
Studies in Informatics and Control, Vol. 22, No. 2, June 2013 http://www.sic.ici.ro 185

1. Introduction

Many automated processes today require to
solve the problem of planning a set of
movements for an articulated arm with the
objective of reaching a specific goal and
avoiding obstacles without using neither sensors
nor other technologies [15], but knowing its
spatial information. These articulated arms are
formally designated as kinematic chains. A
Kinematic chain is formed by a set of rigid
bodies (links or segments) joined at the ends by
articulations that allow for certain types of
movement, mainly translation, rotation or
revolution. One end of the chain remains fixed
whilst the other end reaches the defined
objective; the latter is called end-effector.

Using a geometrical approach we can easily
compute the position and orientation of a given
segment from the values of the preceding
articulations (direct or forward kinematics). Let
us say that in an articulated chain as the human
arm we can easily compute the situation of a
fingertip given the angles of all the articulations
from the clavicle to the finger. However, the
inversion of this model (inverse kinematics)
becomes difficult due to the non-linearity of the
governing equations. Let suppose that we want
to infer the values of the angles configuration
space that will locate our end-effector in a
given position (situation space).

The problem of controlling a kinematic chain
has been first posed in robotics [17] although it
has also been widely used in computer graphics

[2, 6]. Robotic structures are most of the times
well-known mechanisms with a moderated
number of degrees of freedom so it is relatively
easy to derive an analytical solution.
Nevertheless, more complex kinematic chains
face the additional problem of being under
constraint or redundant -i.e. they contain more
d.o.f. than required for a class of tasks. In this
case, instead of using a closed-form or an
analytical solution we should use a more general
approach for the positioning and manipulation of
kinematic chains like resolved motion rate
control. Resolved motion rate control is an
Inverse Kinematics technique based on the
inversion of the Jacobian matrix. This approach
allows the manipulation of an articulated figure
with a relatively low computational cost and
using intuitive specifications, however it also
has known drawbacks as singularities and local
minima solutions.

The problem becomes even more complex
when obstacles have to be avoided. Several
solutions have been proposed in the literature
using a broad variety of techniques like direct
kinematics [14], neural networks [17], genetic
algorithms [1] or heuristic solutions [8, 16] or
solving optimization problems [13].

We work in rehabilitation environments where
the user is required to reach a goal avoiding
virtual obstacles. The arm of the user is
modeled with a kinematic chain and we want to
automatically compute the optimal path to
perform such a task.

Using Particle Filters to Find
Free Obstacle Trajectories for a Kinematic Chain

Alejandro REYES-AMARO1, Alejandro MESEJO-CHIONG1,
Ramon MAS-SANSÓ2, Antoni JAUME-I-CAPÓ2
1 Facultad de Matemática y Computación, Universidad de la Habana, Cuba,

aamaro@matcom.uh.cu, mesejo@matcom.uh.cu
2 Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Spain,

ramon.mas@uib.es, antoni.jaume@uib.es

Abstract: The problem of finding an appropriate path for a mechanical arm that tries to reach a target among obstacles is
one of the most important in fields of automation and robotics. It is both a classic inverse kinematics and collision
detection problem. This project aimed to construct a tool to plan a path for an articulated arm through a two-dimensional
environment with obstacles. The inverse kinematics problem is addressed by heuristics Bayesian particles filter, and the
collision detection problem is solved using computational geometry methods for calculating the free configurations space.
The proposed tool has a graphical interface with which you can get information from the designed experiments. The
feasibility of this approach and its advantages in complex two-dimensional environments is shown. We proved that good
results can be obtained with an appropriate selection of the parameters.

Keywords: Inverse kinematics, particle filters, configuration-free space, path planning.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 2, June 2013 186

In such a context, singularities a local minima have
to be prevented [4, 5]. We propose to solve inverse
kinematics by means of extending heuristic
solutions based on particle filter techniques
combined with the computation of trajectories
among obstacles. We want to prove its feasibility
in complex two-dimensional situations in a
controlled development environment.

The rest of this paper is organized as follows.
The problem definition is stated in section 2.
The section 3 shows how to use the particle
filters to solve the inverse kinematic problem.
Section 4 describes the stages that a kinematic
chain goes through. The method to calculate
the trajectory of the end-effector is presented in
section 5. In section 6 experimental results are
discussed and the section 7 is reserved to
present the conclusions of the work.

