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Abstract: We show that a non-local form of the Gross-Pitaevskii equation describes not only long-wave excitations,
but also the short-wave ones in Bose-condensate systems. At certain parameter values, the excitation
spectrum mimics the Landau spectrum of quasi-particle excitations in superfluid helium with roton mini-
mum. The excitation wavelength, at which the roton minimum exists, is close to the inter-particle interaction
range. We determine how the roton gap and the effective roton mass depend on the interaction potential
parameters, and show that the existence domain of the spectrum with a roton minimum is reduced if one
accounts for an inter-particle attraction.
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1. Introduction

The accumulation of a macroscopic number of particlesin the ground state at low temperature was predicted byEinstein in his papers on the properties of the ideal quan-tum gas [1] on the grounds of the approach developed byBose [2]. The Bose-Einstein condensation (BEC) effectwas used by London [3] and Tisza [4] to describe the su-perfluidity of liquid helium, discovered by Kapitsa [5] andAllen [6]. Later on, Landau developed a theory of super-fluidity [7, 8] which did not depend on BEC. Nevertheless,the relation between superfluidity and BEC is not under-stood yet. The existence of BEC in the superfluid phase
∗E-mail: ivashin@kipt.kharkov.ua (Corresponding author)
†E-mail: yuripoluektov@kipt.kharkov.ua

of helium was proved by inelastic neutron scattering ex-periments [9]. There is also a theoretical consideration ofthe Bose particle condensation due to the experimentaldiscovery of BEC in the atomic gases [10–12] at the endof the last century. The current state of the problem isreviewed in [13, 14].
Landau’s theory of liquid helium superfluidity is based onthe form of the quasiparticle excitation spectrum, whichwas postulated in his approach [7, 8]. Landau assumedthat at small momenta the spectrum is sound-like and theenergy of such a phonon excitation is linear in momen-tum. At higher momenta, of order p0 ≈ ~

a0 , where a0is an interatomic scale, Landau found that the spectrumhas a minimum and the excitations with momenta closeto p0 are called rotons. The shape of the energy spec-trum of the elementary excitations in a multiparticle Bosesystem was first obtained in a microscopic consideration
857
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by Bogolyubov [15] using a weakly non-ideal gas model.Later on, the spectral structures of systems of interactingparticles were studied by e.g. [16–21]. Bogolyubov [15]and other authors have shown that, due to the presenceof the condensate, the excitation spectrum of a system ofinteracting Bose particles with small momenta is analo-gous to the spectrum postulated by Landau. Paper [15],and many others on Bose system theory, assumes that theparticle interaction is point-like and can be described bymeans of a single interaction constant. In order to pre-serve the stability of the system, this constant is madepositive, so that the interaction is repulsive. In this modelthe elementary excitation energy monotonically increaseswith momentum and the roton minimum is absent. Theactual interaction between particles is, however, compli-cated and cannot be described with only one parameter.Usually (e.g. in helium) the long-distance interaction isthe Van der Waals attraction and at short distances oneobserves a very strong repulsion leading to momentumdependence of the matrix element of the potential and,consequently, the shape of the quasiparticle spectrum be-comes much more complicated than that for point-like in-teraction. One can choose such a momentum dependenceof the matrix element that the Landau spectrum with theroton minimum is reproduced qualitatively [22].An alternative description of the weakly interacting,low-temperature bosons is given by the equation obtainedby Gross and Pitaevskii [23–25]. This equation describesthe particle dynamics in BEC. In particular, it gives aframework for studying the condensate oscillations andobtaining the elementary excitation spectra. Knowledgeof the latter is necessary in order to obtain the thermody-namic functions of the system.It is often assumed that the condensate wave functionΦ (r, t) varies slowly over the distances of order r0, whichis the range of the inter-atomic interaction potential U (r).This condition allows to express the Gross-Pitaevskii (GP)equation as a non-linear differential equation.Unfortunately, in such a case, the imposed assumptionrestricts consideration to the long-wave excitations inBEC. Under these circumstances, it is possible to de-rive the Bogolyubov sound (long-wave) spectrum of theexcitations, in which the energy increases monotonicallywith momentum [25]. Meanwhile, a superfluid system canalso have some well-defined long-lived short-wave exci-tations with de Broglie wavelengths on the order of theinter-particle distance (or interaction potential range) [26].It was pointed out that in the superfluid helium the rotonsare the excitations of this type. Taking into account thenon-local effects in the GP equation, one can qualitativelydescribe also the maxon-roton part of the dispersion curveobserved for superfluid helium.The GP equation with non-local interactions has been

