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REMARKS ON SMALL SETS ON THE REAL LINE

Ma�lgorzata Filipczak — Elżbieta Wagner-Bojakowska

ABSTRACT. We consider two kinds of small subsets of the real line: the sets of
strong measure zero and the microscopic sets. There are investigated the proper-
ties of these sets. The example of a microscopic set, which is not a set of strong
measure zero, is given.

The notion of strong measure zero set was introduced by E. B o r e l [Bo].
Properties of these sets were investigated by W. S i e r p i ń s k i , A. S. B e s i c o -
v i t c h, F. G a l v i n, J. M y c i e l s k i , R. M. S o l o v a y, and others.

���������� 1� A set E ⊂ R is a strong measure zero set if for each sequence
{εn}n∈N of positive real numbers there exists a sequence of intervals {In}n∈N

such that E ⊂ ⋃∞
n=1 In and m (In) < εn for n ∈ N.

Sometimes, in the definition of strong measure zero set, instead of E ⊂⋃∞
n=1 In, one demands that E ⊂ lim supn In, where

lim sup
n

In =

∞⋂
p=1

∞⋃
n=p

In.

The following theorem shows that both conditions are equivalent.

	
����� 1� The following conditions are equivalent:

(i) E is a strong measure zero set;

(ii) for each sequence {ηn}n∈N of positive real numbers there exists a sequence
{Jn}n∈N of intervals such that E ⊂ lim supn Jn and

∑∞
k=nm (Jk) < ηn for

n ∈ N;

(iii) for each sequence {δn}n∈N of positive real numbers there exists a sequence
{In}n∈N of intervals such that E ⊂ lim supn In and m (In) < δn for n ∈ N.

P r o o f. (i) =⇒ (ii). Let E be a strong measure zero set and let {ηn}n∈N be
an arbitrary sequence of positive real numbers. Put

θm = min{η1, . . . , ηm} for m ∈ N.
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Obviously, the sequence {θm}m∈N is nonincreasing and θm ≤ ηm for m ∈ N.

Let [akn]k∈N,n∈N be an arbitrary infinite matrix of positive real numbers such
that ∞∑

k=1

∞∑
n=1

akn ≤ 1 (1)

(for example, akn = 1
2k+n for k, n ∈ N). Let us consider a function ψ : N×N → N

defined as follows:

ψ (k, n) = 2k−1 (2n− 1) for (k, n) ∈ N× N.

It is not difficult to prove that ψ is a bijection. Put

ε(k)n = aknθψ(k,n) for k, n ∈ N. (2)

Let k be a fixed positive integer. From (i) it follows that for the sequence{
ε
(k)
n

}
n∈N

there exists a sequence
{
I
(k)
n

}
n∈N

of intervals such that

E ⊂
∞⋃
n=1

I(k)n and m
(
I(k)n

)
< ε(k)n (3)

for n ∈ N. Let m ∈ N. Since ψ is a one-to-one correspondence between N × N

and N, there exists exactly one pair (k, n) ∈ N×N such that ψ (k, n) = m. Then
put

Jm = I(k)n .

Obviously, E ⊂ lim sup
m

Jm, since each point of E belongs to infinitely many of

intervals I
(k)
n , n, k ∈ N.

Let p ∈ N. Put Ap =
{
(k, n) ∈ N× N : ψ (k, n) ≥ p

}
. Using (3), (2), and (1)

we obtain
∞∑
m=p

m (Jm) =
∑

(k,n)∈Ap

m
(
I(k)n

)
<

∑
(k,n)∈Ap

ε(k)n

=
∑

(k,n)∈Ap

aknθψ(k,n)

=

∞∑
m=p

aψ−1(m)θm ≤ θp

∞∑
m=p

aψ−1(m) ≤ θp ≤ ηp.

The other implications are obvious. �

The notion of microscopic set was introduced by J. A p p e l l in [A1]. The
properties of these sets were investigated by J. A p p e l l, E. D’ A n i e l l o , and
M. V ä t h in [AAV] and [A2].
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���������� 2� A set E ⊂ R is microscopic if for each ε > 0 there exists
a sequence of intervals {In}n∈N such that

E ⊂
∞⋃
n=1

In and m (In) < εn for n ∈ N.

