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I. Introduction

Variance-covariance matrices of estimators of time series models often must be
robust to the presence of heteroskedasticity and autocorrelation of possibly unknown
form. In an earlier paper (Newey and West (1987)), we suggested a class of
consistent estimators that yielded positive semidefinite matrices by construction.
This technique involved calculating weighted sums of estimated autocovariances of
cross products of instruments and residuals. We showed that for a given kernel (a
given rule for weighting the autocovariances) it was necessary for consistency to
let the bandwidth (the number of autocovariances included) increase with the sample
size at an appropriate rate, but otherwise left open the question of how many
autocovariances to include, for a given sample.

This is an important theoretical and practical question. An empirical
researcher must make a decision on a bandwidth for his chosen kernel not with a
sample that is increasing in size, as assumed in asymptotic theory, but with a
sample of a specific fixed size. Many rules that asymptotically lead to consistent
estimates imply different bandwidths for a given sized sample. While some ambiguity
about appropriate choice of bandwidth is inevitable, practitioners would likely find
it useful to have a specific, complete rule that could at least be used as a
starting point for experimentation with alternative bandwidths. We suggest such a
rule, which is data dependent, and is based on both theoretical asymptotic and
empirical Monte Carlo results.

As is well known, the matrix we are interested in estimating is proportional to
the spectral density of cross products of instruments and disturbances at frequency
zero, and we draw on earlier research on nonparametric density estimation. Such
research includes Robinson (1991), who used an approach known as cross-validation to
automatically select parameters to smooth spectral density estimates in a

non-parametric fashion. Research that is more closely related to ours includes
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Andrews (1991) and Andrews and Monahan (1992), who considered the question that we
consider (among others), under a similar set of technical conditions, and used, as
do we, what is known as a "plug-in" approach. Among other results, they showed how
to select a data dependent bandwidth for a given kernel and sample so as to satisfy
an asymptotic mean squared error criterion similar to the one that we use. We build
on this work in three ways.

First, their procedures for selecting the bandwidth optimally require the
researcher to know the order of the ARMA model governing residual autocorrelation
(although misspecification of the order affects only optimality but not
consistency). We show how to select the bandwidth optimally when the form of
autocorrelation is unknown. Second, we perform Monte Carlo studies that are
complementary to theirs. They tried a range of values in some simple models, while
we match the point estimates for our artificial data to those from some data used in
some actual applications that require a heteroskedasticity and autocorrelation
consistent estimator. Third, our procedure is in our opinion somewhat more
convenient computationally, since it does not require fitting of an ARMA model, and,
for most kernels, allows integer as well as real bandwidths.lt

Our experiments indicate that selection of bandwidth according to an
asymptotically optimal procedure tends to lead to more accurately sized test
statistics than do traditional procedures: in one of our two sets of experiments,
use of our procedure results in a marked improvement in size of test statistics
relative to those of a procedure suggested by Schwert (1987), a (very modest)
improvement relative to those of a simple, and in our setup suboptimal, version of
that suggested by Andrews (1991); in another set of experiments, however, all
procedures performed roughly comparably. As do Andrews and Monahan (1992), we find
that prewhitening with a first order vector autoregression prior to application of

our procedure improves the size of test statistics. But in contrast to Andrews
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(1991) and Andrews and Monahan (1992), who recommended a kernel called the quadratic
spectral, our experiments suggest no firm grounds for preferring this or any other
specific kernel. According to these simulations, then, if the bandwidth is selected
according to our optimal procedure, choice of kernel is of secondary importance, and
it may be reasonable to base choice of kernel on grounds such as computational
convenience. In our discussion of our Monte Carlo experiments, we suggest a
theoretical rationale for why choice of kernel being of secondary importance is
compatible with Andrews’s (1991) and Priestley's (1981) proofs of the asymptotic
optimality of the quadratic spectral kernel.

We also find, however, that tests often have size distortions even when our
procedure is used, as did the tests using the procedures in Andrews (1991) and
Andrews and Monahan (1992) for data as serially correlated as are ours. Extensions
or refinements to ours or others’ procedures therefore remain a priority for future
work.

Part IT illustrates our procedure in the context of an informal discussion of
the relation of this procedure to the literature on estimation of covariance
matrices, and is intended to be accessible to the general reader. Part III lays out
the theory, and may be skipped without loss of continuity by readers whose main
interest is in applying our procedure. Part IV presents the Monte Carlo work. Part
V has conclusions. All proofs are in the Appendix. An additional appendix
available on request contains some proofs and some simulation results omitted from

the published paper to save space.

I1. Informal Overview

Suppose that one wishes to estimate the model Ye = X¢'8g + up, where y. and ug
are scalars and Xt and @y are vectors. One has available a (rxl) vector of

instruments Z., with EZ,u; = 0 and Zyue having serial correlation and
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heteroskedasticity of unknown form. As is well known (e.g., Hansen (1982)) for
inference (and for optimal estimation as well, if the number of instruments r is
greater than the number of right hand side variables) one needs to estimate § =
Eﬁ=-wEZtutZt-j'ut-j = E§=_wﬂj = Qg + Z§=O(Qj+ﬂj').

Let T be the sample size, let 3 be an estimate such that T1/2(5-90) is
asymptotically normal,2 let Gt=yt-Xt'§, and define the j'th sample autocovariance of
ztﬁt as 6j = T‘12E=j+12tat2t_j'at_j for j=0, ﬁj = ﬁ_j' for j<0.3 As in Andrews
(1991), the estimators of S that we consider formally may be written as weighted
sums of the aj's. In our Monte Carlo work (but not in our formal analysis), we also
consider such estimators applied to the sample autocovariances of residuals from a
first order vector autoregression (VAR) of the (rxl) vector ztﬁt; see below.

For most although not all weighting schemes of interest the weights are zero

for all je>m+l for some bandwidth m+1<<T, and an estimate S is constructed as:
— A m - » A '
S = 90 + EJ"—‘lkj (Qj'l'ﬂj Y,

where {ij} are the weights. For the Bartlett kernel emphasized in our earlier work,

for example, ky = 1-5/(m+1).

J

The question is how to choose the bandwidth m+l. S is consistent if mom as Tow
and m/Tl/2 -+ 0. But Anderson (1971) and Andrews (1991) show as well that S
converges to S at different rates for different rules for choosing m. For most
kernels, the most rapid possible rate (which will still be less than the T1/2 rate
familiar from parametric models, given that the estimator is nonparametric) occurs
when m increases at the rate of the fifth root of the sample size; the Bartlett
kernel, for which the rate is not T1/3 but T1/3, is an exception.

