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Abstract—We consider a multigroup multicast cell-free
multiple-input multiple-output (MIMO) downlink system with
short-term power constraints. In particular, the normalized con-
jugate beamforming scheme is adopted at each access point (AP)
to keep the downlink power strictly under the power budget
regardless of small scale fading. In the considered scenario, APs
multicast signals to multiple groups of users whereby users in
the same group receive the same message. Under this setup, we
are interested in maximizing the minimum achievable rate of
all groups, commonly known as the max-min fairness problem,
which has not been studied before in this context. To solve
the considered problem, we first present a bisection method
which in fact has been widely used in previous studies for cell-
free massive MIMO, and then propose an accelerated projected
gradient (APG) method. We show that the proposed APG method
outperforms the bisection method requiring lesser run time
while still achieving the same objective value. Moreover, the
considered power control scheme provides significantly improved
performance and more fairness among the users compared to the
equal power allocation scheme.

Index Terms—Cell-free massive MIMO, multigroup multicast,
max-min fairness, accelerated projected gradient

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (MIMO),

where multiple users are simultaneously served by a larger

number of access points (APs) in the same time spectrum

resource, was first introduced in [1] and is being considered

a promising technique for beyond 5G networks. In principle,

cell-free massive MIMO incorporates the inherent advantages

of both network MIMO and colocated massive MIMO [2], and

therefore can achieve high coverage area, spectral efficiency

(SE) and energy efficiency [3]. In particular, cell-free massive

MIMO has the capability to provide users with nearly uni-

form service. Despite several benefits, scalability remains a

challenge in cell-free massive MIMO since (i) the increasing

number of high-capacity backhaul links are required to connect

APs to the central processing unit (CPU), and (ii) large-scale

resource allocation problems need to be solved at the CPU

to deliver the best performance. The latter issue makes the

fundamental performance of cell-free massive MIMO limited

to only the small-scale systems [4].

In many practical situations, a group of users may be

interested in the same information like headline news, weather

update, live streaming, financial data, etc., which has motivated

the study of multigroup multicast systems in massive MIMO

[5], [6]. For cell-free massive MIMO, the first noticeable

work in multigroup multicasting was carried out in [5], where

a closed-from expression of the achievable rate for single-

antenna APs and single-antenna users was derived. Moreover,

the normalized conjugate beamforming scheme [7] was used

in [5], which is devised on the basis of short-term power

constraint (STPC). Note that the goal of the STPC policy is to

ensure that the transmit power is always under the maximum

budget regardless of instant channel gain and thus is of more

practical importance [8]. This is in opposite to beamformers

derived from a long-term power constraint (LTPC) policy

which has been adopted in many previous studies [1], [3].

It was shown in [7] that normalized conjugate beamforming

outmatches the common conjugate beamforming when the

number of APs is moderate as it hardens the effective channel

gains at users.

Power control for multigroup multicast cell-free massive

MIMO systems has not been studied. Doan et al. in [5] derived

the achievable rate based on the assumption that the downlink

power is equally allocated to all groups, which is often

termed as equal power allocation (EPA). In [6], Sadeghi et al.

designed the precoders to maximize the minimum SE which

is commonly known as the max-min fairness problem. To the

best of our knowledge, no prior literature has discussed the

power control for max-min fairness in multigroup multicasting

cell-free massive MIMO which is our problem of interest in

this paper.

In this paper, we consider a multigroup multicast cell-free

MIMO downlink system using time division duplexing (TDD).

Users in a group send the same pilot sequence to APs in the

uplink for channel estimation purpose. Based on the channel

estimates, APs will form different beams to different groups. In

this considered system model, we derive an achievable rate in

closed form and formulate the power control problem for max-

min fairness based on STPC policy. To solve this problem,

we first present a bisection method which is popular in the

context of power control for cell-free massive MIMO [1], [3].

