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 Y1 z1 1 Y1 zx 1
 ya z2 1 is to OB. OC. Thus 6 vol. OPQR= /2 Z2 1 xOA.
 Ys z3 1 Ya3 z 1

 But writing equation to plane through P, Q, R, and putting y=0, z =0,
 we get

 Y1 z 1 x11 Y1 Z1
 Y2 z2 1 x OA= x2 22Y 2 -(xly,23), suppose.
 Ya z3 1 X3 y3 Z3

 Now, since any tetrahedron PQRS is equal to the algebraic sum of the
 four tetrahedra whose common vertex is 0, and bases the faces of PQRS,
 we have

 6 vol. PQRS = (x2y34) - (xly3Z4)+(x,y2z4) - (xly2z3)

 Xi y1 Z1 1
 _ X2 Y Z2 , the required expression.

 X3 23 Zs 1'
 4 y4 Z4 1

 When the axes are oblique, we multiply this expression by 2n, where

 4n2 = 1 - 2 cos2 + 2II cos o.,

 L, f/, y being the angles between the co-ordinate axes.
 Univ. Coll., Cork. A. H. ANGLIN.

 643. [K1. 9. b.] The following construction in Practical Solid seems worth
 noting. It has useful applications in Crystallography.

 Let OAMBLCHK be a rectangular parallelopiped. It is required to find
 the point at which the normal through 0 to the plane ABC meets the face
 CHKL. Draw perprs. from 0 to CA, CB meeting CH, CL in D, E. Com-
 plete the rectangle DCEF. Then OF is perpr. to pl. ABC.

 L K

 C D H E F

 E .

 L H

 B -M B O A

 FIG. l.-The parallelopiped in oblique FIG. 2.-The planes CUBL, CLKH rabatted
 parallel perspective. into the plane of the paper, that of OAHC,

 round CO, CH.

 If OC is the axial unit along OZ, and if OA, OB along OX, OY contain
 m and n units respectively, then F is the gnomonic projection of the pole

 of pl. ABC (-+Y +z=) with respect to the unit sphere with centre 0.
 In this case the construction admits of simplification.

 EDWARD M. LANGLEY.

 644. [K1. 1. c.] A Problem.
 ABC is an isosceles triangle. B =C =80?. CF at 30? to AC cuts AB in F.

 A

 BE at 200 to AB cuts AC in E. Prove BEF=30?. E. M. LANGLEY.
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