For the Bartlett kernel, on which we now focus for concreteness, we thus

restrict ourselves to choices of m of the form:



(2-1) m = [parameter x T1/3],

where "[.]" denotes "integer part of." Now the question is how to choose the
"parameter” in (2-1). For expositional convenience, assume for the moment that r=1
so that S and § are scalars. When normalized by an appropriate function of sample
size, §-S is asymptotically N(b,v) for a certain mean b and variance v, where b and
v depend on the data. Given the bias (b=0) in the limiting distribution the
familiar rule of choosing the "parameter" in (2-1) to minimize asymptotic variance
does not seem appealing, and authors such as Priestley (1981, p568) suggest choosing
it to minimize mean squared error (MSE) b2+v. 1In the vector case in which r>1, a
natural way to reduce the problem to a scalar one is to specify a (rxl) weight
vector w and to minimize the asymptotic MSE of w’(g-S)w. The asymptotic mean and
variance depend not only on the data but on w as well, and the optimal "parameter"
will in general be different for different w's. For a given weight vector w, let oy

J

= w'ﬂjw, s(L) - 22§=1ja-, s(0) — og + 2Z§=10 Hannan (1971, p286) and Priestley

je
(1981, p568) show that the (2-1) "parameter" that is optimal by this MSE criterion
is vy = 1.1447(s{1) /5(0)42/3

In practice, of course, the Qj's are not known, so neither are the aj's nor
s(1) ang s(® . But Andrews (1991) shows how to estimate vy so that in an appropriate
sense the resulting estimate of S is optimal by a MSE criterion even when fg is
unknown. Before illustrating our own procedure, we comment on the generality of
procedures allowed both by Andrews and ourselves. These procedures weight the j'th
autocovariance by a smooth function of the ratio of j to the bandwidth m+l, and are
called "scale parameter™ kernels (Priestley (1981,p446)). This excludes at least
two other classes of estimators that are sometimes used in practice.

The first class estimates S by averaging periodogram ordinates. Priestley

(1981,pp580-582), however, indicates that certain scale parameter kernels, including
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in particular one called the Daniell, may be interpreted as approximately averaging
periodogram ordinates. The Daniell in turn is AOminated by the QS kernel in terms
of the MSE criterion, and is nearly as complex computationally. So, while we
recognize that theoretical or simulation evidence on the behavior of such estimators
may turn up important results, we do not view such analysis as a pressing priority.

The second class fits a vector AR or ARMA to cross-products of instruments and
disturbances, and uses standard filtering formulae (e.g., Priestley
(1981,pp600-604)) to construct an estimate of S. It is not obvious that this second
class is well approximated by one or another scale parameter kernel, and detailed
consideration of such estimators is in our view a priority for future research.
Andrews and Monahan (1992), however, show that if the number of lags in the
autoregressive model is very small relative to sample size, so that conventional
parametric theory may be applied to the estimates of that model, one can extend the
theory of Andrews (1991) to cover estimates of $ that combine (a)prewhitening by a
low order VAR with (b)estimation of the spectral density of the VAR residual using a
scale parameter kernel. When step (b) is done with a procedure such as Andrews' or
ours, that step will be asymptotically optimal in the class that prewhiten with a
given and fixed number of lags in the vector autoregression, but may or may not
asymptotically dominate the same procedure applied to the original, non-prewhitened
data.

The formal theory in the next section of this paper does not consider
prewhitening; see the working paper version of Andrews and Monahan (1992) for some
illustrative calculations of when when prewhitening is asymptotically preferable.

We do however, experiment with prewhitening in the simulations reported in section
IV and find, as did Andrews and Monahan (1992), that prewhitening tends to improve
the accuracy of test statistics. Our recommended procedure, then, includes

prewhitening, and proceeds as follows.
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For clarity, assume that the Bartlett kernel is used. As above, let Gt be the
scalar regression residual, Z, be the (rxl) vector of instruments. If the first
element of Z, is the constant term, let the weight vector be
=(011...1);
other choices of w are possible and are discussed briefly in the next section.
Also, let

A A

- Aht-l’

1]
o>
t

A A A A A ’ T A~ A ' - A
(2-2) he = Zeue, A = S{oohehe )’ Blphe qhe 1)L, b =

n - [4(1/100)2/9],

Uj = (T-l)‘12E=j+2{(w'h%)(w’hz_')], j=0,---,n,

s(1) = 2591505, (0 = o5 + 250 105, ¥ = 1.2647((s(1) /5(0)32)1/3,

Thus, & is the (rxr) matrix of VAR(l) regression coefficients obtained by regressing
cross products of instruments and residuals on their first lag, ﬂz is the resulting
(rxl) vector of perioed t residuals; ;j is defined using (T-l)'1 rather than T-1 to
account for the observation lost in fitting the VAR(l). We estimate the population
quantities s(1) = 22§=1jaj and s(0) = og + ZZJ -19 by truncating these infinite sums
at a point indexed by the lag selection parameter n. For a given value of m, the

estimate of S is constructed as

(1-a)-15t(1-a)-1",

T = (ag + =M1 (1-3/(me1)) (@34035 1)), 03 = (r-7 1=l ohikt v, -0, n.

(Note that we have redefined Q:

.) We recommend initially settin
j y g

m = [yr}/3]

and then exercising some judgment about sensitivity of results to exact choice of n

and m--say, by increasing and decreasing n.



This procedure still involves choice of a parameter, the lag selection parameter
n. But there is some evidence from the literature on density estimation that the
final result (here, an estimate of the variance-covariance matrix) is less sensitive

to n than to m (Silverman (1986,p58)).

II1. Theory

We assume that estimation has exploited an orthogonality condition Eht(00)=0,

where the (rxl) vector ht is mean zero and covariance stationary (see below) and 00

is the unknown parameter. In an ordinary linear squares regression, for example, ht

is the vector of cross products of right hand side variables and regression

disturbance. As is well known (e.g., Hansen (1982)), for inference on #, it is
necessary to estimate
¥

ao

(3-1) S

=, 0. = 0.+3, Q. +ﬂ , f1.=Eh h P
j=-aty T B0t Jl( > t-]
Apart from a factor of 2x, S is the spectral density of ht at frequency zero.
As in Anderson (1971) and Andrews (1991), the estimators of S that we analyze

formally can be written as

(-0 s =L ka/mm)e; - 6 TkG/mm) @),

A

where T is the sample size, m(T) is a data dependent bandwidth, k is a kernel, and nj
is an estimate of ﬂj defined below.4 Examples of kernels include the Bartlett, Parzen
and quadratic spectral (hereafter, QS). We take the kernel as given. Our aim in

this part of the paper is to develop an automatic procedure for choosing ;(T) that
will be optimal in a sense defined below. On choice of kernel, see Priestley (1981)

and Andrews (1991), who, using an asymptotic mean squared criterion, recommend the

Qs.



We make the following assumptions on the kernel:

Assumption 1: (a)k(0)=1, k(x)=k(-x), {k(x)| bounded, f?mlk(x)ldx < «, k(x) continuous
at zero and all but a finite number of other points; there is a finite, nonzero q>0
that is the largest real number such that

lim (1-k(x)1/1x]4 = ¢

[x]»> 0 Kk’

for some 0<ck<w.

(b) |k(x)-k(y)| < ¢|x-y| for some c>0.
(¢) k(x) has [q]+1 continuous, bounded derivatives on [0,x], for some x>0, with the

. . +
derivatives at %x=0 evaluated as x » 0 .

Assumptions 1(a) and 1(b) are standard, appearing in Anderson (1971) or Andrews
(1991). Assumption 1l(c) is new here, but will not be binding in practice since it
holds for all of the kernmels in Anderson (1971) and Andrews (1991).

