epistemic Answer Set Semantics
Now that all epistemic negations have been removed from a
logic program Π, leading to an epistemic reduct ΠΦ w.r.t. a
guess Φ, we can apply any answer set semantics for logic
programs without epistemic negation to compute all answer
sets A of ΠΦ. For A to be a world view, it must agree with
the guess Φ, i.e., every notF ∈ Φ is true and every notF ∈
Ep(Π)\Φ is false inA; and it should also satisfy the property
of knowledge minimization with epistemic negation.

Definition 5 A world view A of a logic program Π has the
property of knowledge minimization with epistemic negation
if A satisfies a maximal set Φ of epistemic negations in
Ep(Π) (i.e., no other world view satisfies Φ′ ⊃ Φ in Ep(Π)).

In this section, we present a general framework for defining
epistemic answer set semantics, thus called a general epis-
temic answer set semantics, which is applicable to extend any
existing answer set semantics with epistemic negation.

Definition 6 Let Φ be a guess such that ΠΦ is a consistent
epistemic reduct. Let X be an answer set semantics for logic
programs without epistemic negation. The collectionA of all
answer sets of ΠΦ under X is a candidate world view of Π
w.r.t. Φ if (a) A is nonempty, (b) every notF ∈ Φ is true in
A, and (c) every notF ∈ Ep(Π)\Φ is false inA. Candidate
world view A w.r.t. Φ is a world view if Φ is maximal (i.e.,
there is no candidate world view w.r.t. a guess Φ′ ⊃ Φ).

The condition “Φ is maximal” implies that world views
under the general epistemic semantics have the property of
knowledge minimization with epistemic negation.

Definition 7 Let F be a closed formula. We say F is true
in Π under the general epistemic semantics if Π has a world
view A such that F is true in every answer set in A.

Now we are ready to introduce a formal definition of the
problem of unintended world views with recursion through
M, which was informally described in the Introduction.

Definition 8 An epistemic answer set semantics is said to
have the problem of unintended world views due to recursion
through M if its world views do not satisfy the property of
knowledge minimization with epistemic negation.

Evidently, our general epistemic answer set semantics is
free of the problem with recursion through M.

Remark 1 Default negation and epistemic negation are used
to minimize the knowledge at the answer set level and the
world view level, respectively. At the answer set level, for
any ground atom A we assume its default negation ¬A to be
true (or A to be false) in every answer set whenever possible
(knowledge minimization with default negation); analogously
at the world view level, for any epistemic negation notF
occurring in a logic program, where F is a closed formula, we
assume notF to be true (or F to be false) in every world view
whenever possible (knowledge minimization with epistemic
negation). Since epistemic negation is at a meta level, the

minimization with epistemic negation has higher priority and
is done before the minimization with default negation.

Note that if one intends to apply epistemic negation to a
formula F by assuming notF to be true in every world view
whenever possible, one must explicitly express the epistemic
negation notF in a logic program. Thus the four programs
Π1 = { p ∨ q }, Π2 = { p ∨ q, p ← not q }, Π3 = { p ∨ q,
q ← not p }, and Π4 = { p ∨ q, p ← not q, q ← not p }
are entirely different and have different world views: Π1 has
a unique world view {{p}{q}}, Π2 has {{p}}, Π3 has {{q}},
and Π4 has two world views {{p}} and {{q}}.

In contrast, for any ground atom A, its default negation ¬A
is implicitly assumed to be true in every answer set whenever
possible, whether or not ¬A is present in a logic program.
Thus the four programs Π1 = {p∨q}, Π2 = {p∨q, p← ¬q},
Π3 = {p∨q, q ← ¬p}, and Π4 = {p ∨ q, p← ¬q, q ← ¬p}
have the same answer sets {p} and {q} under the standard
answer set semantics of [Gelfond and Lifschitz, 1991].

5 Computational Complexity
The general framework of Definition 6 is applicable to extend
any existing answer set semantics with epistemic negation,
such as those in [Pearce, 2006; Pelov et al., 2007; Truszczyn-
ski, 2010; Bartholomew et al., 2011; Faber et al., 2011;
Ferraris et al., 2011; Shen et al., 2014]. As a simple showcase
we extend the FLP semantics of [Faber et al., 2011] (which
for not -free rules of the form (1) amounts to the standard
answer set semantics) with epistemic negation.

Definition 9 Let Π be a logic program without epistemic
negation and I an interpretation. The FLP-reduct of Π w.r.t.
I is fΠI = {r ∈ ground(Π) | I satisfies body(r)}, and I is
an FLP answer set of Π if I is a minimal model of fΠI .

By replacing X with FLP semantics in Definition 6, we
obtain an epistemic FLP semantics (EFLP semantics).

Example 1 Under EFLP semantics, we can directly formu-
late CWA using closed world rules of the form ¬p ← not p,
which expresses that when failing to prove p to be true, we as-
sert ¬p. Moreover, we can also state its opposite using rules
p← not¬p, which expresses that when we fail to prove ¬p
true, we assert p. We can further combine them, leading us to
the interesting program Π = {¬p← not p, p← not¬p}.
This program has two world views: A1 = {∅}w.r.t. the guess
Φ1 = {not p} and A2 = {{p}} w.r.t. Φ2 = {not¬p}. This
conforms to our intuition that either ¬p or p can be concluded
from Π, depending on whether we choose to apply CWA on
p (rule r1) or on ¬p (rule r2).

Theorem 2 Deciding whether a propositional program Π
has some world view, i.e., EFLP answer set existence, is Σp

3-
complete, and deciding whether a propositional formula F is
true in a propositional program Π under EFLP semantics is
Σp

4-complete.
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