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Abstract: I discuss some aspects of a recent frame-dragging test performed by exploiting the Root-Mean-Square
(RMS) orbit-overlap differences of the out-of-plane component (N) of the Mars Global Surveyor (MGS)
spacecraft’s orbit in the gravitational field of Mars. A linear fit to the complete time series for the entire MGS
data set (4 February 1999–14 January 2005) yields a normalized slope 1.03 ± 0.41 (with 95% confidence
bounds). Other linear fits to different data sets confirm agreement with general relativity. Huge systematic
effects induced by mismodeling the martian gravitational field which have been claimed by some authors
are absent in the MGS out-of-plane record. The same level of effect is seen for both the classical non-
gravitational and relativistic gravitomagnetic forces on the in-plane MGS orbital components; this is not the
case for the out-of-plane components. Moreover, the non-conservative forces experience high-frequency
variations which are not important in the present case where secular effects are relevant.
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1. Introduction

Orbital data for the Mars Global Surveyor (MGS) space-craft were collected over 5 years. In Refs. [1, 2] I pro-posed an interpretation of the time series of RMS orbit-overlap differences [3] for the out-of-plane orbital compo-nent, in terms of the general relativitic gravitomagneticLense-Thirring effect1 [6]. The average of such a time se-
∗E-mail: lorenzo.iorio@libero.it1 The Lense-Thirring effect consists of a small precession
in the orbit of a test particle which is moving freely around
a central rotating mass; the general relativistic compo-

ries over ∆P (in this case, 5 years: 14 November 1999-14 January 2005 [1]), normalized to the predicted Lense-Thirring out-of-plane mean shift over the same time span,is µ = 1.0018± 0.0053.
My interpretation has recently been questioned by Krogh
nent of the gravitational field due to the mass currents
generated by the rotation of the body is named “gravit-
omagnetic” by analogy with the magnetic field induced
by electric currents in Maxwellian electromagnetism [4].
For details of some recent, controversial tests performed
in the Earth’s gravitational field with the LAGEOS satel-
lites, see Ref. [5] and references therein.
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in Ref. [7]. Remarks concerning the analysis presented inRefs. [1, 2] mainly deal with
I) The observable used: could the data in Refs. [1, 2]have been misinterpreted?
II) The discrepancy between the predicted gravito-magnetic Lense-Thirring shift and the data over thechosen time span ∆P: Krogh suggests that I incor-rectly compared the 1.6 m value of the out-of-planeaverage orbit error (released by Konopliv et al. inRef. [3] for the entire MGS data set) to a Lense-Thirring shift calculated for a shorter time interval∆P;
III) The data set used: in Refs. [1, 2] some of theinitial months of the MGS data set were discarded;
IV) The bias –neglected by me in Refs. [1, 2]– dueto the multipolar expansion of the Newtonian partof the Martian gravity field, as pointed out in un-published Refs. [8, 9] quoted by Krogh [7];
V) The impact of atmospheric drag: this was ne-glected in Refs. [1, 2]

Below I present my reply. Following further, independenttests, I present various linear fits to different data sets.These include the complete time series of the entire MGS
data (4 February 1999–14 January 2005); the predictionsof general relativity are always confirmed. Analytical cal-culation of competing aliasing effects due to both the grav-itational and non-gravitational perturbations (which affectthe in-plane orbital components of MGS), do not show upin the real data. Moreover, non-conservative forces, whosesteadily refined modeling mainly improved the in-planeorbital components of MGS, not the normal one, exhibithigh-frequency, non-secular time variations.
2. My arguments
2.1. General considerations
Before going into the details of my reply, I will evaluatethe possibility that general relativity should be taken intoaccount in describing the motion of test bodies in a givengravitational field. This can be done using a standardargument [10] applied to the MGS-Mars system.It is necessary to consider the relativistic character-istic length of the problem at hand, (similar to theSchwarzschild radius of the body acting as the sourceof the gravitational field), and then comparing this lengthto the accuracy with which the orbit of a test particle canbe determined.