For a matrix A=(aij), let |.| denote the max norm max, || | . We make the

a,.
1.]1° 1]

following assumptions about the data and estimator of 90:

Assumption Zi(a)ht(9) = h(zt,B), where h(z,f#) is measurable in z for all #, and twice

continuously differentiable in # in a neighborhood N of 80, with probability one.

2

(b)Let ht = Bht/aﬁ, h =3 hit/aeao , where hit is the i’th component of ht'

g icds

There is a measurable function f(z) such that supN]ht(9)|<f(z), supNIhtH(9)|<f(z),

Sulehit60(9)|<f(Z)’ i=1,...,r, where for some finite constant D, E[f(zt)2]<D.

(e)(h_(8,.)",vec(h -Eh )’)' is zero mean and stationary to fourth
t' 0 tﬂo tBO

order; S (defined in 3-1) is positive definite; (ht,vec(htg -Ehtﬁ )")’ has absolutely
0

0

(=)
summable fourth cumulants and p-summable autocovariances (so, e.g., ij_m

P
8. <
13171841

«, for ﬂj defined in 3-1).
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172 % -
(@OT(0-05) = 0_(1).

Assumption 2 is also made in Andrews (1991).
We make the following assumptions on the relationship between the data and the

kernel:

Assumption 3: (a)p > q+.5+.25q_l (where p is defined in Assumption 2, q in Assumption
1.
(b)Let d = .5{(2q+1)/(2p+1)). Then |k(x)| < c|x|-b for some ¢>0 and some b

satisfying b > 1 + {(1-2g)q-g}'1.

Andrews (1991) and Andrews and Monahan (1992) maintain conditions similar to those
given in Assumption 3. Note that assumption 3 implies that 0 < {(1-2g)q-g}'1. For
any kernel for which k(x)=0 for |x|>1 (a group that, to our knowledge, includes all
kernels used in practice except the QS), Assumption 3(b) holds trivially for
arbitrarily large b. For the QS kernel, Assumption 3(b) requires p>23/4, a
constraint that we discuss below.

We assume that one is interested in estimating w’Sw, for some (rxl) weight

vector w. One has available a sequence of estimates {WT} that converge in

probability to w at a suitable rate:

4 Tq/(2q+1)(w -w) Bo.

Asgumption
Assumption T

It is possible that w,, is nonstochastic, say wT=w=(0 11 ... 1), as in our Monte

T
Carlo work below. Alternatively, since, in general, one is ultimately interested in
estimating not S but a variance-covariance matrix, say, V, which is, say, (axa), one

might have w'Sw = (a'H)S(H'a) = a'Va, for some (axl) weight vector a and some (axr)

matrix H,, with wT=a'HT. For ordinary least squares, for example, with a vector of
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1 T 1

, HT=(T_1Z XX 'Y ~. 1In this example and

. . - _ Py
right hand side variables X, HB=(EX X ") =1

more generally Tl/z(wT-w) is bounded in probability, so Assumption 3 is easily
satisfied.
GConsider first optimal choice of bandwidth m(T) in the hypothetical case where

A

htEh(zt,Go) rather than htEh(zt,G) is observed. Let

3-3 o.=w'll,w,
(3-3) j 4
(q)_g 19 0 14 . 0% s (O
(3-4) s —Zj=_w|J| W ij = zj=-w|J| oj for q=0; 0'=1 == s =zj=-waj’
= -1.T , . = = , .
(3-5) Qj =T Et=j+1htht—j for j = 0, ﬂj—ﬂ_j for j<0.
Lemma 1 Let
= T-1 = = T-1, =
3-6 5 =3z k., =G, + X, 7k, (Q,+G!
-0 J=-T+173] 0 * Bk (05405

where kjsk(xj), ijj/m(T), and {m(T)} is a nonstochastic sequence of bandwidths such
that m(T)-»» as T->w, with m(T)q/Teo, m(T)/T30. Suppose that s(q)#O. Then no sequence
of bandwidths yields a smaller asymptotic mean squared error (smaller lim Toseo
E{normalized w'(5-S)w) 2) than if m(T) = 1T1/(2q+1), where

(3-7) y = c'r{s(q)/s(o)]2/(2q+1), CYE(qCE/f?me(x)dx)l/(2q+l).

The bias squared component of the MSE is (1-qcks(q)}2, the variance component is

27(5(0))2ffwk2(x)dx; the normalization factor is Tq/(2q+1).

Lemma 1 follows by finding the y that sets to zero the derivative of the

standard expression for the mean squared error (Hannan (1971, p286), Priestley (1981,
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p568)). See Andrews (1991) for a proof under the conditions assumed here,
In practice, of course, vy is not known, nor can ﬁj be computed since ht is not
observed. Suitable sample counterparts to the objects in Lemma 1 must therefore be

used. To this end define:

A -1 T A ~ , . A A ,
(3-8) 0, = T'E_,  hoh 0 for J20, @, - a_ ' for J<O
(3-9) o, = Vi, anT T Et=j+1WT Pe- Vo
(3-10) s o5 51%. for n,g20; 0%=1 ——> (O _ 57
J=-n ] j=-nj

(3'11) ¥ =c {S(Q)/ (0)]2/(2q+1)’

(3-12) ﬂj - k(;j) . %=/ t/ ety

(3-13) ;J.=k(;j>, x,=1/([yr/ P9
(3-14) S = §;%T+1£jAj - a, + = %AJ(G +§ 0y,
(3-15) s = T;}T+1;jAJ -, + j };J(ﬁ +ﬁ )

In (3-10), the dependence of s(q) and s(o) on the lag selection parameter n is
suppressed for simplicity.
As is suggested by (3-10) and (3-11), we will propose obtaining y through use of

ORI

a truncated autocovariance estimator of s and s In principle, one could use a
kernel other than the truncated. We recommend the truncated because it is the

easiest to compute and is efficient in a mean squared error sense (Anderson (1971)).
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Equation (3-11) is to be applied by first squaring the quantity in braces, and then

computing the 1/(2q+1l) root of the result. It follows that ¢y will be positive even
~(0) “(q)

if s or s are negative, so our earlier (1987) reasons for recommending against

using a truncated estimator for § itself are not relevant.

Andrews (1991) suggests obtaining s(o)

and ;(q) by fitting ARMA models of fixed
order and using the estimated coefficients to compute the implied infinite sums;
Andrews and Monahan (1992) suggest prewhitening with a fixed order AR before
following the Andrews (1991) procedure., Our own procedure obviously is useful when
ht does not follow an ARMA process. But an advantage likely to be of more relevance
in practice will be when it is reasonable to suppose that ht is well approximated by
an ARMA process but the order of the process is unknown. Andrews (1991) and Andrews
and Monahan (1992) require a fixed order for the ARMA process and for the

prewhitening AR process, But we allow n > =« as sample size > =, so our procedure

still yields the optimal estimator in such a case. Our procedure is also simpler

(0) (q)

computationally, in our opinion, especially when accurate estimation of s and s
requires estimation of a high order ARMA process for ht. That high orders might be
required in practice is suggested by Cochrane (1988), who, in a related context, has

argued that for economic data low order ARMA processes tend to yield poor estimates

0 (@

A - A

In (3-14) and (3-15), S and S differ only in that § uses a real bandwidth (as

of infinite sums of autocovariances such as s and s

suggested by Andrews (1991)), S an integer bandwidth. We show that the two are
asymptotically equivalent for most kernels used in practice (an exception is the QS).
Choice between the two thus depends on convenience. To prevent confusion, we note
that even in a model with a single instrument (r=1), there is a difference between
A(O) A A(O) Py

s and 8. s is a truncated autocovariance estimate, while S uses a nontrivial
kernel, which according to Assumption 1, must not be the truncated kernel.