used before, e.g. in papers [27–34]. In Ref. [27] thenon-local GP equation was applied to study the stabil-ity of the interacting Bose-Einstein condensate particles;in Ref. [28] it was used to study the vortex excitations inthese systems. The effects of small non-locality in theGP equation and the analysis of the nanoscale structureformation using this approach was carried in Refs. [29, 30].The roton-maxon spectrum in the atomic systems withBEC and possessing the long distance interactions due todipole-dipole forces was considered in [31, 33]. In [32] thequasi-local GP equation was applied for studies of BEC ingases with pairwise attractive interactions. It was provedthat the collapse is absent in this model. The modulationalinstability of the background in case of a one-dimentionalnon-local GP equation was studied in [34]. It was foundthat a modulationally stable background may exist anddark-soliton solutions can be found. The stability wasverified through computation of the full spectrum of theeigenvalues for small perturbations. This result is impor-tant in context of our research.In this paper we show that the non-local form of theGP equation can describe the short-wave excitations ina Bose-system with condensate, as well as the long-waveexcitations, even when the dipole-dipole forces are ab-sent, provided that we release the constraint on the spa-tial change scale of the macroscopic wave function. Atcertain values of the interaction potential parameters, theexcitation spectrum mimics the Landau spectrum for thequasi-particles in the superfluid helium which has the ro-ton minimum. We consider the following two cases:
• the repulsion at finite interaction range (“semi-transparent sphere model”);
• the Van der Waals attraction of particles at longdistances, in addition to the repulsion at short dis-tances.

We study the influence of the inter-particle interaction onthe dispersion curve in the short-wave domain to show thatthe inter-particle attraction narrows down the existencedomain of a stable spectrum, i.e. inter-particle interactionreduces the range of parameters where a spectrum withroton minimum may exist.
2. Non-local form of Gross-
Pitaevskii equation
A system of many Bose particles in the second quantiza-tion picture is described, accounting for pairwise interac-tions, by the Hamiltonian
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H = ∫
drψ̂+ (r) (− ~22m∆) ψ̂ (r) + 12

∫∫
drdr′ψ̂+ (r) ψ̂+ (r′) U (r− r′

)
ψ̂
(
r′
)
ψ̂ (r) . (1)

The equation of motion for the field operator in theHeisenberg picture reads
i~∂ψ̂ (r, t)

∂t =− ~22m∆ψ̂ (r, t)
+ ψ (r, t) ∫ dr′U

(
r− r′

) ∣∣∣ψ̂ (r′, t)∣∣∣2 . (2)
Due to a large number of particles in the condensate,one may consider the operator ψ̂(r, t) in Eq. (2) as anon-operator function ψ (r, t). Further, it is convenient todefine a function Φ (r, t):

ψ (r, t) = Φ (r, t) exp (−iµ t) , (3)
where µ is the equilibrium chemical potential1. Then theequation for Φ reads
i~∂Φ (r, t)

∂t =− ( ~22m∆ + µ
)Φ (r, t)

+ Φ (r, t) ∫ dr′U
(
r − r′

) ∣∣Φ (r′, t)∣∣2 . (4)
The value of the the equilibrium chemical potential is de-termined by the equilibrium state of the system

µ = ∫ dr′U
(
r− r′

) ∣∣Φ0 (r′)∣∣2 , (5)
with Φ0 (r) the equilibrium value of the condensate wavefunction. Taking into account that the equilibrium con-densate density in absence of external fields n0 = |Φ0 (r)|2does not depend on the coordinate, one can express Eq. (4)as
i~∂Φ (r, t)

∂t =− ( ~22m∆ + n0U0
)Φ (r, t)

+ Φ (r, t) ∫ dr′U
(
r− r′

) ∣∣Φ (r′, t)∣∣2 , (6)