2. Problem Definition

In order to facilitate the understanding of the
issue, some concepts must first be defined.
Figure 1 shows a mechanical arm or
bidimensional kinematic chain, consisting of
three links. It is referred to as ࣬, and is formed
by a base jointݔ଴, considered to be fixed, a set
of intermediate joints ݔଵ, -ଶ and the endݔ
effector ݔ௘. The position of a joint within two-
dimensional Euclidian space is denoted as ݔ௜. It
is therefore true thatሼݔ଴, ,ଵݔ ଶݔ … , ௘ሽݔ א Թଶ.
The jointݔ௘ shall reach region G, the objective.
The links are denoted ݈଴, ݈ଵ and ݈ଶ; since a link
is between two joints, its number is one unit
less than the corresponding joint number. The
link ݈௜ is attached to base jointݔ௜, around which
it is free to rotate.

Figure 1. Workspace.

The region of interest for the mechanical arm is
called environment, and it is denoted as ࣜ. It
shall be considered, without loss of generality,

that ࣜ ൌ ൣܽ௫, ܽ௬൧ ൈ ൣܾ௫, ܾ௬൧ ؿ Թଶ, where
ܽ௫ ൏ 0 and ܾ௫ ൏ 0. Hence ࣜ is a rectangular
region in Թଶ, parallel to the axis of coordinates
and including the origin. The set of obstacles is
called the obstacle system and it is denoted as
S. The obstacle system is defined by a set of
polygonsܵ ൌ ሼ ଵܲ, … , ெܲሽ verifying ௜ܲ ؿ ࣜ. The
free configuration space is therefore the set
ࣜ ך ܵ ൌ ࣜ ך ڂ ௜ܲ

௡
௜ୀଵ .

Using the previous notations we can formally
define the problem:

Problem 1: Given ሼࣜ, ܵ, ,ܩ ࣬଴ሽ, where ࣬଴ ൌ
ሼΘ଴ሽ is an initial configuration, we want to find a
sequence of configurations ܶ ൌ ሼ࣬଴, ࣬ଵ … , ࣬௠ሽ
for the kinematic chain verifying that ࣬௜ܵځ ് ׎
and ࣬௠ ד ௘೘ݔ

ת ܩ ് ߶.

The notation ࣬௜ܵځ ് ߶ denotes that for all
݆ ൌ 0, … , ݊ െ 1 the link ௝݈ from configuration
࣬௜ complies with ௞ܲځ ௝݈ ൌ ݆ for all ׎ ൌ
1, … , .ܯ

2.1 The inverse kinematic problem

The mathematical model for the general inverse
kinematics approach can also include additional
optimization criteria using the components of
the homogeneous solution:

ߠ∆ ൌ ܺ∆ାܬ ൅ ܫሺߙ െ ݖ∆ሻܬାܬ

where

 ∆ߠ is the state difference vector in the joint
variation space, of dimension n.

 ∆ܺdescribes the so-called main task (or
behavior) as a variation of one or more end
effector(s) position and/or orientation in
cartesian space. Its dimension is m.

 ܬis the Jacobian matrix of the linear
transformation representing the first order
approximation of the direct geometric
model for the main task.

 ܬାis the unique pseudo-inverse of J
providing the minimum norm solution
achieving the main task.

 ܫis the ݊ ൈ ݊ identity matrix of the joint
variation space.

 ሺܫ െ ሻis a projection operator on theܬାܬ
null space of the linear transformation ܬ.

 ∆ݖdescribes a secondary task (or
behavior) in the joint variation space. Its
projection on the null space constitutes the
homogeneous solution that is mapped by J

Studies in Informatics and Control, Vol. 22, No. 2, June 2013 http://www.sic.ici.ro 187

into the null vector of the cartesian
variation space, thus not affecting the
realization of the main task.

 ߙ is a constant gain.

The first term of this equation is usually known
as the pseudo-inverse solution and the second
term is called the homogeneous solution.

By definition the secondary task (or behavior)
is partially performed by its projection on the
null space. In this way, the projected
component does not modify the achievement of
the main behavior because it is mapped into the
null vector of the cartesian variation space by
the linear transformation J. The secondary task
usually expresses the minimization of a cost
function and it is important to evaluate the
potential of this optimization to succeed.

3. Particle Filters as a Solution to
the Inverse Kinematics Problem

Particle filters methods constitute an efficient way
to solve the inverse kinematics problem avoiding
the calculation of the inverse of the Jacobean or
its approximation. Particle filters [10] are
methods used to estimate the state of a system at a
given time. This technique is used to heuristically
solve the inverse kinematics problem.