However, such a method is only suitable for cell-free massive

MIMO of moderate sizes. To overcome this issue, we then

propose a low-complexity algorithm based on the accelerated

projected gradient (APG) framework [9], [10]. Simulation



results demonstrate that the proposed power control algorithm

can offer significant performance improvements over the EPA

scheme in the considered scenarios.

Notations: Standard notations are used in this paper. Bold

lower and upper case letters represent vectors and matrices.

CN (0,R) denotes the multivariate circularly symmetric com-

plex Gaussian random distribution with zero mean and co-

variance matrix R. Rx×y represents the space of real matrices

with the dimensions x × y. X∗, XT and X† stand for the

conjugate, transpose and conjugate transpose (Hermitian) of

X, respectively. The “+” sign in the subscript of a space

implies that all elements of that space are positive. E{X}
denotes the expectation or mean of random variable X . xi is

the i-th entry of vector x; [X]i,j is the entry at the i-th row

and j-th column of X. ‖ · ‖ represents the Euclidean norm;

| · | is the absolute value of the argument. The operator diag
converts a vector intro a diagonal matrix. IN is the N × N
identity matrix. ln(·) denotes the natural logarithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a cell-free massive MIMO scenario where M
single-antenna APs are connected to a CPU via a perfect

back-haul link. The APs coherently transmit N independent

messages to N groups of users in a TDD mode. Note that

all users in the same group receive the same message. The

number of single-antenna users in the n-th group is denoted

by Kn. Throughout the paper, we note that the notation nk

refers to the k-th user in the n-th group. In this regard, the

channel coefficient between the m-th AP and the k-th user in

the n-th group is modeled as

hmnk
= ζ1/2mnk

gmnk
, (1)

where ζmnk
and gmnk

represent the large-scale and small-

scale fading coefficients, respectively. We further assume that

gmnk
,m = 1, 2, . . . ,M, n = 1, 2, . . . , N, k = 1, 2, . . . ,Kn,

are independent identically distributed (i.i.d) CN (0, 1) random

variables. In this paper, we also assume that no downlink pilots

will be sent from APs to users. Thus, the transmission in

one coherence time, denoted by τc symbols, only includes the

uplink training phase and data multicasting phase which are

described in the following subsections.

1) Uplink Training: Since the TDD mode is adopted and

the transmission takes place within one coherence interval,

the channel can be considered reciprocal, i.e., the channel

gains on the uplink and on the downlink are deem to be

identical. Consequently, the APs can estimate the downlink

channel based on the pilot sequences sent by all users on the

uplink. Let
√
τpψn ∈ CTp×1, where ψn be the common pilot

sequence transmitted from all users in the n-th group, where

τp is the length of the pilot sequences in symbols. These pilot

sequences are assumed to be independent and orthonormal

(i.e., ‖ψn‖2 = 1, ∀n and ψ†
nψn′ = 0, n′ 6= n ) among N

groups and thus, the effect of pilot contamination is ignored.

The received signal at the m-th AP is given by

ym =
√
ρpτp

N
∑

n=1

Kn
∑

k=1

hmnk
ψn +wm, (2)

where ρp is the power of each pilot symbol, and wm ∼
CN (0, σ2

nITp
) is the noise and σ2

n is the variance of the noise

sample. The m-th AP needs to estimate the channel hmnk
,

based on the received pilot signal ym. In fact, this process is

described in [5] and is re-derived here with further details to

be self-contained. Specifically, the m-th AP projects ym onto

ψn, producing

ỹmn = ψ†
nym =

√
ρpτp

Kn
∑

k=1

hmnk
+ w̃mn, (3)

where w̃mn , ψ†
nwm ∼ CN (0, σ2

n). The minimum mean-

square error (MMSE) of the channel estimate is calculated

as

ĥmnk
=

E{hmnk
ỹmn}

E{ỹ2mn}
ỹmn =

√
ρpτpζmnk

ρpτp
∑Kn

l=1 ζmnl
+ σ2

n

ỹmn.

