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Abstract: Energy conservation is an urgent issue to solve on a global scale. A more and 
more widely used method for energy saving and emission reduction is the applications of  
data mining technology including data clustering in power system. However, power data 
has characteristics of large volume, high dimensions, discrete and complex datasets which 
lead to poor clustering results when we choose common classic clustering algorithm. In our 
paper, we proposed D-CFSFDP algorithm which is suitable for power data clustering. We 
do experiments compared with DBSCAN algorithm and K-means algorithm. We 
demonstrate the power of the algorithm on the power data from Shanghai Energy 
Conservation Supervision Center.  

1. Introduction 

Energy is an important foundation for human society to survive and develop. At present, Energy 
consumption is growing rapidly and demand for energy is greatly increased. Increasing energy 
efficiency and saving energy on a global scale is imminent. In 2016, the endorsement of G20 
Energy Efficiency Leading Programme (EELP) of Hangzhou G20 Summit stated that energy 
conservation and efficient energy consumption are one of the best ways to rationalize the use of 
energy resources and the most important measure for climate change in the medium and long term 
for every countries. Energy saving and emission reduction of power industries are fundamental to 
the resources and environmental safety, which are directly linked to the overall goal of achieving 
energy saving and emission reduction [1]. 
In recent days, a new idea for energy saving and emission reduction is the applications of using data 
mining technology in power system [2]. We joined a project of the Shanghai Energy Conservation 
Supervision Center, aiming at finding the methods to save energy by mining the large amounts of 
power data. However, power data has characteristics of large volume, high dimension, discrete and 
complex datasets which leads to poor clustering results of power data when we choose common 
classic clustering algorithm.  
In order to solve this problem, in this paper, we will propose a clustering algorithm suitable for 
power data clustering, D-CFSFDP algorithm which is based on the algorithm proposed in 2014 of 
Alex Rodriguez et al [3].  
The rest of this paper is organized as follows. In Section 2,we will discuss related work of CFSFDP 
algorithm. In Section 3, we are going to describe our proposed algorithm in detail. Experiments and 
evaluation will be discussed in Section 4.In the end, Section 5 concludes our paper. 
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2. Related Work 

Alex Rodriguez and Alessandro Laio[3] proposed a clustering algorithm in 2014.Their paper, 
clustering by fast search and find of density peaks (CFSFDP) is proposed to cluster  data by finding 
of density peaks. CFSFDP is based on two assumptions that: a cluster center is a high dense data 
point as compared to its surrounding neighbors, and it lies at a large distance from other cluster 
centers. Based on these assumptions, CFSFDP supports a heuristic approach, known as decision 
graph to manually select cluster centers. However manual selection of cluster centers is big 
limitation of CFSFDP in intelligent data analysis. Rongfang Bie, Rashid Mehmood et al 
[4]proposed a fuzzy- CFSFDP method for adaptively selecting the cluster centers effectively. fuzzy- 
CFSFDP uses the fuzzy rules based on aforementioned assumption for the selection of cluster 
centers,  compared the resulting clusters with the state of the art methods.  
Zhang WenKai and Li Jing [5]proposed an extension of CFSFDP, E_CFSFDP inspired by the idea 
of a hierarchical clustering algorithm CHAMELEON because that CFSFDP performs not well when 
there are more than one density peak for one cluster, namely "no density peaks". They used the 
original CFSFDP to generating initial clusters first, then merge the sub clusters in the second phase. 
They have conducted the algorithm to several data sets, of which, there are "no density peaks".  
Shihua Liu, Bingzhong Zhou[6] proposed DPC_M algorithm based on CFSFDP.DPC algorithm 
constructs a Decision Graph by computing a local density and a relative distance to discover the 
cluster center in a dataset. The remaining data points in the dataset are allocated at once to the 
cluster to which the nearest cluster center belongs. The key issue for the DPC algorithm proposed in 
literature is how to define the distance measurement between data points in the mixed dataset. 
Therefore, the DPC_M algorithm designed for the clustering of the mixed data proposed in this 
paper is constructed by using a new unified dissimilarity metric between the mixed data points. 

3. Proposed Algorithm 

 First of all, we will introduce the background of D-CFSFDP algorithm, and then we will describe it 
detailedly in part of this chapter behind. 

3.1. Background 

The algorithm was based on the assumptions that cluster centers are surrounded by neighbours with 
lower local density and that they are at a relatively large distance from any points with a higher 
local density. For each data point, we only need to compute two quantities: its local density  and its 
distance from points of higher density. The local density of data points is defined as: 
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Where cd is a cut off distance. i  is measured by computing the minimum distance between point 

ix and any other point jx with higher density: 
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For point with highest density, we conventionally take )(max ijjj d . 

Generally, i is equal to the number of points that are closer than cd to point ix . The algorithm is 
highly correlated with the distance between points, thus the results of the analysis are robust with 
respect to the choice of cd  for large data sets.  
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Then select data points with large local density ρ and large distance δ as cluster center. In order to 
determine the number of cluster centers quantitatively the author gives a definition of iii   . 
Hence data points with a higher value of are more likely to be cluster centers. Sort in descending 
order and choose data points with relatively large value of  . 
This algorithm has many advantages and it is suitable for power data clustering. However, it may 
exist some problems at some special cases and we would like to make improvements to get a better 
power data clustering result.  

3.2. D-CFSFDP Algorithm 

As mentioned above, local density of data point ix is  
j

ciji ddX )( . Problems do exist with this 

formula in some special circumstances. For example, if i is equal to j and they are the largest 

local density points, what’s more, ix is very close to point jx .These two points belonging to the same 
cluster will be divided into two clusters according to  distance formula. This case will be discussed 
in Step 5 in detail. 
In our algorithm, for the above case, we improve the distance formula by adding: 

If ji   and cij dd  ,Then ijj d . 

Before calculating iii   ,we will take a z score scale for ρ and δ respectively and then calculate γ. 
It will be described in detail later in step 6. 
 
Step 1: Data Preprocessing 

Step 2: Calculating distance ijd  

In field of data mining including clustering analysis, similarity between data points is generally 
calculated by distance.The popular distance formula, Minkowski-form distance is defined based on 
the  norm: 
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When p is equal to 2, ( , )d x y is Euclidean distance 2L .The Euclidean distance between two points is 
the length of the path connecting them. Euclidean distance is the most common use of distance [8, 
9]. In our algorithm, Euclidean distance is also our best choice. 
Step 3: Selection of cd  

The choice of parameter cd is very important that too big or too small may degrade the performance 

of algorithm. If cd is too large, local density of each data point will be consequently larger than it 
should be, which may result in a decrease in the number of clusters. And if it is too small, data 
points that originally belong to one cluster may be divided into several clusters, resulting in a 
significant increase in the number of clusters. For the choice, the author gives a suggestion: one can 
choose cd so that the average number of neighbours is around 1% to 2% of the total number of 
points in data set. We own large power data sets, and the choice for our project is about 2%. 
Step 4: Calculating local density  
Step 5: Calculating cut off distance  
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