In the present case, the characteristic gravitomagneticlength of a rotating body of mass M and angular mo-mentum S is [11]
lg = S

cM , (1)
where c is the speed of light in vacuum; lg is one of thetwo parameters with dimension of length entering the Kerrmetric, [12] which describes the exterior field of a rotatingblack hole. Since the angular momentum of Mars can beevaluated as

SM = (1.92± 0.01)× 1032 kg m2 s−1 (2)
(from the latest spacecraft-based determinations of theareophysical parameters [3]), it turns out that

lMg = SM
cMM = 1.0 m. (3)

This value must be compared with the present-day levelsof accuracy in the determination of the MGS orbit; it canbe evaluated as about 0.15 m [3] in the radial direction.Since it is not affected by the gravitomagnetic force itself,as I will show later, such a figure is truly representative ofthe impact of all the sources of errors affecting the orbit ofMGS. Thus, it makes sense to investigate the possibilityof measuring the Lense-Thirring effect in the gravitationalfield of Mars with MGS in such a way that a possiblepositive outcome should not be regarded as unlikely.
2.2. Reply to Krogh’s points
Point I The entire MGS data set was subdivided by Kono-pliv et al. [3] into 388 arcs (smaller time intervals of data),not 442 arcs, as claimed by Krogh [7]. For MGS, thelengths of the arcs vary from 4 days to 6 days, in orderto cover many orbital revolutions (each ≈ 2 h). For eacharc, the spacecraft position and velocity (amongst otherthings) were estimated and used as the starting point fora numerical propagation of the satellite’s motion by meansof the dynamical models. In the case of MGS, these mod-els did not include the general relativistic gravitomagneticforce. Contiguous arcs had an overlap just 2 h (one or-bital revolution). The differences in predicted RMS space-craft positions, relative to those in the previous and subse-quent arcs were determined. Since the arc overlaps coverjust one orbit, such RMS differences may account for anyof: measurement errors, random errors, or systematic biasdue to mismodeling/unmodeling dynamical forces yieldingsecular (i.e. averaged over one orbital revolution) effects,whatever their physical origin may be.Indeed, RMS orbit solution overlaps are commonly used
in satellite geodesy as useful and significant indicators
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of the overall orbit accuracy [13, 14]. Conversely, theyare also used to gain information about systematic er-
rors coming from inaccurate modeling of the forces act-
ing on the spacecraft. For details see Refs. [13, 14]. Ofcourse, such a technique is insensitive to short-period ef-fects, i.e. those having frequencies higher than the orbitalfrequency: only dynamical features of motion with time-scales equal to, or larger than one orbital period can besensed by such orbit-overlap differences. Moreover, theaverage orbit error 〈∆Ndiff〉 of about 1.6 m does not re-fer to any particular arc overlap; instead, it comes fromthe mean of the entire set of RMS orbit-overlap differ-ences for the chosen time span ∆P and is well represen-tative of those un-modelled/mis-modelled forces yieldingeffects which do not average out over ∆P (such as theLense-Thirring signal). Time-varying patterns exhibitingwell-defined periodicities –including measurement errorssuch as those related to Earth-Mars geometry –are mainlyaveraged out, yielding little or no contribution to the av-erage orbit error. Incidentally, it should be apparent thatthere is no sense in looking for the error of the error, asseemingly required by Krogh [7] when he blames me [1] fornot having included the uncertainty in 〈∆Nres〉. Anothercriticism by Krogh [7] is that the RMS overlap differenceswould be unable to specify any orbital precession.
Points II and III In order to reply to all such criticismsI performed another, independent test of my hypothe-sis. First, by linearly fitting2 the complete time seriesof Ref. [3], after rescaling the data to centre the zero pointof the time-series, I obtained a slope of −0.64 ± 0.26 myr−1, (with 95% confidence bounds), while the predictedLense-Thirring MGS out-of-plane rate (customarily de-fined as positive along the direction of the spacecraft’sorbital angular momentum) amounts to 0.62 m yr−1. Thenegative sign is due to the fact that Konopliv et al. [3]defined the normal direction to be positive in the oppositedirection to the MGS orbital angular momentum (Konopliv2007, private communication). Should such a linear fit beused as indicator of the existence of the Lense-Thirringeffect, its relativistic prediction would be fully confirmedwithin the experimental error; the null hypothesis wouldbe rejected at 2.4 sigma level. Then, I also repeated theprocedure by fitting a straight line to the data set without
full January 2001, (which was mainly affected by measure-ment errors which, according to Krogh [7], would mimic theLense-Thirring effect) obtaining a value of −0.61 ± 0.26m yr−1. Removal of data from the entire year 2001 (which
2 Note that, since the plots in Fig. 3 of Ref. [3] are semi-
logarithmic, one should not visually look for a straight line
in them.