1 Any macroscopic wave function of a Bose system can beexpressed in form (3) by factoring out the time-dependentterm with the equilibrium chemical potential µ. In thiscase the wave function Φ has time dependence only forthe non-equilibrium states.

where U0 = ∫ dr′U (r− r′). We call Eq. (6) the non-local
Gross-Pitaevskii equation (NGP). If one is interested onlyin the long-wave perturbations, and assumes that thecharacteristic spatial scale of the condensate wave func-tion is much greater than the inter-particle interaction po-tential range, then the square of the wave function can betaken out of the integral in the right hand side of Eq. (6).The equation then takes the form

i~∂Φ (r, t)
∂t =− ( ~22m∆ + n0U0

)Φ (r, t)
+ U0Φ (r, t) |Φ (r, t)|2 . (7)

This is the usual way to apply the GP equation. Smalloscillations described by Eq. (7) have the dispersion law(for derivation see [25])
εk = √(~2k22m

)(2 U0n0 + ~2k22m
)
, (8)

where k is the wave number. The dispersion law (8) wasderived by Bogolyubov [15] in a different approach withthe use of the second quantization method. The excita-tion energy due to Eq. (8) depends linearly on the wavenumber for small k and monotonically increases with k ,approaching the free particle dispersion law. One shouldstress that spectrum (8) is valid only for the long-waveoscillations due to the approximation used for derivingEq. (7).Meanwhile, the derivation of the GP equation in form (6)does not assume that the excitations are of the long-wavetype. Thus, Eq. (6) is also valid for description of the exci-tations which wave length is of order of the inter-particleinteraction. This equation can be applied in order to studythe dispersion law of the collective excitations of a Bosecondensate in a short-wave spectral domain and to an-alyze the spatial behavior of the condensate wave func-tion at distances comparable to the inter-atomic potentialrange.
3. Hydrodynamic form of non-local
Gross-Pitaevskii equation
Equation (6) can be rewritten in the form of hydrody-namic equations if the condensate wave function is taken
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as Φ = ηeiφ , where φ, η are the phase and the absolutevalue of the condensate wave function and η2 = n is theparticle number density in the condensate.Taking the above into account, Eq. (7) leads to
∂n
∂t +∇(nv) =0, (9)

~
m
∂φ
∂t =− v22 + ~24m2

(∆n
n −

(∇n)22n2
)

+ n0U0
m − 1

m

∫
dr′U

(
r− r′

)
n(r′), (10)

where the superfluid velocity is introduced as
v = ~

m∇φ. (11)
Eq. (9) is the continuity equation, and Eq. (10) is analo-gous to the Josephson equation in the theory of supercon-ductivity. Taking a gradient of both sides of Eq. (10) andtaking into account the definition of the velocity (11),

∂v
∂t + (v∇)v =∇w, (12)

where
w = ~22m ∆η

η −
1
m

∫
dr′U

(
r− r′

)
n(r′). (13)

Notice that the system of equations (9), (12) coincides withthe hydrodynamics equations for the superfluid helium atzero temperature [26].In a linear approximation, the right hand side of Eq. (12)can be expressed as
∇w = −∇pmn0 .

The pressure and the density are then related in anon-local way:
p = −~22 η0∆η+ n0

∫
dr′U

(
r− r′

)
n(r′). (14)

This non-local relationship between pressure and densitywas used in the phenomenological approach of [35] (ne-glecting the quantum term) to describe the rotons in thesuperfluid helium. From our consideration, it follows thatthe non-locality kernel, which relates the pressure and thedensity in a phenomenological approach, is determined bythe inter-particle interaction potential.