	
����� 2� The following conditions are equivalent:

(i) E is a microscopic set;

(ii) for each positive number η there exists a sequence {Jn}n∈N of intervals
such that

E ⊂ lim sup
n

Jn and

∞∑
k=n

m (Jk) < ηn for n ∈ N;

(iii) for each positive number δ there exists a sequence {In}n∈N of intervals such
that

E ⊂ lim sup
n

In and m (In) < δn for n ∈ N.

P r o o f. (i) =⇒ (ii). Suppose that E is a microscopic set and η ∈ (0, 1). Let
ψ : N× N → N be the function considered in the proof of Theorem 1. Put

θ =
η

1 + η
(4)

and

εk = θ2
k

for k ∈ N.

Let k be a fixed positive integer. From (i) it follows that there exists a se-

quence
{
I
(k)
n

}
n∈N

of intervals such that

E ⊂
∞⋃
n=1

I(k)n and m
(
I(k)n

)
< (εk)

n
. (5)

Let m ∈ N. There exists a unique pair (k, n) ∈ N×N such that ψ (k, n) = m.
Put

Jm = I(k)n .

Then E ⊂ lim supm Jm. Let p ∈ N and Ap = {(k, n) ∈ N × N : ψ (k, n) ≥ p}.
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Using (5) and (4) we obtain

∞∑
m=p

m (Jm) =
∑

(k,n)∈Ap

m
(
I(k)n

)
<

∑
(k,n)∈Ap

(εk)
n

=
∑

(k,n)∈Ap

θ2
kn

=
∑

(k,n)∈Ap

θ2
k−1·2n <

∑
(k,n)∈Ap

θ2
k−1(2n−1)

=
∑

(k,n)∈Ap

θψ(k,n)

=

∞∑
m=p

θm

=
θp

1− θ
≤
(

θ

1− θ

)p
= ηp,

since 0 < 1− θ < 1, so (1− θ)
p ≤ 1− θ.

The other implications are obvious. �

Denote by P ,S ,M,N the family of countable sets, strong measure zero sets,
microscopic sets, and Lebesgue measure zero sets, respectively. It is easy to see
(compare [BJ] and [AAV]) that both families S and M are the σ-ideals situated
between countable sets and sets of Lebesgue measure zero. Obviously, each strong
measure zero set is microscopic, so

P ⊂ S ⊂ M ⊂ N .

We have M �= N , because the classical Cantor set has Lebesgue measure zero
but is not microscopic (see [AAV]). If we assume CH, then P �= S , since every
Luzin set is a strong measure zero set which is uncountable (see [BJ]). Recall that
a Luzin set is an uncountable subset of a real line having countable intersection
with every set of the first category. The construction of such a set using the
continuum hypothesis was given first by L u z i n (1914) and M a h l o (1913),
independently. It is easy to see that each Luzin set is a strong measure zero set.
Indeed, suppose that A is a Luzin set. Let {rn}n∈N be a sequence of all rational
numbers and let {εn}n∈N be an arbitrary sequence of positive real numbers.
Then the set

∞⋃
n=1

(
rn − ε2n

3
, rn +

ε2n
3

)
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is open and dense, so its complement is a set of the first category. Consequently,
the set

B = A \
∞⋃
n=1

(
rn − ε2n

3
, rn +

ε2n
3

)

is countable. Let {xn}n∈N be a sequence of all elements of B. Then

A ⊂
∞⋃
n=1

(
rn − ε2n

3
, rn +

ε2n
3

)
∪

∞⋃
n=1

(
xn − ε2n−1

3
, xn +

ε2n−1

3

)
,

so A is a strong measure zero set.

Now we will construct an example of some set A ∈ M \ S .
Example 1. Let {rk}k∈N be a following sequence of all rational numbers from
the interval (0, 1):

1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
, . . .

Let Ik be a closed interval centered at a point rk with a length equal to

1

(k + 1)2
k−1 for k ∈ N.

Put

An = In2−n+2
2

∪ · · · ∪ In2+n
2

for n ∈ N

and

A = lim sup
n

An.

Then

A =

∞⋂
p=1

∞⋃
n=p

An =

∞⋂
p=1

∞⋃
n=p

In.

First we will prove that A is a microscopic set. Let ε be an arbitrary positive
number. There exists k0 ∈ N such that

1

(k0 + 1)
2k0−1 < ε.

Obviously,

A ⊂
∞⋃

n=k0

In =

∞⋃
n=1

Ik0+n−1.