(4)

Note that the expectations in the above equation are car-

ried out with respect to small-scale fading. Since the el-

ements of ĥmnk
are independent and identical Gaussian

distribution, we can write it as ĥmnk
= γ

1/2
mnk

zmn, where

γmk =
ρpτpζ

2
mnk

σ2
n+ρpτp

∑Kn
l=1

ζmnl

and zmn = ỹmn
√

ρpτp
∑Kn

l=1
ζmnl

+σ2
n

∼
CN (0, 1).

2) Downlink Multicasting: For the downlink multicasting

phase, the APs use the channel estimates obtained in (4) to

form separate radio beams to the N groups. Similar to [5],

we adopt normalized conjugate beamforming under the STPC.

More specifically, we denote the symbol to be sent to the n-th

group by sn such that E
{

|sn|2
}

= 1. Then the transmitted

symbol from the m-th AP is given by

xm =
√
ρd

∑N

n=1

√
ηmn

z∗mn
∣

∣zmn

∣

∣

sn, (5)

where ηmn is the power control coefficient between the m-

th AP and the n-th group and ρd is the maximum power at

each AP. Note that the factor
z∗

mn
∣

∣zmn

∣

∣

in the above is known as

normalized conjugate beamforming which incorporates STPC.

Explicitly, the total power constraint at each AP is

E
{∣

∣xm

∣

∣

2}
= ρd

∑N

n=1
ηmn, (6)

which is independent of the small-scale fading coefficient. We

remark that power control is not considered in [5]. Finally, the

received signal at the k-th user in the n-th group is written as

rnk
=

M
∑

m=1

hmnk
xm + wnk

=
√
ρdank

sn +
√
ρd

N
∑

n′ 6=n

an′

k
sn′ + wnk

,

(7)



where ank
=

∑M
m=1 hmnk

√
ηmn

z∗

mn
∣

∣zmn

∣

∣

, an′

k
=

∑M
m=1 hmnk

√
ηmn′

z∗

mn′
∣

∣zmn′

∣

∣

, and wnk
∼ CN (0, σ2

n) is

the additive thermal noise.

3) Signal Detection based on Channel Statistics and Spec-

tral Efficiency: The k-th user in group n will rely on the

mean of the effective channel gain to detect sn. To see this

we rewrite (7) as

rnk
=

√
ρd E{ank

}sn +
√
ρd

(

ank
− E{ank

}
)

sn

+
√
ρd

N
∑

n′ 6=n

an′

k
sn′ + wnk

.
(8)

As in [5], we use the worst-case Gaussian noise argument

given in [11, section 2.3.4] to obtain the achievable rate

(nat/s/Hz) which is expressed as

Rnk
= ln

(

1 +
ρd
∣

∣E{ank
}|2

ρdVar{ank
}+ ρd

∑N
n′ 6=n

∣

∣E{an′

k
}
∣

∣

2
+ σ2

n

)

.

(9)

Proposition 1. For a multigroup multicast scenario using the

normalized conjugate beamforming, the achievable rate for

user k in group n in (9) is reduced to

Rnk
= ln

(

1 +
πρd

4

(
∑M

m=1

√
ηmnγmnk

)2

ρd
∑M

m=1 ηmn(Nζmnk
− π

4 γmnk
) + σ2

n

)

.

(10)

Proof: The proof follows the same arguments as those in

[5, Appendix A], and, thus, is omitted here due to the space

limitation. We remark that when the power control coefficients

are ηmn = 1
N , i.e., EPA, the achievable rate in (10) becomes

Rnk
= ln

(

1 +
πρd

4N

(
∑M

m=1

√
γmnk

)2

ρd
∑M

m=1

(

ζmnk
− π

4N γmnk

)

+ σ2
n

)

, (11)

which is in fact [5, Eq. (14)].