was mainly affected by angular momentum wheel desatu-ration operations), yields a value of −0.57± 0.28 m yr−1.A different linear fit to the time series after removing datafrom the final month (December 2004-January 2005) yields
−0.62± 0.27 m yr−1.
Point IV Krogh [7] quotes Sindoni et al. [8]. They presentanalytical calculations about the corrupting impact of var-ious physical parameters of Mars through the classicalnode precessions. Such rates are induced by the evenzonal harmonic coefficients J` of the multipolar expansionof the Newtonian part of the martian gravitational poten-tial. In particular, Sindoni et al. [8] use the first five evenzonals J2...J10 (together with errors from former global so-lutions for Mars’s gravity field, the uncertainty in Mars’s
GM, the uncertainty in the MGC semi-major axis and er-rors in the inclination) in their analytical formulae for clas-sical secular node precessions. They conclude that, sincethe resulting effect is tens of thousands of times largerthan the Lense-Thirring effect on the MGS, this would bedisasterous for any attempt at detecting the gravitomag-netic frame-dragging with such a spacecraft.The point is that such figures (as with others which can beobtained from more accurate calculation) must ultimately
be compared with the reality of the data, i.e. the RMSorbit-overlap differences of MGS.I repeated such a calculation by considering the othereven zonals up to J20, along with the latest errors of theMGS95J global solution and the uncertainties in the ra-dius of Mars. A root-sum-square summation of these termsresulted in a mean bias of 78.9 m d−1 in the out-of-planeMGS orbital component. Using a linear summmation anupper bound of 111.6 m d−1 was obtained. Such figuresclearly show that they are not representative of the realMGS orbit. Indeed, over a time span of 5 years theywould result in a mean shift as large as 144 km (root-sum-square calculation) or 203 km (linear sum). Interestingly,even if the set of MGS RMS-overlap differences was tobe considered as representative of a single orbital arc 6d long only, the conclusion would be the same: indeed,in this case, the total cross-track mean shift due to themartian gravitational potential would amount to 473.1 m(root-sum-square) or 669.6 m (linear sum).Regarding to Ref. [9], (also quoted in Ref. [7]), recall thatRMS orbit-overlap differences are used mainly to give anindication of the overall orbit accuracy, taking into ac-count all the measurement and systematic errors [13, 14].The important point to note is that such differences can-
cel out, by construction, errors, systematic or not, common
to consecutive arcs−it would just be the case of a biaslike that described by Felici in Ref. [9]−, while effects likethe Lense-Thirring one, accumulating in time, are, instead,singled out [14].
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Point V In regard to the impact of non-gravitational per-turbations, Sindoni et al. [8] yield a total accelleration(un-modelled and non-gravitational) of ≈ 10−11 m s−2,which is the same order of magnitude of the Lense-Thirringacceleration induced by Mars on MGS. The authors nei-ther present any detailed calculation of the effect of suchan acceleration on the normal portion of the MGS orbit,nor specify if such a magnitude refers to the out-of-planecomponent. However, some simple considerations can beeasily traced: a hypothetical, generic out-of-plane per-turbing force 6.7 times larger than the Lense-Thirring one,and having the same time signature (i.e. linear in time),should induce a 10.8 m cross-track shift, on average, overthe considered time span ∆P. Again, such a bias is absent
from the data.Ref. [3] clearly states that it is the along-track portionof the MGS orbit –left unaffected by the Lense-Thirringforce– which is mainly perturbed by the non-gravitational
forces: indeed, the along-track empirical accelerations fit-ted by Konopliv et al. [3] amount just to ≈ 10−11 m s−2,which shows that the guess made by Sindoni et al. [8]is somewhat correct, but it refers only to the along-trackcomponent.Time-dependent, periodic signatures would, instead, beaveraged out, provided that their characteristic timescales are relatively short, as is the case. Indeed, non-conservative accelerations, which are especially active inthe MGS in-plane orbital components [3, 15], exhibit time-varying patterns over 12 hr [15] which are averaged outover multi-year time spans (and, incidentally, over 6 d aswell) when hypothetically mapped to the out-of-plane di-rection. To be more definite regarding the issue of theimpact of atmospheric drag on the cross-track portion ofthe MGS orbit, (a point raised by Krogh [7]), let us notethat it requires not only consideration of the node Ω, asapparently claimed by Krogh [7], but also the inclination
i, according to Ref. [16]