The key question is how to choose the lag selection parameter n in (3-10) as a

function of sample size and data. For real bandwidths, this is considered in Theorem
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1, whose proof is in the Appendix.

A

(q)#O. Let v be estimated so that

Theorem 1 Assume s

1-(4e/2q+1)

(3-16a) T 2P 1,

he
(2q+1)

- 2
(3-16b) T n-> 0,

for some ¢ such that
-1
(3-17) {(q+.5)d < € <.,5q - (2b-2) —,

Then

A

(3-18) Tq/(2q+1)(WT'SWT—W'§W) B,

The smoothness of the spectral density of (ht',vec(hte }')' at frequency O,

0

which is indexed by p, sets a lower bound on how fast one can increase the lag
selection parameter n; the characteristics of the kernel, which are indexed by q and
b, set an upper bound. Assumption 3(b) guarantees than in (3-17) (g+.5)d < .5q -
(2b«2)-1. In our discussion of Assumption 3 above, we noted that it will hold for
the QS kernel only if p>23/4. It is doubtful that a constraint like p>23/4, or any
other manifestation of the potentially tight bounds on the rate of increase in n
implied by Theorem 1, will be binding in practice, since it is highly unlikely that
an investigator would suspect that the autocorrelations of his data die out at a

specific slow rate such as that suggested by p=<23/4. Insofar as an investigator has
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a prior on p, it is often that implied by the assumption that ht and htB ~ ARMA of
0

finite order, in which case p==» and d=0. Then Assumption 3 will not bind for any

kernels used in practice, (3-16a) 1is satisfied as long as n » «», and the leftmost

inequality in (3-17) is satisfied as long as 0<e. Together with (3-16b), the

rightmost inequality in (3-17) yields the following implied rate of increase of n for

some common kernels:

Bartlett: n - o, 1'1,/'1.‘2/9 > 0,
Parzen: n - w«©, n/Th/25 > 0,
quadratic spectral: n - o, n/T2/25 - 0.

The rate for the Parzen (Bartlett) also applies to the many other kernels for which
g=2 (g=1) and k(x)=0 for |x|>l; see Anderson (1971) and Priestley (1981) for
examples.

We now consider integer bandwidths, which may make for more convenient

computation.

Theorem 2: Let the assumptions of Theorem 1 hold, with Assumption 3(b) strengthened

so that
(3-19) b > max(l + {(1-2g)q-g1'1,3).
Then
(3-20) Tq/(2q+1)(wT’§wT-w'§w) B o,
The condition (3-19) applies to any kernel for which k(x)=0 for [x|>1, but does
exclude one kernel sometimes used in practice, the QS.

What happens if ht happens to be serially uncorrelated, but the researcher does

not know this and applies our procedure? Theorem 3 establishes that a consistent
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estimate will still result.

(q)

Theorem 3: Assume that Ehtht_j'=0 for j=0, so that s =y=0. Then under the

conditions of Theorem 1,
(3-21) sBs.

Under the conditions of Theorem 2,

(q)

It should be noted that it is possible to have s ' *'=0 even if ht is serially

. 2 _. . (2)=
correlated. A scalar example is ht~MA(2), Eht-l, Ehtht-l 0, Ehtht-Z_ .25 ==> g

Ehi+4Eh h 0. It is possible that our procedure will then lead to an inconsistent

te-2"

estimate of S, but such cases clearly are singular,

IV, Monte Carlo Results

A, Description of Estimators

Using OLS estimation of various regression models, we experiment with Bartlett,
Parzen, quadratic spectral (QS) and truncated kernels, Iin some cases with the VAR(1l)
prewhitening described in section IT and below. We used integer bandwidths for the
Bartlett and Parzen kernels, which satisfy the conditions of Theorem 2, real
bandwidths for the QS kernel, which satisfies Theorem 1 but not Theorem 2. The
truncated kernel satisfies the conditions of neither theorem (assumptions 1(a) and
1(b) both fail). For this kernel, as well as in some of the computations with the
Bartlett and QS kernels, we used bandwidths not chosen in the data dependent fashion

suggested by our theory.
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Panel A in Table I lists the formulas for the four kernels, as well as one for
the population value that is to be estimated. For notational simplicity, we
suppress any data dependence of the bandwidth m. The formula for the Bartlett
kernel, for example, maps into the previous discussion by defining Ej=1-j/(a+1) for
j= &E[;T1/3], Ej=0 for j > &. Panel B lists some key parameters for each kernel.
For prewhitened kernels, the estimate of S was adjusted by the estimate of the
VAR(1l) regression coefficients as described below.

Table II presents a complete list of the kernels used in the Monte Carlo
experiments. Panel A describes some estimators that do not use our procedure to
obtain the bandwidth or lag truncation parameter. We include these for comparison.
In line (1), the rule for selecting the bandwidth of the Bartlett estimator is one
used by Schwert (1987) in a study that considered in part finite sample properties
of this estimator in a unit root context. In line (2), the bandwidth is selected by
the sort of procedure suggested by Andrews (1991) and Andrews and Monahan (1992).
Let 3 be the estimated first order autocorrelation coefficient of w'ﬁt or w'ﬁt (ﬂ{
is the residual after VAR(1l) prewhitening, see below). The bandwidth is set to
1.3221(442/(1-)4)1/511/5 = 311/5, which is optimal if w'h, (or the residual after
prewhitening) follows an AR(l) in population (Andrews (1991)). Since that is not
the case with our data generating processes, this procedure is consistent but not as
efficient as the one proposed here. In line (3), the truncated estimator was used
by, e.g., Hansen and Hodrick (1980). The formula “[4(T/100)1/5]“ was chosen by
analogy to that for the Bartlett estimator in line (1), with the "1/5" exponent
somewhat arbitrary; the smaller this exponent, the more efficient asymptotically is
this estimator. The formula "n=12" for the other truncated estimator was chosen
because it was known a priori in the experiments reported in Table V that all

autocovariances after the twelfth were zero.

Panel B describes two estimators that are not feasible in actual application,
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which we use to gauge the effects of sampling error in estimation of y and the
autocovariances of hy. The estimator in line (4) uses the population spectral
density, the one in line (5) a Bartlett estimator using the population value of «.
The latter sets the number of lagpged autocovariances used (m, in the notation of
line (1) of Table 1) to the nonstochastic value [1T1/3].

Panel C of Table II describes the kernels that choose bandwidths optimally.

The "2/9" exponent in line (6), as well as the "4/25" and "2/25" exponents in lines
(7) and (8), were chosen to let the lag selection parameter n increase at the
maximum rate allowed by the theory.5 Results when a "1/9" exponent was used for the
Bartlett kernel were similar to the "2/9" results.