B. Max-min Fairness Power Control

To ensure the fairness among all the users, we consider the

problem of max-min fairness. Inspired from [10], [12], for

the purpose of developing an efficient numerical method, we

define µmn =
√
ηmn, ∀m, ∀n. As a result, the achievable rate

in (10) is equivalently rewritten as

Rnk
(µ) =

πρd

4

(
∑M

m=1 µmn
√
γmnk

)2

ρd
∑M

m=1 µ
2
mn

(

Nζmnk
− π

4 γmnk

)

+ σ2
n

, (12)

where µ , [µ1;µ2; . . . ;µN ] ∈ RMN , and µn ,

[µ1n;µ2n; . . . ;µMn] ∈ RM , ∀n. To ensure that the total

transmit power at each AP does not exceed ρd, we im-

pose the constrain
∑N

n=1 ηmn ≤ 1, which is equivalent to
∑N

n=1 µ
2
mn ≤ 1, ∀m. The considered power control problem

can be mathematically stated as

maximize
µ

f(µ) = min
∀nk

Rnk
(µ)

subject to
∑N

n=1
µ2
mn ≤ 1, ∀m

µmn ≥ 0, ∀m, ∀n.

(P)

III. PROPOSED SOLUTION

In this section, we propose a low-complexity method for

solving (P). Before doing this, we note that Rnk
(µ) is in fact

quasi-concave and thus, a bisection method can be applied to

solve (P). To see that, we first rewrite (P) as

maximize
µ

t

subject to
∑N

n=1
µ2
mn ≤ 1, ∀m

Rnk
(µ) ≥ t, ∀nk

µmn ≥ 0, ∀m, ∀n.

(13)

It is easy to see that the constraint Rnk
(µ) ≥ t is equivalent

to
√

πρd
4

(

∑M

m=1
µmn

√
γmnk

)

≥

√
et − 1

√

ρd
∑M

m=1
µ2
mn

(

Nζmnk
− π

4
γmnk

)

+ σ2
n. (14)

For a given t, the above constraint is indeed a second order

cone constraint. Hence, a bisection search over t can be

used to find the optimal solution. However, the problem with

such a method is that it has high computational complexity

which makes it less appealing to large-scale problems. In what

follows, we present solutions to (P) using an APG method

introduced in [9]. For efficiently description of the proposed

method, we first reformulate the problem in the form of a

single vector of power control coefficients as described next.

A. Smoothing Technique

Let us denote µ̄m = [µm1;µm2; . . . ;µmN ] ∈ RN which

include all power control coefficients associated with the m-

th AP. The the feasible set in (P) can be expressed as

S = {µ|µ ≥ 0; ‖µ̄m‖2 ≤ 1, ∀m}. (15)

Also, to simply the mathematical presentation, we first rewrite

Rnk
(µ) in a more compact form of µ as

Rnk
(µ) = ln

(

1 +
πρd

4 (γT
nk
µn)

2

ρd‖Ank
µn‖2 + 1

)

, (16)

where Ank
is the diagonal defined as

Ank
= diag

(

[

√

Nζ1nk
− π

4
γ1nk

;

√

Nζ2nk
− π

4
γ2nk

;

. . . ;

√

NζMnk
− π

4
γMnk

]

)

.

(17)

It is important to note that the objective f(µ) (P) is nons-

mooth, which is a preliminary requirement for an application

of a gradient-based method. To overcome this issue, we use

the smoothing technique introduced in [13]. Specifically, for

a given smoothness parameter σ > 0, f(µ) is approximated

by the following log-sum-exp function [13]

fσ(µ) = − 1

σ
ln
( 1

NKn

∑N

n=1

∑Kn

k=1
exp

(

−σRnk
(µ)

)

.

(18)

In [13], Nesterov proved that fσ(µ) is a differentiable approx-

imation of f(µ) with a numerical accuracy of
ln(NKn)

τ , i.e.,

f(µ) ≤ fσ(µ) ≤ f(µ) + ln(NKn)
σ . Hence, with a sufficiently



large value of σ, f(µ) can be replaced with fσ(µ) for the

optimization purpose. In this way, (P) is approximated by

maximize
µ

fσ(µ)

subject to µ ∈ S.
(P̂)

In addition to the smoothness of fσ(µ), the projection onto

S can be done in closed form as shall be seen shortly. This

motivates us to apply the APG method in [9] to solve (P̂).