∆N = a

√(1 + e22
)[ (∆i)22 + (sin i∆Ω)2]. (4)

According to, e.g., Milani et al. [17], the perturbing accel-eration Adrag due to atmospheric drag can be written inthe form
Adrag = −12ZCD SMρvv , (5)

where S/M is the spacecraft cross sectional area (per-pendicular to the velocity) divided by its mass, CD is thedrag coefficient, ρ is the atmospheric density (assumed tobe constant over one orbital revolution), v is the satellitevelocity in a planetocentric, non-rotating frame of refer-ence and Z is a corrective coefficient accounting for the

fact that the atmosphere is not at rest, but rotates withangular velocity ωA more or less rigidly with the planet(Z ≈ 1 for polar orbits [17]). While the drag shift on thenode vanishes when averaged over one orbital period T ,the same is not true for the inclination: indeed, it turnsout [17]
〈∆i〉T ≈ π(Adrag

n2a
)
ωA
n +O(e), (6)

where n = √GM/a3 is the Keplerian mean motion. Asa result, the orbital plane tends to approach the planet’sequator. The term in brackets is the ratio of the drag forceto the Newtonian monopole. As usual, in perturbationtheory, a refers to the unperturbed reference ellipse. Thus,the out-of-plane drag shift is from (4)
〈∆Ndrag〉 ≈ a 〈∆idrag〉√2 . (7)

In the following I will assume that ωA ≈ ωMars = 7.10 ×10−5 s−1. Let us see what happens in the (unlikely) worst-case Adrag ≈ 10−11 m s−2; it turns out that
〈∆Ndrag〉T ∼ 1× 10−5 m. (8)

But Adrag is not constant over time spans of days oryears [18], so such an effect is not a concern here. Evenif this was not so, the assumption of ≈ 10% mismodelingin drag –which is, in fact, modeled by Konopliv et al. inRef. [3], mapped onto about 5 yr, would give a ≈ 0.7%uncertainty.Finally, Krogh [7] remarks that a decrease in the averagesof the RMS orbit overlaps occurred in view of constantlyimproved modeling [15, 19]. He does not, however, rec-ognize that improved modeling of non-gravitational forcesacting on MGS (introduced in Ref. [3] with respect to pre-vious works [15, 19] in which the Lense-Thirring effect wasnot modelled as well), only had a relevant effect on the
along-track RMS overlap differences (a factor of 10 betterthan in Ref. [15, 19]), not the normal ones (just a factor of2 better than in Ref. [15, 19]).Moreover, if the relativistic signature was removed (or notpresent at all) so that the determined out-of-plane RMSoverlap differences were only (or mainly) due to othercauses such as mismodeling or unmodeling in the non-gravitational forces, it is difficult to understand why thealong-track RMS overlap differences (middle panel of Fig-ure 3 of Ref. [3]) have almost the same magnitude, since thealong-track component of the MGS orbit is affected muchmore by the non-gravitational accelerations (e.g. the at-mospheric drag) than the out-of-plane forces.
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