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Abstract In this work we summarise the concept of bisimulation, widely used both 
in computational sciences and in modal logic, that characterises modal structures 
with the same behaviour in terms of accessibility relations. Then, we offer a sketch of 
categorical interpretation of bisimulation between modal structures, which comprise 
both the structure and the valuation from a propositional language.
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1. Introduction

Bisimulation is one of the most important relations between relational 
structures. Informally, it can be said that bisimilar structures behave the 
same way in terms of accessibility. It is a relationship weaker than iso-
morphism, although it is the strongest behavioural relationship, which 
is very useful in the field of verification of formal systems, both logical 
and computational. Introduced in (Park, 1981) in the field of computing 
sciences, it has been a fruitful tool in the study of modal logic structures. 
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As we will see later, the main property that characterise modal logics is 
bisimulation, since bisimilar models satisfy the same modal formulas. In 
this work we made a brief overview of relational structures and models 
and then we introduce the main theorems that define the bisimulation 
relation. Later, we will study in categorical terms the relationship of bisi-
mulation, sketching some ideas about this topic.

Category theory offers an interesting insigth to study the relation-
ship between different algebraic structures. In this work we propose the 
basics of a study of the relationship between modal logic and bisimilar 
models by using category theory. We can easily use categories to sketch 
the relationship between the category of the formulas of a modal logical 
language and the category of the models that satisfy them. 

The paper is organized as follows. After this introduction, main notions 
are introduced in the second section. In the third one some theorems are 
studied. Then, in fourth section, categories and bisimulation are related. 
A short last section is devoted to conclusions, where several lines to 

extend categorical approaches to modal systems are pointed out. 

2. Main Concepts and Theorems

2.1 Relational Structures

Relational structures are often used in semantics of formal systems, 
since they are able to capture the relationships and transformations 
between discrete elements. They can be represented as as (pseudomulti)
digraphs, in which states are the nodes of the graph, and relations are 
the edges (Cfr. (Gerbrandy, 1999)). Here we have a basic structure over 
we can define now more enriched systems.

Relational structures. A relational structure is an ordered pair <S,R>, 
where

	• S is a set of elements or states.

	• R is a binary relation in SxS.

Kripke frames and labelled transition systems (LTS) are two examples 
of relational structures. A Kripke frame is a simple model of a relational 
structure, in which we consider the binary relation R as an accessibility 
relation from one state to another one.
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Definition. Kripke frame. A Kripke frame is a pair <W,R>, where

	• W is a non-empty set of worlds or states.

	• R is an accessibility relationship between states, formally defined as 
a binary relation in SxS.

If we consider several accessibility relations, we have a multimodal 
Kripke frame.

Definition. Multimodal Kripke frame. A multimodal Kripke frame is 
a structure <W,A,R> composed by:

	• A non-empty set W of worlds.

	• A non-empty set of accessibility relationships A.

	• An accessibility relation R defined in WxAxW.

An alternative definition is the following: a multimodal Kripke frame 
is a structure <W,{R

1
,…,R

n
}
i = 1,…,n

> composed by:

	• A non-empty set W of states or worlds.

	• A set of accessibility relations R
i
, i=1,…,n, such that every R

i 
is a sub-

set of WxW.

Labelled transition systems describe the behaviour of discrete systems, 
in which each world is a possible state of the system and the accessibility 
relations are actions or transitions between them. They have the same 
structure as multimodal Kripke frames.

Definition. Labelled transition system. A LTS is a relational structure 
<W,A,T> made up of several states (that can be understood as situations 
or possible worlds) and a set of arrows between them (understandable 
as an accessibility relationship). We have:

	• A non-empty, finite set W of states or worlds.

	• A non-empty, finite set A of accessibility relations, which are binary 
relations over the states.

	• A transition relationship T, subset of W x A x W.

LTS are widely used in computation, as graphical representation of 
operational semantics of programs (Keller, 1976). They are generalisa-
tions of finite automata and trees, and they are fundamental tools in 
concurrency theory. In this case, the stress is put in the different pro-
cesses between the states instead of the states themselves, since the 
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main elements of LTS are accessibility relations, instead of states. These 
processes are seen as transition relations between states. Thus, a LTS 
can be seen as a finite automaton in a graph.