4. Small oscillation spectrum with
non-local effects
In analogy to the derivation of the spectrum (8) fromEq. (7), the non-local GP equation (6) leads to the fol-lowing dispersion law for small oscillations

εk = √(~2k22m
)(2 Ukn0 + ~2k22m

)
, (15)

which differs from (8) due to the appearance of a potentialFourier component Uk = ∫ drU (r) ei kr (dependent on thewave vector) instead of U0.Usually, at short distances, a strong repulsion occurs, sothe interaction potential grows rapidly, leading to a di-vergence of the Fourier component Uk . To overcome thisobstacle, one may suppose that the potential remains fi-nite at short distances [36, 37]. As the simplest case, wewill use the “semitransparent sphere model” potential
U (r) = { Umax, r 6 a,0, r > a, (16)

and consider Umax and a as two independent parametersof the dimension of energy and length, correspondingly.In this case the Bose-condensate excitation spectrum (15)depends on the only dimensionless parameter
ξ = ~28π n0 a5 m Umax . (17)

The Fourier component of the potential (16) reads
Uk = 4πaUmax

k2 j1(ka), (18)
where j1(x) = x−1 sin x − cos x is the Riccati-Bessel func-tion.Putting this expression into Eq. (15), one obtains the en-ergy spectrum

ε = ε0√f (z), (19)where
f(z) = z−1(sin z − z cos z) + ξz4, (20)
ε0 = ~

√4π n0 a Umax
m , (21)

z = ka. (22)
Notice that the dimensionless parameter ξ (17) dependsstrongly on the potential range ξ ∝ a−5, and growsrapidly with decreasing a.
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The dependence of condensate excitation frequency on thewave number is shown in Fig. 1. At parameter values
ξ > ξh = 3.4·10−3, the dispersion curve lacks local minimaand the energy monotonically increases with wave number(upper curve in Fig. 1).At ξl < ξ < ξh (with ξl = 0.92 · 10−3) the dispersioncurve acquires a roton minimum (middle curve in Fig. 1)and its depth increases with decreasing ξ . In this rangethe excitation spectrum mimics that of superfluid heliumwith a roton minimum as Landau postulated and, in thevicinity of the roton minimum, can be written as [7, 8, 26]

εk = ∆ + ~2(k − k0)22m∗ , (23)
where ∆ is the roton gap, k0 is the roton wave number inthe spectrum minimum and m∗ is the effective mass.

Figure 1. Condensate excitation spectrum for the “semitransparent
sphere model” interaction; ξh = 3.4 · 10−3, ξl = 0.92 · 10−3.

The roton minimum position z0 = k0a in our modelis determined by f ′ (z0) = 0. Dependence of z0 onthe parameter ξ is shown in Fig. 2. With increas-ing ξ , the roton minimum position gets shifted to-ward smaller wave numbers, changing from its maximum
zmax = 5.45 (for ξl = 0.92 · 10−3) to minimum zmin = 3.72(for ξh = 3.4 · 10−3). It follows that the excitation wavelength λ, at the dispersion curve minimum lies in the range

1.15a < λ < 1.69a. (24)
Thus one may conclude that the existence of a disper-sion curve minimum is caused by the finiteness of theinter-particle interaction range and is not connected withany specific superfluid properties of system. It is notewor-thy that, in helium, the repulsive range of the inter-atomic

interaction potential may be estimated as a = 2.56 Å andthe roton wave length is λr = 3.3 Å, such that the relation
λr = 1.28a fits into the interval (24).

Figure 2. Roton minimum position z0 as a function of parameter ξ.

Dependence of the roton gap ∆ = ε0√f (z0) on the pa-rameter ξ in spectrum (23) is shown in Fig. 3. At ξ = ξlthe gap is zero. It grows with ξ , achieving its maximum
∆max
ε0 = 1.17

at ξ = ξh.At the value ξ = ξl = 0.92 · 10−3, the excitation energyminimum equals to zero (lower curve in Fig. 1); this meansan instability of a many-particle system for given param-eters of the interaction potential. Thus, only in the range
ξl < ξ < ξh the excitation spectrum mimics that of super-fluid Helium with a roton minimum (23).The effective mass of the roton in this case is

m∗ = 2~2
a2ε0

√
f(z0)

f ′′(z0) . (25)
The dependence of the dimensionless effective mass

M∗ ≡
m∗a2ε02~2

on the parameter ξ is illustrated in Fig. 4. The effectivemass varies from zero at ξl up to M∗ ≈ 9.663 at ξh.
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Figure 3. Roton gap versus parameter ξ.

Figure 4. The dependence of the dimensionless effective mass of
the roton M∗ ≡ m∗a2ε0/(2~2) on the parameter ξ.