In panel C, the factors of 4 and 12 were chosen to mimic Schwert (1987). For
prewhitened kernels, the factor of 3<4 was chosen because prewhitening will tend to
reduce serial correlation. All prewhitened experiments were also done with a "6"
replacing the "3," with very similar results. Once again, some of the kernels set
n=12 independent of sample size because it was known a priori in the experiments
reported in Table V that all autocovariances after the twelfth were zero.

All our experiments used OLS estimation. For y. and X, defined below, write
the OLS regression as y.=X.'fgptu.. Let §=(E¥=1tht')'12%=1xtyt be the OLS estimate,

A

A e A
u, = y.-Xi'# the OLS residual, h. = X ug cross products of right hand side variables

A

z¥=2ﬁtﬂt-l'(EE=2ﬂt-lﬂt-1')-1 the VAR(l) regression estimate, A

and residual, ALS
be ALS adjusted in a fashion that is guarantees that R has eigenvalues of modulus
less than 0.97 (see below), ﬁz = ﬁt - Aﬁt—l the residuals corresponding to the

adjusted VAR(1l) estimate. Then the asymptotic variance covariance matrix used in

computing test statistics was

(4-1) (r-15T_1x.X.’) L(estimate of $)(T"1=T_;x.x.")" L.
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For non-prewhitened estimators, the estimate of S in (4-1) was computed as indicated
in Table I, using the sample autocovariances of ﬁt- For prewhitened estimators, the
estimate of § in (4-1) was computed as

(1-A)-Yst(1-a)-1r or (1-A)-18t(1-a)-1v,
where St and St were computed as indicated in Table I, using the sample
autocovariances of ﬁl. In all experiments, the first element of X, was a constant
term and the weight vector w was set to (011 ... 1)'.

The adjustment of RLS to insure eigenvalues of modulus less than 0.97 is as in
Andrews and Monahan (1992): Let ﬁ and 6 be (rxr) matrices whose columns are the
eigenvectors of RLSRLS' and ALS'RLS’ RLS = E'RLSG, A the matrix that results when
the diagonal elements of KLS greater than 0.97 are replaced by 0.97 and those less
than -0.97 are replaced by 0.97; then R = ﬁﬁé'. (As reported in the additiomnal
appendix available on request, our results showed little sensitivity to this

adjustment, so the procedure that we recommend in part II omits such an adjustment.)

B. Overview of Experiments

We performed two sets of experiments, each motivated by a different body of
empirical literature. In each experiment, the number of repetitions was 1000, and
the same 1000 sets of data were used for all kernels., The first of our two sets,
which consisted of two experiments denoted Al and A2, was stimulated by the
literature on testing for Granger causality in the bivariate money-income process.
One way to test for Granger causality from money to income is to estimate by OLS a
two sided projection of money onto income and test the null that the coefficients on
future money are zero (Sims (1972)). The residual from this projection will in
general display serial correlation of an unknown form, and so the procedure we have
developed here is relevant.

To calibrate these experiments, we obtained monthly data on M1 and industrial

production, seasonally adjusted, 1959:9-1988:2. After taking both monthly and
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quarterly log differences, we estimated the one sided projection of y, = growth in
Ml on x; = growth in industrial production. We also estimated univariate processes
for uy = the residual to this projection and for growth in industrial production.
The sample size was 342 for the monthly regression, 110 for the quarterly. Two data
generating processes were then defined, one in which the parameters were matched to
those estimated for the quarterly data (experiment Al), with the other to the
monthly estimates (experiment A2).

Panel A of Table III describes the regression models, where, in a slight abuse
of notation, the scalar elements of the unknown parameter vector fp are denoted §q,
62, ... , 8, r=6 (experiment Al) or r=8 (A2) The data were generated by using the
indicated AR(p)’'s (p=4 for Al, p=6 for A2) to generate T=100 (Al) or T=300 (A2)
observations on x; and ug, then using the parameters listed in a footnote® to
generate y,. The actual initial historical values of money growth were used as
initial conditions in generating xy. The initial u.'s were set to zero, and the
first 100 observations generated were discarded (i.e, observations 101-200 (Al) or
101-400 (A2) were used to generate y ). The innovations in x and u. were assumed
normal and independent, so there is no conditional heteroskedasticity. The
population autocorrelations of w'h, reported in the Table were computed
analytically. So, too, were the autocovariances of hy, the first 60 of which were
used to compute the population value of S (row 4 of Table II, row 5 of Table IV).
(The infinite sum was approximated by the sum of the first 60 terms because for both
Al and A2 the last 20 lags (lags 41 through 60) caused s=w'Sw to change by less than
10"% of one percent.)

Panel B of Table III describes the setup of our second set of experiments,
which was motivated by the literature that tests whether the log of a forward
exchange rate (f _13 in the notation of panel B) is an efficient predictor of the

log of the corresponding spot rate (denoted e )--i.e., whether ft-13=Et-13et'7 The
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lag of 13 comes from Hansen and Hodrick (1980), who used weekly data and a 13 week
ahead forward rate, The test we use is one of theirs, obtained by regressing the
realized difference between the two rates (x =e. -f._13) on a constant and x _13 and
X¢.14,» and testing whether all three coefficients are zero. Under the null, cross
products of regressors and the disturbance will follow a MA(12) process.

As indicated in panel B, we assume that e  follows a random walk with
GARCH(1,1) disturbances, a process consistent with the results of many recent
studies of weekly bilateral dollar exchange rates (e.g., West and Cho (1993)); h¢

will therefore be conditionally heteroskedastic in these experiments. Since the

2
n,t-

2

coefficients on ny_ 1 and o 1 sum to 0.9, the data display the substantial serial

correlation in the conditional variance of e -e._ 7 that is suggested by such
studies. When the coefficient on "%-1 is 0.05 (experiment Bl), the formulas in
Bollerslev (1986) indicate that h, has finite fourth moments, as is required by our
theory. When this coefficient is 0.30 (experiment B2), h, has finite second but not
third moments; this is inconsistent with our theory but seemed worth studying since
some empirical estimates do indeed imply that such moments do not exist. The
variances of ey and 5, were chosen so that the implied unconditional variances of
er-er_q1 and et'ft-13 matched those of weekly data for the Deutschemark-dollar,
1971-1991, |

For both Bl and B2, two sample sizes were used: T=300 is roughly that of Hansen
and Hodrick (1980), T=1000 roughly that currently available to a researcher using
weekly data from the current floating exchange rate era. To generate a data set,
the initial 0%0 and ny were set to the unconditional variance of e -e._ ;. 1100
observations were then generated, the first 100 of which were thrown away.
Observations 101-400 were used when T=300, observations 101-1100 when T=1000. Once
again, the population autocovariances of w'h, and of h. were computed analytically.

C. Simulation Results
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Table IV has sizes of nominal 1, 5 and 10 percent tests for experiments Al and
A2. All the feasible kernels overreject, with sizes of nominal 5 percent tests, for
example, ranging from about 10 to about 25 percent. So, too, does the non-feasible
Bartlett kernel that uses the population bandwidth (row (6)). That the
{non-feasible) kernel using the population S under- rather than overrejects (row
{5)) indicates that error in estimation of the autocovariances is in part
responsible for the overrejections. Comparison of rows 3 and 4, 7 and %, and 10 and
12 indicates that prewhitening usually leads to a small improvement.