In any case, if we have several accessibility relations, we write w (a) → u 
to specify that there is a transition from w to u given by the relation a, 
instead of T(w,a,u) or R

a
(w,u), and just w → u if we have only one acces-

sibility relation.

2.2 Models

Now we consider a propositional logic language. If a certain proposi-
tion p is true in a state w in a model M, we say that state w satisfies p, 
in symbols M, w ⊨ p. We can consider the set of all states or worlds that 
satisfy a certain proposition p, v(p).

Models and frames. A model is obtained when we add to a frame a 
valuation function v: L⟶Pow(W) from the set of atomic formulas to the 
power set of worlds, which contains all the subsets of the set of worlds 
W. Again, we can consider just one accessibility relation or several ones. 
From the valuation of atomic formulas, we can obtain the valuation of 
compound well formed formulas (“wff” from now on) via induction, and 
the valuation of modal formulas as we will explain soon.

Example. Modal logic over Kripke models. We have the following 
language:

φ, ψ ::= p | φ & ψ | φ v ψ | φ → ψ | T | F | <>φ | [] φ

We have set of states that may satisfy each atomic wff. Being T and 
F the tautology and the falsity, we recursively define the satisfaction of 
all wff’s:

	• M, w ⊨ T for every w in M.

	• M, w /⊨ F for every w in M which means that no state satisfies F.

	• M, w ⊨ φ if and only if (“iff” from now on) w belongs to v(φ).

	• M, w ⊨ ¬φ iff s does not belong to v(φ).

	• M, w ⊨ φ & ψ iff M, w ⊨ φ and M, w ⊨ ψ.

	• M, w ⊨ φ v ψ iff M, w ⊨ φ or M, w ⊨ ψ.

	• M, w ⊨ φ → ψ iff M, w does not satisfy φ or M, w ⊨ ψ.
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	• M, w ⊨ <a>φ iff there is a w in M and a in A such that w (a)⟶ u and 
M, u ⊨ φ.

	• M, w ⊨ [a] φ iff for any w in M and a in A, w (a)⟶ u implies that M, u ⊨ φ.

We can consider this a restricted case of the following example, which 
considers an arbitrary number of modalities. 

Example. Multimodal Kripke models. We have the following language:

φ ::= p | φ & φ | φ v φ | φ → φ | T | F | <a>φ | [a] φ

Now we define the following interpretation of formulas over a multi-
modal Kripke frame M, considering a set A of accessibility relations or 
modalities, being ‘a’ any of them. The semantics is identical to the previ-
ous one. The only difference are the definitions of the modal operators, 
which are as follows:

	• M, w ⊨ <a>φ iff there is a w in M and a in A such that w (a)⟶ u and 
M, u ⊨ φ.

	• M, w ⊨ [a] φ iff for any w in M and a in A, if w (a)⟶ u then M, u ⊨ φ.

An interesting example of a simple but powerful propositional system 
is Hennessy-Milner logic, used to represent transitions between states 
in a LTS.

Example. Hennessy-Milner logic. Hennessy-Milner logic, introduced 
in (Hennessy & Milner, 1980), is a system of dynamic logic, summarized 
as follows:

φ ::= T | F | φ & φ | φ v φ | [a]φ | <a>φ

In this system, we have a set A of actions, where ‘a’ is any action. The 
interpretation of the wff is as follows: 

	• M, w ⊨ T for every w in M.

	• M, w /⊨ F for every w in M.

	• M, w ⊨ φ & ψ iff M, w ⊨ φ and M, w ⊨ ψ.

	• M, w ⊨ φ v ψ iff M, w ⊨ φ or M, w ⊨ ψ.

	• M, w ⊨ <a>φ & ψ iff there is a state u such that w (a)⟶ u and M, u ⊨ φ.

	• M, w ⊨ [a]φ iff for every state w, if w (a)⟶ u then M, u ⊨ φ.