5. Attraction influence on the small
oscillation spectrum
In the majority of the papers devoted to a non-idealBose-gas, as in [15], it is supposed that the inter-particleinteraction is repulsive. It is hence of interest to investi-gate the influence of long-distance inter-particle attrac-tion on the elementary excitation spectrum. Toward thisend we calculate the spectrum for the interaction potential

U (r) = { Umax, r 6 a,
− C

r6 , r > a, (26)

where C is positive. This potential accounts for aVan der Waals long-distance attraction of particles. TheFourier component of this potential reads
Uk = 4πaUmax

k2 [j1(ka)− α g(ka)] . (27)
Using this expression, one obtains from (15) the energyspectrum

ε = ε0√f(z)− α g(z), (28)
with a dimensionless parameter

α = C
Umaxa6 .

An auxiliary function
g(z) = z4

[(1− z26
) sin z + z3

(1− z22
) cos z

+ z46 (π2 − Si(z))], (29)

(Si(z) stands for integral sine) describes the impact ofthe attractive part of the inter-particle potential on theelementary excitation spectrum. This function is shownin Fig. 5. Function g(z) is positive for wave num-bers 0 < z < 2.45 and negative for 2.45 < z < 5.40. For
z > 5.40 function g (z) is positive and rises sharply.One may notice that the interval 2.45 < z < 5.40, wherefunction (29) is negative, overlaps with the domain of theroton minimum existence. It follows that the attractionleads to the growth of the excitation energy in the domainof the roton minimum existence and smears this minimum.In the range of small wave numbers, and also for very large
z > 5.40, attraction lowers the excitation energy. Thusthe long-distance atomic attraction smoothes the disper-sion curve and narrows the range over which the excitationspectrum has extrema (rotons and maxons). Attraction re-duces the upper bound ξh and increases the lower one ξl,narrowing the range over which a Landau-like excitationspectrum δξ ≡ ξh − ξl exists. Dependence of δξ for aspectrum with roton minimum on attraction strength

α = C
Umaxa6 ,

is shown in Fig. 6.Notice that experimental spectrum of quasi-particle ex-citations in the superfluid helium at large momentum p(p ≡ ~k > 3 Å−1) increases slowly such that the deriva-tive of ε(p) is close to zero at the boundary of the spec-trum [38]. This behavior can be understood with help of
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Figure 5. Function g (z) in the domain of z of physical interest.

Figure 6. Range δξ as a function of the interaction strength α.

a long-range attraction. Recall that function g(z) is posi-tive and increasing for z > 5.40. Thereby, due to (28), itopposes the dispersion curve growing at large momentum.
We should draw attention to how small the attraction partof the potential is for helium – it is the smallest among therare gases. Specifically, the depth of the potential wellfor helium is ε = −10.5 K, compared to ε = −35.9 K forneon, ε = −121 K for argon, ε = −173 K for krypton. Itseems that, due to this fact, the maxon-roton part of thedispersion curve in liquid helium is the most pronouncednot only in a superfluid phase, but in a normal phase aswell. Notice a feature of the superfluid phase: the lifetimeof the maxon-roton excitations are much larger than thatin normal liquids.

6. Conclusions
It is shown that the Gross-Pitaevskii equation, with al-lowance for non-local effects caused by the finitenessof the inter-particle interaction range, can describe theshort-wave excitation spectrum for which the wavelengthis of inter-particle interaction range order.For a Bose-system the spectrum for arbitrary wave num-ber is obtained; it has a shape of the Landau spectrumof superfluid helium. We estimated the range of param-eters where such a spectrum exists. Computation showsthat the roton minimum in the dispersion curve is causedby the finiteness of the inter-particle interaction range;the wave length of this minimum is close to the repulsionrange of the interaction. We studied the influence of thelong-distance inter-particle attraction on the dispersioncurve, showing that it results in smoothing of the excita-tion spectrum and in narrowing the range of the existenceof a maxon-roton type curve. Our analysis showed thatthe attraction part of the potential for the helium atomsis small in comparison with that for other atoms; it seemsthat this fact induces a pronounced maxon-roton part ofthe liquid helium dispersion curve.
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