The main advantages of particle filters are that
they don't require numerical inversion and they
allow to easily incorporate any type of
additional restriction, provided an evaluation
function is supplied.

Particle filters can be defined, generally, as a
function applied to a set of particles, with a
defined objective. Hereafter, the definition of
particle in the context of this work is proposed:

Definition 1. A particle associated to a certain
kinematic chain ࣬, consisting of n links, is
described by a set of points
ሼݔଵ, ,ଶݔ … , ௡ሽܿݔ ؿ Թଶ that can be interpreted
as the set of positions of the joints of ࣬; or else
by a vector Θ ൌ ሼ߱଴, ߱ଵ, … , ߱௡ିଵሽ א
ሾ0,2ߨሾ௡that can be interpreted as the set of
angles formed by the links of chain ࣬.

In the present paper work, both representations
are used interchangeably. The first one is used
in order to graphically represent the results, and
the second one is used in the generation process
of configurations, and they are modeled by
quaternions, in order to make the
implementation of the rotations more efficient.

Using an extension of the Euler’s theorem, the
following expression can be obtained:

݁ఏ௡ො ൌ ሺcos ,ߠ sin ߠ ሬ݊Ԧሻ

Being ො݊ a pure unit quaternion ሺ ො݊ଶ ൌ െ1ሻ and
ሬ݊Ԧ an axis. Then, we can deduce that any
quaternion can also be represented in a polar
form as ݍ ൌ ఏ௡ො݁|ݍ| .

In that way we can say that if ݍ ൌ ఏ௡ො݁|ݍ| is a
pure quaternion, then the transformation

௤ܶሺݔԦሻ ൌ ݍ ൈ ଵ produces a rotation of theିݍ
vector ݔԦ around the axis ሬ݊Ԧ with an angle 2θ [11].

A transformation of this type is represented by:

ܴሺߠ, ො݊ሻ ൌ ൬cos
ߠ
2

൅ nො sin
ߠ
2

൰

It is used to describe a rotation with angle θ in
the plane perpendicular to ො݊.

4. Operation of a Particle Filter

It is worth noting that a particle defines a
randomly generated configuration of the
mechanical arm. Its operation is based on
generating a set of particles and interactively
selecting the most adequate for a certain
objective. In this case it is necessary to know
which particle, or set of particles, approach the
objective in a feasible way, so as to solve the
problem of the inverse kinematics.

During the process of filtering [8], the system
of particles undergoes five different stages:

1. Initialization: the particles are generated
regardless of any prior information about
the system. The weights of each particle,
which measure their proximity with the
final goal, are assigned with the same
value, because at the beginning, all
particles are equally relevant. Let N be the
number of particles to generate and let

denote by ࣬଴
ሺ௜ሻ, ݅ ൌ 1 … ܰ, the ݅௧௛ particle

of the initial generation and ߱଴
ሺ௜ሻ the weight

of ࣬଴
ሺ௜ሻ. The particles ࣬଴

ሺ௜ሻ are generated
only with the information provided by the
initial position of the kinematic chain. This

means that the poses ࣬଴
ሺ௜ሻ are “similar” to

the initial given ࣬଴.

2. Exploration: At each iteration k of a

particle filter, each particle ࣬௞ିଵ
ሺ௜ሻ is updated

in response to some criterion and generates

the ࣬௞
ሺ௜ሻ. For that we need to know certain

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 2, June 2013 188

properties of particles already generated:

the particle ࣬௞
ሺ௜ሻ is generated taking into

account theproximity to the target and the

feasibility of the particle ࣬௞ିଵ
ሺ௜ሻ .

3. Weight calculation: The weights are
updated for the new generated particles.
The first factor to be considered is the

proximity of the end-effector pose ࣬௞
ሺ௜ሻ to

the target. Another key that should be
respected is the inclusion of the particle in
the free configuration space. This criteria
will be discussed in detail later.

4. Position estimation: The lighter particles
and the not-fully ones included in the free
configuration space are removed and
replaced cloning the others.

5. Mutation/Selection: The objective of this
phase is to remove weakly standardized
weights and to increase the number of
particles associated with high weights. This
can only be done when the number of the
significant particles is small, so this step is
not always necessary in the iterative process.