In this case, what interests us are the actions or transitions between 
states. Thus, if a certain state w satisfies <a>T, it means that it is possi-
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ble to perform action a from w, and <b><a>T means that it is possible to 
perform b after performing a, <a>T v <b> T that it is possible to perform 
a or to perform b, and so on. 

Note that, if we enrich this language with atomic formulas and we 
add the definition of ¬φ, we have the previous multimodal propositional 
language.

Example. A LTS with two possible actions, tick and tock is shown in 
the next picture. Each accessibility relation must be of one of these two 
types. 

We can see that the following relations of satisfiability are satisfied:

M, A ⊨ <tick>T v <tock> T

M, B ⊨ <tick> T & <tock> T

M, D ⊨ <tick> F

M, A ⊨ <tick> (<tick>T v&<tock> T)

M, C ⊨ <tock> [tick] T

For example, D ⊨ <tick> F holds because it is possible to perform 
action ‘tick’ in state D, more precisely from state D to state F. B ⊨ <tick>T 
& <tock> T because it is the conjunction of <tick> T and <tock> T, and it 
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is possible to perform these two actions in state B. [tock] T means that in 
a given state, all transitions are given by action ‘tock’. C ⊨ <tock> [tick] 
T means that it is possible to perform action ‘tock’ after every action 
‘tick’ in C. 

2.3 Bisimulation in Relational Structures

Having introduced different types of relational structures, now we can 
think of relations and transformations between theM, such as equiva-
lence relations or different kinds of morphisms.

The latter can be conceived as transformations between structures, 
that allow to simplify or to expand them. It is interesting to explore 
whether the properties of the structures change or remain if we trans-
form the original structure. For example, we might simplify or expand 
a structure in such a way that some of their properties remain. In this 
case, since these two structures share a common property, we may estab-
lish a kind of relational equivalence between them. This is the case of 
bisimulation between structures, in which behavioural properties of the 
accessibility relations hold, although the internal structure of each struc-
ture may be different. By “behavioural” properties we mean that we can 
perform over two bisimilar states exactly the same actions given by a 
wff in Hennessy-Milner logic, arriving into bisimilar states. Generalizing 
this definitions, two bisimilar worlds satisfy the same modal wff’s in the 
corresponding modal language.

In order to explain bisimulation, we will introduce the concept of simu-
lation and bisimulation, which is basically a mutual relation of simulation 
between two structures, and later we will explain the connection between 
bisimulation and modal logic.

Bisimulation between states. Two states in the same or different 
structures are bisimilar if they behave the same way. We can consider a 
Kripke frame, although bisimulation within states in a LTS would follow 
the same scheme, simply replacing ‘accessibility relation’ by ‘action’. 
A binary relation R between two states w and u is a simulation if there 
is a w’ such that if w (a) → w’, then there is a u’ such that u (a) → u’ and 
w’Ru’. The union of all simulations is called similarity. A bisimulation is 
a simulation in both directions, from w to w’ and from w’ to w. If w and 
u are bisimilar, we write w ~ u.
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Bisimulation between structures and frames. If a structure B is a sim-
ilarity of another structure A, then B simulates the behavioural proper-
ties of A, but the converse may not be the case. Indeed, simulation is 
a reflexive relation, but it is not symmetric, since it is possible that there 
is a simulation from C

1
 to C

2
 but not its converse. Then, a mutual simu-

lation is called a bisimulation. In this cases, both structures behave the 
same way in terms of accessibility relations. 

We can define more formally a bisimulation between two structures. 
A bisimulation R between two structures C

1
 and C

2
 is a relation W

C1
 x W

C2
 

between their sets of states such that that there is a simulation from the 
first to the second and another one to the second to the first, that is, if 
w in C

1
 and u in C

2 
are in the relation R then these two conditions hold 

(forth and back, according to Van Benthem):

	• (Forth): Simulation from C
1
 to C

2
: if there is a w’ such that if w (a) ⟶ w’, 

then there is an u’ such that u (a) ⟶ u’ and w’Ru’.