B. Proposed Accelerated Projected Gradient Method

The proposed algorithm for solving (P̂) is outlined in

Algorithm 1. From (18), the gradient of fσ(µ) is found as

Algorithm 1: Proposed APG Algorithm

Input: z1 = µ1 = µ0 > 0, σ >> 1, δ > 0, α0
y > 0,

α0
µ > 0, 0 < κ < 1

1 for n = 1, 2, · · · do

2 Find extrapolated point yn, where

yn = µn + tn−1

tn
(zn −µn)+ tn−1−1

tn
(µn−µn−1).

3 Find the smallest nonnegative integer ly and zn+1

such that fσ
(

zn+1
)

≥ fσ
(

yn
)

+ δ
∥

∥zn+1 − yn
∥

∥

2
,

where zn+1 = PS

(

yn + κlyαn−1
y ∇fσ(y

n)
)

.

4 Find the smallest nonnegative integer lµ and vn+1

such that fσ
(

vn+1
)

≥ fσ
(

µn
)

+ δ
∥

∥vn+1 −µn
∥

∥

2
,

where vn+1 = PS

(

µn + κlµαn−1
µ ∇fσ(µ

n)
)

.

5 Set αn
y = κlyαn−1

y , αn
µ = κlµαn−1

µ , and

extrapolation parameter tn+1 , 0.5+
√

t2n + 0.25.

6 if fσ
(

zn+1
)

> fσ
(

vn+1
)

then

7 µn+1 = zn+1

8 else

9 µn+1 = vn+1

10 end

11 end

∂

∂µ
fσ(µ) =

∑N
n=1

∑Kn

k=1

(

exp
(

−σRnk
(µ)

)

∇µRnk
(µ)

)

∑N
n=1

∑Kn

k=1 exp
(

−σRnk
(µ)

)
.

(19)

It is easy to see that the gradient of Rnk
(µ) is

∇µRnk
(µ) =

∇µ

(

bnk
(µn) + cnk

(µn)
)

bnk
(µn) + cnk

(µn)
− ∇µcnk

(µn)

cnk
(µn)

,

(20)

where bnk
(µn) ,

πρd

4 (γT
nk
µn)

2 and cnk
(µn) ,

ρd‖Ank
µn‖2 + 1. By recalling the identity ∇x‖Ax‖2 =

2ATAx for any symmetric matrix A, the gradients

∇µbnk
(µn) and ∇µcnk

(µn) in the above equation are cal-

culated as

∇µbnk
(µn) =

πρd
2
γnk

γT
nk
µn, (21)

∇µck(µ) = 2ρdA
T
nk
Ank

µn. (22)

Further note that the projection of any vector x onto the S
is defined as

PS(x) = argmin
{

||x− u|| | u ∈ S
}

. (23)

The Euclidean projection onto S defined in (23) can be done

can be done in parallel and by closed-form expressions. In par-

ticular, the optimization problem in (23) can be decomposed

into sub-problems at each AP m as

µ̄m = argmin
{

||x̄m − µ̄m|| | ‖µ̄m‖2 ≤ 1, µ̄m ≥ 0
}

, (24)

where x̄m = [xm1;xm2; . . . ;xmN ] ∈ RN . The above problem

can solved by finding the projection onto the intersection of the

positive orthant and Euclidean ball [14, Theorem 7.1]. More

specifically, we first project x̄m onto the positive orthant, i.e.,

[x̄m]+ and then onto the unit-norm ball which is simply given

by

µ̄m =

{

[x̄m]+ ‖[x̄m]+‖ ≤ 1,
[x̄m]+

‖[x̄m]+‖ otherwise.
(25)

C. Complexity Analysis

Now, we describe the complexity of the proposed algorithm

using the big-O notation. Note that for each general step in

Algorithm 1, three factors contribute towards the computa-

tional complexity; the objective (18), the gradient (19) and the

projection (25). It can be easily verified that the computation of

Rnk
requires M multiplications and therefore, the complexity

of finding the objective is O
(

M
∑N

n=1 Kn

)