This process is repeated until at least one of the
generated particles in the set, makes contact
with the final goal; and it guarantees that, once
satisfactorily finished, the end-effector will be
in contact with the objective, hence solving the
inverse kinematics problem.

4.1 Generation of feasible particles

As explained previously, the weight of a particle
depends on how close the end-effector is in
relation to the pose the particles generate with
the objective. There is, however, a physical
restriction to avoid contact of the pose with the
obstacles presents in the work environment.

A feasible particle is defined as any particle
that generates a pose of the chain that does not
collide with the system of obstacles. During the
evolution of the particle filter and, specifically,
during the weight calculation phase, it becomes
necessary to verify if a particle is feasible or
not. To do this, a Minkowskisum [9] is applied,
as it is a simple technique to calculate the
intersection of the chain with the obstacles.

4.1.1 Minkowski sum

A Minkowskisum [9] is a set operation used to
calculate the region of the plane in which two
polygons meet with a non-empty intersection.

Given that the objective is to decide if a certain
configuration for the mechanical arm is valid or
not, that is, if it overlaps with any of the
obstacles, the Minkowskisum can be used. To
this end, once the non-empty obstacle
intersection area is calculated, it is asked
whether any part of the mechanical arm is
within that area.

To do this, the arm is divided according to its
links and the non-empty intersection space for
each one is calculated. The free configuration
space will be the complement of the union of
the resulting spaces.

To apply the Minkowskisum to the link, we
assign a representing point and we compute the
region where that point is not included in any
obstacle. This way, the problem of calculating a
segment-obstacle collision is reduced to a
problem of point-polygon inclusion.

In the weight calculation phase we compute

݂ܽܿቀݔ௞
ሺ௜ሻቁ so that:

݂ܽܿ ቀݔ௞
ሺ௜ሻቁ ൌ ൜0 ௜ܲ ׌ ݂݅ א ௞ݔ :ܵ

ሺ௜ሻ ת ௜ܲ ് ׎
1 ݁ݏ݅ݓݎ݄݁ݐ݋

And then ݓ௞
ሺ௜ሻ ൌ ݂ܽܿቀݔ௞

ሺ௜ሻቁݓ௞
ሺ௜ሻ

. During the

mutation/selection phase, the generation
algorithm discards any zero weighted particles,
and generates a replacing one that will be
subsequently verified.

5. Trajectory Calculation for the
End-effector

It is convenient to previously construct a valid
trajectory for the end-effector to follow, one
that guarantees an obstacle free path. At the
same time, it is necessary to verify that all the
links in the chain are located in the free
configuration space.

5.1 Trapezoidal map of a system of obstacles

We have previously presented an algorithm that
guarantees that the end-effector of the
mechanical arm reaches its objective, by
defining partial objectives and attaining them in
a successive manner.

The free configuration space, denoted as
,௙௥௘௘ሺܴܥ ܵሻ, is defined as

,௙௥௘௘ሺܴܥ ܵሻ ൌ ܤ െ ራ ௜ܵ

௧

௜ୀଵ

Studies in Informatics and Control, Vol. 22, No. 2, June 2013 http://www.sic.ici.ro 189

If we continuously check that the kinematic
chain is within this area, then it is guaranteed
that there will be no collision with the system of
obstacles. We need an algorithm to calculate this
space. We use a set of trapezoids that determine
the space free of collision in the system and
allow the construction of a trajectory map
amongst the obstacles. This set, consisting of the
union of the trapezoids, is called the trapezoidal
map of the system of obstacles.

5.2 Trajectory calculation for the
end-effector

As an initial approximation, the end-effector is
placed on the first trapezoid of the free
configuration that area of the map. This is the
starting node for the graph of plausible paths of
the end-effector.

If the point objective is within the initial
trapezoid, the path required is trivial: a straight
line that joins the end-effector with the
objective. When this is not the case, a graph
node must be created in the centre of each
trapezoid; then a graph node must also be
created in the centre of each vertical line of the
trapezoid. Thereafter, an arch between two
nodes is created, when one of the nodes is in
the centre of the trapezoid and the other on the
frontier line. Finally, an arch is created from
the centre point of the trapezoid, containing the
point objective, to the point objective itself.

The end-effector has now a path to follow,
which guarantees that it will not collide with
any obstacle. However, it cannot be assured
that the mechanical arm as a whole will not do
so. Each movement must therefore verify if the
chain is within a free configuration area.