	• (Back): Simulation from C
2
 to C

1
: If there is a u’ such that if u (a) ⟶ u’, 

then there is a w’ such that w (a) ⟶ w’ and w’Ru’.

Two structures are bisimilar if there is a non trivial (non-empty) bisimu-
lation between them, that is, if there are two mutual simulations between 
them. We can add a valuation over a given structure giving out a model, 
and we will see that bisimilar structures satisfy the same formulas.

Bisimulation is weaker than isomorphism, that is, two bisimilar rela-
tional structures may not be isomorphic, whereas two isomorphic struc-
tures are necessarily bisimilar. As we said before, bisimulation maintains 
the behavioural properties of the accessibility relations regarding a cer-
tain modal language, although the structure among the states may be 
different.

Example. If we consider a model given by a single state and an arrow 
to itself (example 1), and another one given by two states and the corre-
sponding arrows too each other but no identity arrow (example 2), and 
a third one given by a linear set of states, no identity arrows (example 3). 
These three models are bisimilar, but they are not isomorphic.

Things can be even more complex, since two models can be isomor-
phic regarding their states and arrows, but not the set of action/agents, 
meaning that there is no isomorphism between the set of their actions. 
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For example, let’s consider the previous examples revisited with a set of 
two actions, tick and tock. We can see that 2 and 5 are isomorphic, but 
not 1 and 5, nor 3 and 6.

As stated before, it is useful to see whether a simplification of a model 
holds its behavioural properties. We can see that 6 and 5 are not isomor-
phic, being 5 a simplification of 6, but they are bisimilar.

Simulation and bisimulation in Kripke models. If we have defined 
a modal propositional language L and we have a Kripke frame M with 
a set of states or worlds W or another kind of relational structure, we 
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can add a valuation function over the states of the frame v(p) = {w in W | 
M,w⊨p}. Since we have a valuation from propositions to states, we need 
an additional invariance clause:

	• Invariance: given a proposition φ, C
1
, w is in v(φ) ↔ C

2
, u is in v(φ) iff 

wZu for each w in C
1
 and each u in C

2
.

In this way, two states that satisfy the same wff and the previous forth 
and back clauses, are bisimilar in the model. 

Note that we are talking about frames and models in abstract term, 
although it is obvious that modal logics can be interpreted in many ways, 
such as epistemic, temporal, deontic and other kinds of logics. Each one 
has its own unique features (Cfr. for example (Gerbrandy, 1999) or (Van 
Ditmarsch, 2007)).

3. Theorems

In this section we explore the basics of the relationship between modal 
logic and bisimilar models. In particular, three theorems that characterise 
modal logic via bisimulation. For a detailed explanation of the relation 
between bisimulation and modal logics, (Sangiorgi, 2009) or (Stirling, 
2012) can be consulted.

 Fundamental property of modal logic. Now we are going to explore 
the meaning of the assertion that states that a wff is invariant under 
bisimulation, and that the fundamental property of bisimulation between 
models is what characterise modal logic. Let’s recall that a valuation 
function assigns a subset of states to each atomic wff, and that recur-
sively we can define satisfaction for complex formulas and for modal 
wffs. The most relevant issue is the definition of valuation function for 
modal operators, <a>φ and [a]φ. The relationship between modal logic 
and bisimulation is given by the next two theorems.

Theorem 1. Every wff of a language of modal propositional logic is 
invariant under bisimulation. That is to say, given two models M, M’ and 
two states in them w y w’ (respectively), for every modal formula φ it 
holds the following:

M, w ⊨ φ iff M’,w’⊨ φ
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This means that the models that are bisimilar satisfy the same wff, and 
therefore they are indistinguishable using modal logic. Every wff that is 
satisfiable in a state in a model is also satisfiable in a bisimilar state. 

Proof. It can be seen in (Blackburn et at, 2001, p. 67), we leave out its 
details to abbreviate. 

Note that the aforementioned bisimilarity is between models, not just 
between frames. Now we see van Benthem theorem, which is key in 
modal correspondence theory (Cfr. Van Benthem, 1976).