Table IV suggests to us the following. First, in this experiment, there are no
firm grounds for preferring our procedure over the others we consider; indeed, to a
referee and perhaps others it suggests that the QS5-AR(1l) procedure, which in its
prewhitened form (line (3)) was most accurately sized of all feasible estimators in
all columns but (4a), should be used. Second, in samples as small as that in these
experiments (T=100 and T=300), our procedure performs less well with a relatively
large lag selection parameter: compare lines 7 and 8, and lines 10 and 11. Third,
within the class of estimators that use our procedure, the experiment suggests no
particular grounds for preferring one kernel over another. The Bartlett, Parzen and
QS kernels in lines 7, 10 and 13, each of which use a lag selection parameter of 4
or 5 (i.e, 4=<n<5), all perform comparably.

This last point will apply in our second set of experiments, so we pause here
to suggest a theoretical rationale for it. Consider an analytical expression for
the finite sample mean squared error in estimating s = w’'Sw, obtained by dividing an
asymptotic biased squared and an asymptotic variance by appropriate functions of
sample size. The bias squared and variance are those for a hypothetical estimator
such as that in Lemma 1 that uses cross products of regressors and unobservable
disturbances rather than cross products of regressors and OLS residuals. That is,

for a given kernel, use the population values of s(q), s and ¥ to compute
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{(4-2) 7-24/(29+1) ¢ 5295(9) constant y2/(2q+1)

where T=100 or T=300, g=1 for the Bartlett kernel, q=2 for Parzen and QS kernels,
and the constant varies from kernel to kernel. It may be shown that apart from the
factor of T'ZQ/(2q+1), (4-2) is the mean squared error given by Lemma 1.

Expressed as a ratio to the figure for QS, the resulting figures are as
follows. Bartlett: 0.76 (experiment Al), 0.88 (A2); Parzen: 1.09 (Al and A2).

It may appear surprising that the MSE for Bartlett is smaller than that for QS,
since the QS is asymptotically optimal by our mean squared error criterion among all
kernels that generate positive semidefinite estimates (Andrews (1991)). To
understand why this theoretical figure is lower for the Bartlett, note first that
the MSE for the Bartlett is computed as (asymptotic MSE)/T2/3, for the QS as
(asymptotic MSE)/TA/S; with a big enough sample, QS will be more efficient. But for
our data generating processes, T=300 evidently is not sufficiently big. The key
feature of our data generating process that makes the Bartlett MSE relatively small
is that s(l)EZE§=1jaj (which is relevant for the Bartlett) is small relative to
5(2)522§=1j20j (which is relevant for the QS kernel). This in turn will tend to be
true if the autocorrelations of h. are positive and die out slowly, even if, as
indicated in panel A of Table III, all but a few autocorrelations are small enough
that they might be ignored in traditional Box-Jenkins analysis. As noted in the
previous section, Cochrane (1988) argues that this is a possibility with economic
data.

Now, the small magnitude of the 1.09 figure for the relative MSE of the Parzen,
and similarly small figures for some other kernels for which g=2, led Priestley
(1981, p574) to suggest that which of such kernels one uses is of secondary
importance; as argued above, for economic data, which often seem to have high order

autocorrelations that are of the same (positive) sign, it is our view that as long
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as one chooses the bandwidth optimally, choice of kernel may well be of secondary
importance even if one considers kernels with q=1 as well.

In the actual experiments, the MSE’s of the estimators in lines 7 and 10
(again, relative to that of QS in line 13) were as follows. Bartlett: 1.01 (Al),
0.99 (A2); Parzen: 1.03 (Al), 0.99 (A2). Thus in practice as well as according to
(4-2) QS did not uniformly dominate other estimators in terms of MSE. However, here
and for other kernels, the very simple asymptotic approximation (4-2) did not
perfectly predict the ordering nor the dispersion of the relative MSE’s. This
indicates that sampling error in estimation of the regression vector, which is
ignored in (4-2), is important in practice. More generally, it illustrates what to
us is disappointingly small guidance of the asymptotic theory for the behavior of
the estimators in experiment A.

The theory, however, is more useful in experiment B. Table V has results
analogous to those reported in Table IV. As in experiment A, all feasible kernels
overreject, as does the Bartlett estimator that uses the population y (line (6)).
Interestingly, each kernel performs about as well for Bl (for which the asymptotic
theory has been shown to apply) as for B2 (for which it has not).

Nonetheless, the asymptotic theory is useful here. First, rejection
frequencies are closer to nominal levels for sample sizes of 1000 than 300 (compare
column (5) to (4) and column (7) to (6)). Second, the Bartlett estimators that use
the data dependent bandwidth (lines (7) and (8)) perform markedly better than the
Bartlett estimator that does not (line (1)), while the QS estimator that chooses the
bandwidth optimally (line (13)) provides a (very) modest improvement over one that
does not (line (2)). Third, with the larger sample size, there is not much
sensitivity to how the lag selection parameter n is chosen (in columns 5 and 7,
compare lines 7 and 8, 10 and 11).

In this experiment, the VAR(1l) prewhitening results in a distinct improvement
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in the accuracy of test sizes. Compare line 2 versus 3, lines 7 and 8 versus 9, or
lines 10 and 11 versus 12. 1In fact, among the feasible kernels, the two prewhitened
kernels with optimal bandwidths are invariably the most accurately sized (lines 9
and 12), and the prewhitened QS-AR(1l) (line 3) is usually but not always the third
most accurate.

Once again, it seems that choice of kernel is secondary, given our rule for
selecting the bandwidth. Compare (a)lines 7, 8, 10, 11 and 13, or (b)lines (9) and
(12).

Nonetheless, all the feasible kernels have substantial size distortions. This
is troubling, but perhaps unsurprising, in light of the results of Monte Carlo
experiments performed by other authors. Table III indicates that the first order
autocorrelation of these data is .88 (Bl) or .87 (B2). For data generating
processes whose first order autocorrelations are of comparable magnitude and sample
sizes roughly those of experiments Bl and B2, Andrews (1991), Keener, Kmenta and
Weber (1991), Andrews and Monahan (1992), and Christiano and den Haan (1993) all
find comparable tendencies to overreject in their preferred procedures for

estimating a variance-covariance matrix.