5.3 Optimal trajectory calculation for
the end-effector

The path generated by the trajectory construction
algorithm may lead the intermediate nodes to
positions that are unreachable by the end-effector
as the arm would collide with an obstacle or the
intermediate objective would be positioned too far.

To alleviate this effect, the calculation of an
optimal trajectory is proposed. This trajectory
shall follow the end-effector in its path to the
objective. For the optimal trajectory, each
intermediate node must be located above the
vertical extension of each trapezoid on the
trapezoidal map, or on the same x coordinate of
that chosen to situate it when the node is within a

trapezoid. The aim is to find an adequate
translation on the y axis for each intermediate
node. This way, it is assured that the end-effector
will not collide with any obstacle in the system.

The following optimization problem arises:

݉݅݊: ට൫∆ݕ଴,ଵ൯
ଶ

൅ ൫∆ݔ଴,ଵ൯
ଶ

൅ ට൫∆ݕଵ,ଶ൯
ଶ

൅ ൫∆ݔଵ,ଶ൯
ଶ

൅ ڮ ൅ ට൫∆ݕ௡ିଵ,௡൯
ଶ

൅ ൫∆ݔ௡ିଵ,௡൯
ଶ

.ݏ .ݐ : ௜೘೔೙ݕ
൏ ௜ݕ ൏ ௜೘ೌೣݕ

 (1)

:݁ݎ݄݁ݓ Δ୷౟,౟శభ
ൌ y୧ െ y୧ାଵ

Δ୶౟,౟శభ
ൌ x୧ െ x୧ାଵ

This problem is solved for each generated path,
this depending solely on the amount of
obstacles in the system. Efficient tools already
generated and tested with good results are used
[3, 7, 12].

5.3 Partitioning the path

Once the paths are calculated for the end-
effector, either optimal or alternative paths, it is
necessary to partition them as finely as
possible. This way the particle generation
algorithm is able to work efficiently.

Once a trajectory map is obtained we create a
series of nodes, separated by a set distance and
controlled from the application, between each
pair of nodes.

6. General Outline of the Solution

In this section we propose a general outline of
the algorithm, but first we should define some
used functions and operators.

In the section 2 was defined the quatrain
ሼࣜ, ܵ, ,ܩ ࣬଴ሽ. It is the input of the algorithm.
The following functions are defined as:

 ሺܵሻ: Returns the trapezoidal map of the݌ܽݎܶ
obstacle’s systemS.

 ሺܶሻ: Returns a graph that represents the set݆ܽݎܶ
of possible trajectories to be followed by the
end-effector of the kinematic chain, starting by
a given trapezoidal map.

,ݐሺݐ݌ܱ ܶሻ: Calculates the minimum length
trajectory starting in t and taking into account
the Ttrapezoidal map, using (1).

ܽ݀݀ሺܦ, Θ, tሻ: Adds to a D dictionary the ߆ pose
as one of poses that should be adoptedin the
path through the t trajectory. In our project,

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 2, June 2013 190

besides to do this, we represent the
configuration graphically.

݁݁ሺΘሻ: Returns the end-effector of the Θ
configuration.

,ሺt݇ݎܽ݉ trueሻ: Labels the t trajectory as the
one possible to be followed.

,߆ሺܭܫ ,݀݋݊ ܵሻ: It is the most important function
in this algorithm. It is in charge to obtain the
configuration, starting from the initial ߆, in
which one the end-effector gets in touch with
the intermediate node nod, and it cannot be in
touch with any obstacle in the S system.

7. Results

We have designed an application to plan the
movement of a kinematic chain towards a
target in a 2D environment with obstacles. It
includes a tool that shows, before running the
program for a certain configuration (position
and characteristics of the kinematic chain, the
obstacles and the target), information
concerning the pre-processing: the graph of the
initial path which is calculated from the
trapezoidal map of the system of obstacles, the
graph of the computed optimal path followed
by the end-effector on its way to the target and
the trapezoidal map of the system of obstacles.

The obtained optimal path does not ensure that
the arm can adopt a configuration in which the
end-effector gets in contact with each
intermediate target. Our algorithm follows
three steps:

 First, we use the particle filter to reach
intermediate target K

 In case the final effector is located close
enough to the target (regulated by an
epsilon parameter) or a maximum of
iterations is performed, then this stage is

over and a new one is started for the next
intermediate target K+1

 In a final step, where the final target must
be reached, the application forces the filter
to apply a maximum of 50 iterations and
tries to approach the target to a distance
closer than a given epsilon.