Theorem 2 (van Benthem characterization theorem). Any wff invari-
ant under bisimulation is equivalent (invariant) to a wff in modal propo-
sitional logic. That is, if two models are bisimilar, they satisfy the same 
modal formulas.

Proof. By definition, bisimilar states satisfy the same atomic wff. Com-
plex formulas are also equivalent via inductive step. Modal formulas are 
equivalent, since by the definition of bisimulation, there are states are 
related to the corresponding one and satisfy the forth or back clause (See 
(Blackburn et at, 2001, p. 67) for a more detailed proof).

Thus, bisimulation characterise modal logic, which means that two 
structures cannot be distinguished in behavioural terms. Modal wff 
describe the behavioural properties of structures, and bisimilar struc-
tures satisfy the same formulas. In other terms, bisimulation may be 
seen as invariance under bisimulation. In the next part of the paper, this 
will be studied in categorical terms. Thus, modal logic can be seen as 
the fragment of first-order logic which is invariable under bisimulation 
(Van Benthem, 1976).

Modal equivalence. Two states, in the same or different models, are 
said to be modally equivalent if there are no wff with different valuation 
over them. The previous theorem asserts that if two wff are invariant 
under bisimulation, they are modally equivalent, that is, if there is a bisi-
mulation between them, these states are modally equivalent. The con-
verse situation is not always true: there can be the case that two states 
are modally equivalent but not bisimilar. Bisimulation between modal 
equivalent states need to verify the following theorem.

Definition. A Kripke frame is image-finite iff for every w in W and every 
accessibility relation R, the set {v | wRv} is finite.
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The classical example of this is the following one, in which there is 
a structure such that there is a branch with n nodes for every natural 
number, and another structure a branch with n nodes for every natu-
ral number plus an infinite branch. They are bisimilar, but not modally 
equivalent.

Theorem 3 (Hennessy-Milner property). If two models M and N are 
image-finite and modally equivalent, then they are bisimilar.

Proof: See (Blackburn et at, 2001, p. 69).

Thus, bisimulation and modal equivalence are equivalent if we are 
restricted to the case of image-finite models (Cfr. Goranko, 2007). 

4. Categories and Bisimulation

In this section we will apply category theory in order to study the rela-
tionship between bisimilar relational frames, such as Kripke frames or 
LTS. Later, we will study their relationship with the category Prop of wff 
of propositional logic, thus studying the corresponding models.

Firstly we recall that a category is made of the following elements:

	• A class of objects, Ob(C).

	• A class of arrows or morphisms between the objects; Hom(a,b) is the 
set of arrows from object a to object b, whereas hom(C) is the class 
of all morphisms of the category C.

Given an operation of composition of morphisms, the following rules 
must apply in order to consider the previous structure a category:

	• Associativity: If f: a ⟶ b, g: b ⟶ c and h: c ⟶ d, then (fg)h = f(gh).

	• Identity arrow for each object X in the category, Id
X
.

Categories can be made of categories too. In this case we call the 
morphisms between categories functors, and the morphisms between 
functors, natural transformations.

4.1 Categorical Interpretation of Frames

In the same way that there are categories for other algebraic structures, 
such as Set, Grp, Top, we can consider a category LTS and another one 
Krp whose objects are respectively LTS’s and Kripke frames, and their 
arrows are the different relationships between them.
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We define the category LTS in which objects are all possible LTS as 
objects of the category of the same name, and morphisms are the trans-
formations between them. Analogously we can define category Krp given 
by all multimodal Kripke models, in which objects are all Kripke models 
and the arrows are the transformations between them. In the next pages, 
we will work on Krp, although similar operations may be induced over 
LTS, case for example of the Hennessy-Milner logic and its relation to LTS.

Definition. Quotient category. Given a category C and an equivalence 
relation R among its morphisms, a quotient category C/R is defined as 
a category such that its objects are those of C and its morphisms are the 
equivalence classes of C in R. For each morphism in C there is a functor 
C ⟶ C/R.