. Similarly the

gradient ∂
∂µfσ(µ) has the complexity of O

(

M
∑N

n=1 Kn

)

also. The projection operation requires the computation of l2-

norm of RN vectors at all M APs and thus, has complexity

of O(MN). In summary, the per-iteration complexity of the

proposed algorithm is O
(

M
∑N

n=1 Kn

)

.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

method in different multigroup multicasting cell-free massive

MIMO scenarios. The system bandwidth is set to B = 20MHz
and the carrier frequency to f = 1900MHz. We generate the

channel in (1) similar to [5], where σsh = 9 dB be the standard

deviation of the log-normal shadowing. Also, the noise power

is calculated as N0 = k×T ×B×NF , where NF = 9dB is

the noise figure, T = 290K is the temperature, and k = 1.38×
10−23J/K is the Boltzmann’s constant. Further, we choose

ρd = ρp = 0.2W, τp = 20, τc = 200 and Kn = K (i.e.,

same number of users for each group) in all the experiments.

APs and users are distributed uniformly over the area of D =
1km2. The parameters involved in Algorithm 1 are set to σ =
100, δ = 10−5 and κ = 0.45.

First, we plot in Fig. 1 the achieved minimum rate of all

users using Algorithm 1 for two different scenarios. Note

that one set of channel realizations is randomly generated

for each scenario. In particular, we compare the convergence

of the proposed APG method with the the bisection method.

To solve the resulting feasibility problem in each iteration of

the bisection method, we use the modeling tool CVX [15].

It can be observed from the Fig. 1 that the proposed method

reaches the same objective value as the bisection method. The

advantage of Algorithm 1 is that it takes much less run time

than the bisection method to return a solution as recorded

in Table I. Particularly, the bisection method cannot handle
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Fig. 1. Comparison of convergence of Algorithm 1 with the bisection method
for two scenarios; M = 100, Kn = 10 and M = 150, Kn = 15. Here, we
consider four groups with Kn = K users in each group.

large-scale scenarios due to the large required memory and

extremely long run time.

TABLE I
COMPARISON OF RUN-TIME (IN SECONDS) FOR N = 2 AND Kn = 15.

APs Bisection Method Proposed APG Method

100 54.77 6.43

150 68.50 13.58

200 103.75 26.69

Next, we demonstrate the benefits of power control opti-

mization for multigroup multicast cell-free massive MIMO

systems. To this end, we plot in Fig. 2 the achieved cumulative

distribution function (CDF) of per-user rate using the proposed

power control algorithm and compare it with the EPA scheme

in [5]. The results shown in Fig. 2 are interesting in many
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1

M = 100,Kn = 20

M = 50,Kn = 10

Per-user rate (bit/s/Hz)

C
D

F

No power optimization
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Fig. 2. CDF for the considered power control scheme compared with the
EPA scheme. In the experiment, we take N = 2 and simulate two scenarios;
M = 50, K = 10 and M = 100, K = 20.

ways. First, the considered power control scheme outperform

the EPA method in terms of performance for both considered

scenarios. Another observation is that Algorithm 1 is better

in terms of fairness among the users. Note that for the fixed

area, the per-user rate decreases as the problem size increases.

This is due to the fact that with an increase in the number

of users, the inter-user interference among the users of the

different groups increases which in turn causes a significant

decrease in the achievable rate.

V. CONCLUSION

We have considered the max-min fairness problem in the

downlink channel of multigroup multicasting cell-free massive

MIMO. We have formulated the power control problem using

normalized conjugated beamforming scheme which incorpo-

rates the STPC to strictly constrain the downlink power to stay

under maximum allowable power at each AP. To solve the

problem, we have proposed a low-complexity algorithm based

on the APG iterations. Our simulation results have shown that

the proposed algorithm achieves the same objective as the

well-known bisection algorithm but in much lesser run time.

More specially, the proposed APG method outperforms the

EPA method both in terms of achievable rate fairness among

the users.
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