We will show that

m (Ik0+n−1) < εn for n ∈ N.
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We have

2k0+n−2 = 2k0−1 · 2n−1

≥ 2k0−1 · n for n ∈ N,

so

m (Ik0+n−1) =
1

(k0 + n)
2k0+n−2 ≤

(
1

(k0 + 1)
2k0−1

)n
< εn for n ∈ N.

Consequently, A is a microscopic set.

Now we will prove that A is not a strong measure zero set. We will construct
a sequence {εn}n∈N of positive numbers such that for each sequence {Jn}n∈N of
intervals with m (Jn) < εn for n ∈ N, we have

A \
∞⋃
n=1

Jn �= ∅.

Put

δn = min{m (Ii) : Ii ⊂ An}
and

A∗
n =

{
1

n+ 1
,

2

n+ 1
, . . . ,

n

n+ 1

}
for n ∈ N.

Obviously,

n2 + n ≥ 2n for n ∈ N,

so

δn = m
(
In2+n

2

)
=

1(
n2+n+2

2

)2n2+n−2
2

≤ 1

n+ 1

and the set A∗
n is the ε-net of the interval [0, 1] for ε = 1/ (n+ 1).

We will define by induction two sequences {εn}n∈N and {in}n∈N in a following
way. Put ε1 = 1

2δ3. There exists a positive integer i1 > 1 such that

1

i1 + 1
<

1

7
ε1.

Put ε2 = δi1 . Now suppose that the positive real numbers ε1, . . . , εn and positive
integers i1, . . . , in−1 are chosen. There exists in > in−1 such that

1

in + 1
<

1

7
εn.

Let us put εn+1 = δin .
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Now, let {Jn}n∈N be an arbitrary sequence of intervals such that m (Jn) < εn
for n ∈ N. We will find the descending subsequence {Ikn}n∈N of the sequence
{Ik}k∈N such that for each n ∈ N⎛

⎝ n⋃
j=1

Jj

⎞
⎠ ∩ Ikn = ∅.

We have

m (J1) < ε1 =
1

2
δ3 ≤ 1

2
· 1
4
=

1

8
.

Simultaneously, A3 = I4 ∪ I5 ∪ I6 and the distance between I4 and I6 is greater
than 1

4 because m (I6) < m (I4) <
1
8 . So, there exists the component interval of

the set A3 which is disjoint with J1. Denote it by Ik1 (if there is more than one
such component interval, we take the longest one).

Let us consider the interval Ik1 and the set A∗
i1
. Since m (Ik1) ≥ δ3, in the

interval Ik1 we can find at least six points of the set A∗
i1
. We have

m (J2) < ε2 = δi1 ≤ 1

i1 + 1
,

so, card
(
J2 ∩A∗

i1

) ≤ 1 and J2 has non-empty intersection with at most three
component intervals of Ai1 . Consequently, there exists a component interval Ik2
of the set Ai1 such that

Ik2 ⊂ Ik1 and Ik2 ∩ J2 = ∅.
Suppose that the intervals Ik1 , Ik2 , . . . , Ikn such that

Ik1 ⊃ Ik2 ⊃ · · · ⊃ Ikn ,

Ikp is a component interval of the set Aip−1
for p = 1, . . . , n and⎛

⎝ n⋃
j=1

Jj

⎞
⎠ ∩ Ikn = ∅

are chosen. Let us consider the interval Ikn ⊂ Ain−1
and the set A∗

in
. We have

m (Jn+1) < εn+1 = δin ≤ 1

in + 1

so card
(
Jn+1 ∩A∗

in

) ≤ 1. Hence, there exists a component interval Ikn+1
of the

set Ain such that

Ikn+1
⊂ Ikn and Ikn+1

∩ Jn+1 = ∅.
Consequently, ⎛

⎝ n+1⋃
j=1

Jj

⎞
⎠ ∩ Ikn+1

= ∅.
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Let x0 ∈ ⋂∞
n=1 Ikn . Then x0 ∈ lim supn In = A. On the other hand, x0 ∈ Ikn , so

x0 /∈
⋃n
j=1 Jj for each n ∈ N. Consequently, x0 /∈

⋃∞
j=1 Jj , i.e., x0 ∈ A\⋃∞

n=1 Jn.

In the previous example we have shown straightly from the definition that A
is not a strong measure zero set. Remark that it is sufficient to observe that A
is a perfect set because no perfect set has strong measure zero (compare [BJ]).
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POLAND

E-mail : malfil@math.uni.lodz.pl
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