Now we consider all the models of Krp and the equivalence relation 
given by bisimulations, which is an equivalence relation. Thus we can 
define a quotient category from Krp given this relation.

Lemma. Bisimulation between frames is an equivalence relation.

Proof. By definition, bisimulation is symmetric. It is also reflexive, since 
any frame is bisimilar to itself. Transitivity can be proven by considering 
three frames, W, Y and Z, such that W and Y are bisimilar and Y and Z 
are bisimilar. From the definition of bisimulation, it is immediate that W 
and Z are bisimilar.

This allows us to define now equivalence classes over the categories 
based on the bisimulation equivalence relation. Since bisimulation is an 
equivalence relation, it determines a series of quotient categories, anal-
ogous to a quotient set but in categorical terms. Each one is made up of 
all frames that are bisimilar among them.

Quotient category Krp/bisim. If we consider the category Krp, we 
study the equivalence relation given by the bisimulation between frames, 
that defines the quotient category Krp/bisim. The morphisms of this cat-
egory are the equivalence classes of morphisms in Krp, and the objects 
are the same of Krp. We can consider a category whose objects are the 
arrows of Krp/bisim as representatives of each equivalence class, con-
sidering as arrows of this category:

	• Identity morphism.
	• Possible morphisms between subcategories.
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Category Krp Quotient category on Krp

In the same way, we can define the category Krp/*, defined as the 
quotient category defined by the structural properties of the frames, for 
example being reflexive or transitive.

4.2 Categorical Interpretation of Propositional Modal Languages

In order to define valuation, we have to consider a third category, Prop, 
the category of all propositions in a given formal language.

Prop, ModalProp. Category Prop is defined as follows: 

φ ::= F | T | b | φ+ φ | φ x φ | φ→ φ 

F and T are the so-called initial and terminal objects, which can respec-
tively be identified with the categorical interpretations of the falsity and 
the tautology, whereas b is an arbitrary atomic object of the category, 
which is the interpretation of an atomic formula. The categorical model 
of a propositional logic are bicartesian closed categories (biCCCs). Cat-
egorical structures are to be understood in an intuitionistic way, since 
in a biCCC we interpret objects as propositions and morphisms as their 
proofs. Let’s recall that the main difference between intuitionistic and 
classical logic is that the first one, the principle of excluded middle and 
the elimination of double negation do not hold. Some classical tautolo-
gies are not intuitionistic tautologies; p v ¬p is a classical tautologý, but 
not an intuitionistic one, because we need either a proof of p or a proof 
or ¬p, and it may be the case that we have none of them. Since it corre-
sponds to an intuitionistic logic system, wome additionl axioms should 
be added in order to consider a classical system, for example ¬¬ φ → φ 
for every proposition φ. If we want to consider a modal logic, we need to 
add the appropriate categorical equivalents of modal operators.



Kairos. Journal of Philosophy & Science 22, 2019
Center for the Philosophy of Sciences of Lisbon University

Nino Guallart

68

Monads and comonads. Monads are endofunctors equipped with two 
natural transformations. Endofunctors are functors from a category onto 
itself, whereas natural transformations are.

 For a given category C and a given monad T there are two natural 
transformations, η: 1

C
 ⟶ T (being 1C the identity functor on C) and 

μ: T x T ⟶ T, which must satisfy the following coherence conditions:

	• μ* T μ = μ * μ T

	• μ T η = μ η T = 1
T

A comonad is the categorical dual of a monad. Monads and comonads 
are commonly used in order to categorise modal operators. <> can be 
understood categorically as an endofunctor from a propositional cate-
gory to itself. [] is less satisfactorily equivalent to its dual. If we consider 
not only a single modality but a family of them, we can understand them 
as a family of endofunctors, each one for each modality.

Category ModalProp is defined as follows: 

φ ::= F | T | b | φ+ φ | φ x φ | <a> φ | [a] φ

The only difference from the category Prop is the addition of <a>, 
which is interpreted as a the categorical counterpart of a modal operator, 
being ‘a’ an element of a non-empty set A of modalities, or simply <> 
if we are considering just one. We can consider this category as a kind 
of CS4-category, a bi-CCC with coproducts, a monad and a comonad, 
since composition of monads and comonads is reflexive and transitive 
(Alechina et at, 2001).