V. Conclusions

We have proposed a computationally convenient procedure for automatically
selecting the number of lags to use in computing a heteroskedasticity and
autocorrelation consistent variance covariance matrix. Monte Carlo experiments
provide some support for use of the procedure, and sugpgest that careful selection of
the number of lags may be more important than choice of kernel. They also indicate
that more accurate test statistics result if prewhitening (Andrews and Monahan
(1992)) is combined with of our procedure. Nonetheless, substantial size

distortions remain. An important task for future research is refining or extending
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ours or others’ procedures to get estimators whose actual size is closer to nominal
size. Because of the relatively good performance of the prewhitened estimators, a
priority is theoretical and empirical investigation of autoregressive or

autoregressive-moving average spectral estimators (e.g., Berk (1974)).
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Footnotes
1. What is computationally convenient to us may not be to others, and some no doubt
will find it preferable to fit an ARMA model.
2. In our formal work, we maintain the milder assumption that Tl/z(g—ﬂo) = Op(l).
Here and throughout this section we are sloppy about such details, to facilitate
presentation of a relatively un-technical discussion.
3. Division by T rather than T-j makes our estimators positive semidefinite.
4. The formal theory presented in this section does not allow for prewhitening,
although it is clear from Andrews and Monahan (1992) our remains procedure is valid
given the T1/2 consistency of the VAR regression coefficients.
5. Strictly speaking, they let n increase at slightly too fast a rate. We use them
nonetheless, for notational simplicity, since, for our sample sizes (<1000), the
resulting values of n would be the same if we used technically acceptable exponents
of 200/901 in line (6), 400/2501 in line (7) and 200/2501 in line (8).)
6. Experiment Al: Y = .1575792E-01 +.1364678xt -.1199A39xt_1 —.3374262E-01xt_2
-.3113678E-01xy_ 3 -.1205284E-01x¢ 4 + ug, X¢ = .005911203 +.4717572x¢ 1
-.07913229x o9 +.04288376%x, _q -.07724863x¢_ 4 + €1¢; elt~N(0,a%), o1 =.01873203; u, =
.1886313uy 1 +.05309064u, 9 +.1041030u, _3 +.1213361up_ 4 + €9y eZt—N(O,o%), a9
=.0096223922. Experiment A2: y, = .5031414E-02 +.2002929E-0lx +.2521308E-Olx¢_1 +
.2052117E-02x _9 -.4798466E-0lx,_3 -.3796021E-Olx, 4, +.1133342E-03x¢_g
-.1039753E-01x, ¢ + uy; X = 001327165 +.3821891x_1 +.04460943x, o +.05424138x 1
+.08620320x,_, -.06192332x g +.0186440% ¢ + €7¢; elt~N(0,a%), o1 =.00811155; uy =
.3367596uy_1 -.07424469ur 5 +.1934595u, 3 -.143781l4u 4, +.171065%u; 5 +.01611501uy ¢
+ egp; €9p~N(0,0%), gy =.00454424.
7. That this follows under the indicated data generating process may be seen by
beginning with ei=e _1+n¢tee_1 and then recursively substituting out for e._j, then
ec., .-, then eg 1y, yielding ey = er.13 + e¢.13 + ne + St (e 1341%¢e-1341) =

Er_13et = et-13%t€¢-13-
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Appendix
Using arguments such as those below, it is straightforward to show that S and S

A

are Op(l). By assumption 4, then, Tq/(2q+1)(wT'SwT—w’Sw) B 0, Tq/(2q+1)(wT'§wT—w’§w)

B 0. 1n the proofs of Theorems 1 to 3, it therefore suffices to consider the scalars
A A A Y

s = w'Sw and s = w'Sw, and we redefine aj w'ﬂjw where oj was originally defined in

(3-9). Let s = w'Sw,

~ vo. _ wI-1 ) _ oTI-1 ~
(A-1) s = wW'Sw = Ej=-T+1kjw ﬂjw Ej=-T+1kjaj'
=(q)_ n e
A-2 s = 3. g.,
(A-2) je-nld 795

where S and ﬁj are defined in (3-6). For notational simplicity, we assume that ht is
a scalar (i.e., we do not distinguish between w'ht and ht). In the proofs, c or ci
is a generic constant, not necessarily the same from equation to equation.

To conserve space, we omit the proof of Theorem 2, which is similar to that of

Theorem 1. A sketch of the proof is available on request.

Lemma Al: If moe as T-e such that n2q+1/T+0, (T/n2q+1)var(§(q)) = 0(1l).

Proof: The case for q=0 is in Anderson (1971, p531l). Therefore, assume g=0, in which

~(q), _ n .q- _ n N | - -
case var(s ) = var(2 Ej=lJ aj) = AZZi’j=l(1J) cov(ai,aj).
Let k(°,", ) be the fourth cumulant of ht' From Anderson (1971, p527),
-2.T T

cov(gi,aj) =T + x(-1i,s-t,s-t+j)]. We

. : . ey : .
t=j+1 s=1+1[at-sat-J-s+1 at-s+1at-3-s

therefore have

2 T T (o o
t=j+1 s=i+1l""t-s t-j-s+i
T T (
t=j+1%s=1+1""t-s+i%t-j-s
T T

D I
t=j+1 s=i+l

(A-3) var(sVy - 41" 22?’j=1(ij)q2 )

2 )

- n MR
+ 4T zzi’j=1(13) z
2N

N | el s
+ 4T ZEi,jzl(lJ) z k(-1i,s-t,s-t+j)

= 4V1 + 4V2 + 4V3

The desired result will follow if it can be shown that Vl, V2 and V3 are each
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—1n2q+1

o(T ). Consider first V.. Making the change of variable k=t-s, we get

1

-2 Vsl q T-t
TR 5 G3)= J+lzk—1+l 1%+ |
2

- a T
< 1775z 3=1(13) Zt 1Zk— T+1 %1%k - 3]
1

T zz o1 Ek 1T+1|° Kok+i- J'
- T'lzzz%n+12:=|v|+l[r(r-IVI)
Tnlzgl}n+12: lrzqzk;%T+llakUk+v!

- T'1<2? 1" "9 3=}n+12£x%T+1 LD

-1..n 2q T+n
o ORI TN PP

T hEd 2q)(zk |°k|>2

+, 2q+1>(zk o D = ocr

(A'l‘) |V1|

i

AR L

A

1A

-1 2q+1,

That V, - o(r 1n29*L

From Anderson (1971, p.530) we see that V3 =
-1 qT
T 221 5= l( ijy*=

) can be shown similarly. So consider V3 in equation (A-3).

-1 . . . . R .
ST41® k(i ,-t,J-t)¢T(t,1,J), where ¢T is a certain nonstochastic

function satisfying 05¢Tsl. Thus

-l..n .., qoT-1 R
[Vals T zz.,j 1ED7E g ki, -t 5-0) ]
-1 2q T-1 . X
<T zzl =15 ey B, -, 5-E) ]
< 7 1h29555™ |k(t,t’ ,t”) |
= t,t’,t¥=- T
- O(T'lnzq).

Lemma A2: Let n3® as To= in such a fashion that for some d, 0<d<l/2,

(Aosay  p(L20/12-)] -1

p-24/(2a+1)_

(A-5b) > 0.

Then T(1/2)-d(§(Q)_S(Q)) B
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(q)) (T-Zdn2q+l 2q+1

)var(g(q)) - 0 by Lemma Al, since
2q+1

)(T/n

/T) > 0 and thus n

Proof: We have T1 var(s

1-2d, 2q+l

(A-5b) states that T (n /T > 0. The result therefore

will follow if [T %V E5(Vy12 5 0. since B7y = ((1-])/Tlay, o,-E5, - T'ljaj

]
and
-~ .5-d -l.n g+l
= 2T |2J n+lJ aJ + T 2j=1J aj]
52T'5_d2;=n+13q|a | + 211" dz“ j-2y39%-3 oy
<12 9 (P-y5 _n+1JP|a | + 2T 1 S_dn'SE;“lijq+'sa | >0,

since E§=1jp|aj| < = for some p > q+.5 by assumption 3(a), T.S-d(n-(p-q)) -+ 0 by

(A-5a), and n/T > 0 by (A-5b).