(a) Example 1 - Reachable

(b) Example 2 - Reachable

(c) Example 3 - Unreachable

Figure 2. Poses sequence of a kinematic chain
trying to reach a goal among obstacles.

The experiments we have performed proof that
is feasible to solve the problem of finding a
path for a kinematic chain in a 2D environment
with obstacles using particle filters (see Figure
2). We have prepared seven test examples, four
of them with unreachable goals, and three with
the goals in the scope of the arm. We thought it
might be interesting, as they can show the
behaviour of an arm trying to reach a goal and
not achieving it because of its physical

The algorithm:

Input:ሼࣜ, ܵ, ,ܩ ࣬଴ሽ
Output:
Dictionary<Trajectory,List<Configuration>> D
Set of configurations for each trajectory
through the final goal.
1‐ Ts = Trap(S);
2‐ TM = Traj(Ts);
3‐ foreach Trajectory t in TMdo
4‐ topt = Opt(t,Ts);
5‐ � = ࣬଴;
6‐ add(D,�,t);
7‐ foreach Node nod in toptdo
8‐ � = IK(�,nod,S);
9‐ mark(t,|݁݁ሺߠሻ െ |݀݋݊ ൏ ;(ߝ

Studies in Informatics and Control, Vol. 22, No. 2, June 2013 http://www.sic.ici.ro 191

limitations. They evidence in a practical way
that the proposed algorithm ensures that the
arm does not collide with any obstacle, even if
some of them prevent it from reaching its
target, as is the case of Figure 2(c).

For each of the experiments we performed
more than 30 runs of the software combining
several characteristics:

 Between 5 and 30 particles for the filter

 Approach tolerance to intermediate targets
between 10-1 and 10-6

 Between 5 and 50 iterations for each
filtering stage.

 Sigma parameter (ߪ) used for the
generation of particles generated according
to a normal probability distribution,
between 0.01 and 0.035.

Figures 3(a), 3(b), 3(c) and 3(d) show the
results of the runs performed using the
configuration presented on Figure 2(a). This
example was chosen because it was designed so
that its end-effector could reach each
intermediate target. The Figure 3(a) shows, that
the higher the amount of iteration of the
particles in the filter, the bigger the execution
time; while the end-effector's proximity
remains almost invariant. For that reason the
following experiments were performed using as
a maximum five iterations. We obtained both
good results and low execution times.

Figure 3(b) shows that the number of particles
used in the filter also played an important role in
the runtime. Although the proximity of the end-
effector to the calculated optimum trajectory
remained invariant we used 25 particles in the
filter to keep the probability of generating the
particles in a collision space low.

In the performed experiments with the end-
effector tolerance to follow the calculated
optimum trajectory (Figure 3(c)), an expected
behaviour could be observed: run time did not
vary. This occurred because the Euclidian
distance between the end-effectors of each
generated particle is in the range of 1px to
10px. For that reason, demanding the end-
effector to get closer to the trajectory would
imply to force the filter to perform too many
iterations. If the mechanical arm follows the
calculated trajectory in an acceptable way, then
it is not necessary to constrain that parameter.

(a) Quantify of particles used in the filter

(b) Quantify of particles used in the filter

(c) Tolerance to follow the calculated optimum

trajectory

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 22, No. 2, June 2013 192

(d) Gaussian mean (ߪ)

Figure 3. The graphs show how intervenes each
parameter in the runtime.

Figure 3(d) shows the performed experiments
with the sigma parameter (Gaussian
distribution variance). Sigma controls the
similarity of the generated particles. The results
prove that the chosen sigma parameter makes
the execution time invariant if, and only if, it
remains within the range indicated in the
graphic. Performed runs with parameters far
from this range, showed non-expected results.

8. Conclusions

The results show that the particle filter
technique is effective for solving the inverse
kinematics problem. It can be also be noted that
the method applied to track a valid trajectory
for the end-effector, guarantees that the
mechanical arm will not collide with any
obstacles and that the end-effector reaches its
goal when possible.

The performed experiments proved that it is
possible to obtain good results with an
appropriate selection of the parameters, and to
improve the runtime. It was demonstrated that
the choice of the parameters quantify of particles
and sigma found in the literature, is the most
stable in order to obtain coherent results. The
others parameters were adjusted taking into
account the runtime, because it was
demonstrated that if they are selected from the
inside of the proposed intervals, the mechanical
arm will follow the optimal calculated trajectory.