The category ModalProp/* is an quotient class, in which objects are 
wff that have the same logical structure, meaning that we can consider 
them as wff of a quantified propositional logic; in this way, (φ) <a>(φ→φ) 
is the class of all formulas that can be obtained substituting φ by any 
wff, that is, <a>(φ→φ) for any φ).

We can also consider the following HML category, which is defined as 
follows:

φ ::= F | T | φ+φ | φ x φ | φ → φ | <a>φ | [a]φ

We do not have other objects other than the initial and terminal objects, 
and their compositions. Given a family of actions, this category is use-
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ful for modelling the composition of transitions from an initial state to 
another one, understanding objects as states and the corresponding 
functors as actions.

In both cases, it is easy to see that these categories are semantic cate-
gorical interpretations of first order logic languages, where the conjunc-
tion of two formulas is the product of them, and the disjunction equates 
to the categorical sum and implication to function application. 

4.3 Categorical Interpretation of Properties over Frames and Models

This section is the final step of the study that has been established in 
this paper, establishing in a succint way possible lines of application of 
category theory to the study of modal logic. As has been said, bisimula-
tion in modal frames and models allows to establish equivalence classes 
of them, and therefore quotient sets. This means that each equivalence 
class determines a class of frames that satisfy the same modal wffs.

We have studied this relationship in terms of categories. If we con-
sider the categories of Kripke frames and their quotient sets regarding 
bisimulation, we have seen that we obtain the corresponding quotient 
categories over them.

The central point of the categorical study of bisimulation if the fol-
lowing: If we consider the category Prop, the fundamental property of 
bisimulation can be seen in a very simple way: since all bisimilar models 
satisfy the same modal wff’s, the valuation function can be represented 
with a fuctor from the category ModalProp of modal wff’s to the quotient 
category of bisimilar models, Krp/bisim.

It would be possible to set a functor from to ModalProp to Krp/*, 
establishing a relation between the propositions of the first category and 
the objects of the second one, that are classes of frames that hold a cer-
tain property, such as every proposition characterises a certain property 
of frames, for example being reflexive. Actually, what we define is a pair 
of adjoint functors, I: ModalProp → Krp/* and L: Krp/* → Krp/bisim 
such as the first one is the left adjoint of the second one. The basic idea 
is that a certain property, expressed in modal logic, corresponds to a 
class of equivalent frames, and conversely, a certain class of equivalent 
frames corresponds to a certain modal property.
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For example, the following formulas define possible properties of 
frames:

	• []φ → φ defines the subcategory of reflexive frames. 

	• []φ → [][]φ defines the subcategory of transitive frames.

	• φ → []<>φ defines the category of symmetric frames.

More complex subcategories are possible via all possible combina-
tions. The subcategory of reflexive and transitive frames (S4) is nothing 
but the intersection of these, for example. 

We consider this line of research fruitful, and we leave the development 
of this issue for further works.

5. Concluding Remarks

In this work we have done a brief introduction to relational structures 
and later we have studied the notion of bisimulation between them, with 
special emphasis on the relation between bisimulation and modal logic. 
In the second part of this work we have sketched an outline of a cate-
gorical interpretation of bisimulation. More precisely, we have seen that 
the fundamental property of modal logic can be represented in category 
theory in a very straightforward way. Possible future works may extend 
this categorical approach in different directions: 

	• A detailed study of the categorical interpretation of Kripke models.

	• A study in categorical terms the different modal axiomatic systems, 
such as K, T, S4 or S5 and their corresponding properties, exploring 
what kind of subcategory of Krp determines each axiomatic schemata, 
and studying it in relation to the logical systems that each element of 
quotient category defines.

	• The relationship between Hennessy-Milner and coalgebraic modal log-
ics in category theory.

	• A further study of the relationship between game semantics and bisi-
mulation, since actions can be seen as moves in a dialogical game.
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