There still remain some questions to be
addressed. Our goal is to apply this method in a

three dimensional space to reconstruct human
movement using inverse kinematics and
computer vision.

Acknowledgements

This work is partially supported by the projects
MAEC-AECID A/030033/10 and MAEC-AECID
A2/037538/11 of the Spanish Government.

REFERENCES

1. ABO-HAMMOUR Z. S., A. G.
ASASFEH, A. M. AL-SMADI, O. M. K.
ALSMADI, A Novel Continuous Genetic
Algorithm for the Solution of Optimal
Control Problems. Optim Control Applied
Methods, vol. 32, 2011, pp. 414-432.

2. BAERLOCHER, P., An Inverse
Kinematic Architecture Enforcing an
Arbitrary Number of Strict Priority
Levels. Visual Computation, vol. 20(6),
2004, pp. 402-417.

3. BIRD, R. H., P. LU, J. NOCEDAL, C.
ZHU, A Limited Memory Algorithm for
Bound Constrained Optimization.
Technical Report NAM-08 1994.

4. BUSS, S. R.: Introduction to Inverse
Kinematics with Jacobian Transpose,
Pseudoinverse and Damped Least
Squares methods. Department of
Mathematics, University of California San
Diego USA, 2004.

5. BUSS, S. R., J. S. KIM, Selectively Damped
Least Squares for Inverse Kinematics.
Department of Mathematics Department of
Computer Science, University of California
San Diego, USA, 2004.

6. CARY, P. B., J. ZHAO, N. I. BADLER,
Interactive Real-time Articulated Figure
Manipulation using Multiple Kinematic
Constraints. SIGGRAPH Comput Graph,
vol. 24(2), 1990, pp. 245-250.

7. CORDERO, Y., OCSolv: un sistema con
estrategia adaptativa para Problemas de
Control Optimal. Facultad de Matemática
y Computación, Universidad de La Habana
La Habana, Cuba, 2010.

8. COURTY, N., E. ARNAUD, Sequential
Monte Carlo Inverse Kinematics. INRIA
Rapport de recherche 2007, p. 6426.

Studies in Informatics and Control, Vol. 22, No. 2, June 2013 http://www.sic.ici.ro 193

9. DE-BERS, M., M. VAN-KREVEL, M.
OVERMARS, O. SCHUARZKOPF,
Computational Geometry Algorithms
and Application, 2nd edition; 2000.

10. DOUCET, A., A. M. JOHANSEN,
Tutorial on Particle Filtering and
Smoothing: Fifteen Years Later. Institute
of statistical mathematics, Tokyo, Japan
Department of Statistic, University of
Warwick, UK, 2008.

11. JOHNSON, M. P., Exploiting
Quaternions to Support Expressive
Isteractive Character Motion.
Massachusetts Institute of Technology
USA PhD Thesis, 2003.

12. LIU, D. C., J. NOCEDAL, On the Limited
Memory BFGS Method for Large Scale
Optimization. Mathematical
Programming, vol. 45, 1989, pp. 503-528.

13. PORTILLO-VELEZ, R. D. J., C. A.
CRUZ-VILLAR, A. RODRIGUEZ-
ANGELES, On-line Master/Slave Robot
System Synchronization with Obstacle
Avoidance. Studies in Informatics and
Control, ISSN 1220-1766, vol. 21(1), 2012,
pp. 17-26.

14. SCIAVICCO, L., B. SICILIANO, A
Solution Algorithm to the Inverse
Kinematic Problem for Redundant
Manipulators. Robotics and Automation,
vol. 4(4), 1988, pp. 403-410.

15. SUSNEA, I., VASILIU, G., On Using
Passive RFID Tags to Control Robots for
Path Following. Studies in Informatics and
Control, ISSN 1220-1766, vol. 20(2), 2011,
pp. 157-162.

16. SUSNEA, I., G. VASILIU, A.
FILIPESCU, A. RADASCHIN, Virtual
Pheromones for Real-Time Control of
Autonomous Mobile Robots. Studies in
Informatics and Control, ISSN 1220-1766,
vol. 18(3), 2009, pp. 233-240.

17. ZHANG, Y., J. WANG, Obstacle
Avoidance for Kinematically
Redundant Manipulators using a Dual
Neural Network. Systems, Man, and
Cybernetics, Part B: Cybernetics, 34(1),
2004, pp. 752- 759.