Lemma A3: For 0<d<l/2, if me as T such that (A-5b) holds, T¢1/2) d(s(® 5(2)y B o

A

Proof: A second order Taylor series expansion of ht around ht yields ht - ht +

A

. * 2 . .
htg(ﬁ-ﬁo) + .5h (9—90) , where ﬁtﬁﬁ is evaluated at a point between # and 60. Let

tdd
) Py - A _ A A 2 A 3
P Ehtﬂ' Then for j = O, aj-oj = (0-60)R1j + ha(ﬂ-ﬁo)RZj + (8-90) R3j + (0-90) RAj
p 4
+ (0-00) R5j' where

h

-1

— T iy .
(A-6) Ry =T g Mhe(he g g7Ry) * By j(heghpl
1T
sz =T Et —j+ (ht + ht_.),
R.. =T %' . [k + .5h b + .5h, B
3j t= +1[ cobe- J g Ttt-j,080 0 T t-j TIE
ST, *
Ry = 0T 2oy 1[ht0 e-3,00 ¥ Doy oeos)
R, = .2s7°1sr . § &
5§ = ¢ t=j+1 tdd t-j,00°
Then

(A-7) T(1/2)-d(;(q)_§(q)) _
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(1/2) d( ) + 2(9 0 )[ (1/2)-d2?=1JqR1j]

+ 2(9-90)h9[T(1/2) dz? 1i%y0 + 21(8-6 )Z[T‘(1/2>'dz?=1qu 1

3]
+ 2T(8—90)3[T (1/2)- dz“ qRa | + 2T(8-8 ) (T (1/2)'dz?=1 q

Sj]'
We have T(l/2)-d(00_;0) B 0. The proof of Lemma A2 is easily adapted to show that
n .,q . . n .q ~(q) .
2j=13 le is Op(l) (since Ej=1j le is just s with cross moments of ht and hta

replacing own moments of ht); absolute summability of the autocovariances of ht

implies that b

j= quR converges in mean square and thus in probability to zero.

Since T(l/z) d(B § ) 5 0 for any d>0, the terms involving R 1 and sz are op(l). For
i-3,4,5 assunption 2b implies that E|R;,| < 2D » 7~ (1/2)- dEIEJ IR <
1 (/2 4oy o@D iy 1y 2Dy 5 0 by (a-5) s T Rk =0 3%, Bo

by Markov's inequality. Since T(B-EO)2 = OP(l) by assumption 2, the summations in

(A-7) involving R and R_, are each op(l).

330 Ragr #0 Fss

Lemma A4: If n as Tow such that (A-5) holds for some d, d<d<l/2, d defined in

Assumption 3(b), then T(1/2)-d(;(q)_s(q)) Bo

Proof:; Follows from Lemmas A2 and A3.

Lemma AS.If s(q)#O, then under the conditions of Lemma A4, T(l/2)-d(7—1_7—1)30-

Proof: Write 1-1 = g(s(q),s(o)). A mean value expansion of 7-1 around v yields 1'1 =

LTS HACNCII RO

ag/as(q), By = Bg/as(o), and the "*"
~(Q) (q)

indicates that the derivatives are evaluated at points between s and s , and

£(0) (0)

where &1

between s (q), s(o)#O, ag/as(q)(s(q) s(o)) =g <=

Bg/as(o) S(Q) S(O)) = g2 < w0, Then T(l/Z)'d(;'1_7'1) 1[T(1/2) d( (q)

(1/2)- d )-s(o))]. By Lemma A3, ;(q) B s(q), S(O) 3 s( )# El 14 Bq g2 B gy-

and s Since s

)]"’
2[T

The conclusion then follows from Lemma A%,

Lemma A6: Under the conditions of Theorem 1, Tq/(2q+l)[2 (k.-k.)(E.-EE.)] B o
= J=-T+1%F 373 ]



Proof: Choose b and define a so that
(A-9) L+ (1/(2b-2)) <v <1+ (q/2) - e; a~ [1/ WD

(The assumption on b in (3-17) guarantees that this can be done.) As in the
proof of a similar proposition in Andrews (1991), we divide the sum that is to
be shown to be op(l) into two parts, for j < a using the Lipschitz condition

in assumption 1(b), for j»a using the bound on |k(x)| in assumption 3(b).

Since k.,-k. =0, k , = k,, and k , = k_,
00 -3 J -J ]

a-10y 1V 29ty j 1T+1(kj-kj)(5j-E5j)
_ L/ (2q+) a ) ~ o 9/(2q+1)gT-1 o~ o=
= 2T E. l(k. k.)(a. Eaj) + 2T J_a+1kJ(a Eaj)
q/(2q+l) 1 - -
T B an ¥y (@;7E7)

2A1 + 2A2 - 2A3.

H

Consider Al first. We have

< 19/(29+1)5a 1|k ey 11355 |

g 1Tq/(2q+1) a |( /e, /Dy 5

_ cl[,l,(l/z)-ze/(2q+1)w 1,1
[T(Q'l)/(2q+1)T' (1/2)+2¢/(2q+1) ;- 1/2

Jl

a 1/2. .~ _~
DRSS IER

where the second inequality follows from the Lipschitz condition. In the final

expression, the first term in brackets is Op(l) by Lemma A5 because (gq+.5)d < ¢

2¢/(2q+l) > d. Since EIEj-EEjl 5(E|5j-EEj|2)l/2 = var(g.)l/z, and var(T /2 J =< cy

for some Cy that depends on neither j nor T, the last term will be op(l) by Markov's

(q-1)/(2q+1)T—1/2+2£/(2q+1) 1/2 a

inequality if T J 13 2> 0. But this does indeed

hold, since 2?=1j = O(az) - O(Tzv/(2q+l)), and (q-1-(2q+l)+2e+2v) < 0 by assumption,.



Now,
q/(2q+l) T-1 ~ o=
lA,| < T Zi a1 k51 195-Eoyl
q/(2q+l) T-1 1/(2q+1) ~
< cT = s | |5,-E5 |
! (q+b)/(2q+1) 1/2 T-1 -bo1/2 ~ -~
=cy T J a+13 T |crj Eaj|
. “bp b . . . . .
Since v S vy , by the logic used in considering Al’ it suffices to show
(q+b)/(2q+l) -1/2 §m1+1'-b - 0. This holds since the summation is O(T(l-b)v/(2q+l))
and by assumption q+b-((29+1)/2)+(1-b)v < 0. A similar argument shows A3 B,
- R q/(2q+1) JT-1 . ~ . B
Lemma A7 If =0, T = (k.-k,)Ec.] & 0.
Lemma Y Av [_]—T+l i J) J] ) )
Proof: For 0 < xj < x (x defined in assumption 1lc), expand kj = k(x.) around k(0):
%=km)+”.+ﬁmnmmﬁﬂnﬂ!+ﬁqﬂﬂhﬁmﬁ] /a1,
where k( n) is the n'th derivative of k and ij lies between 0 and x.,. Since
11'.mlxl_)0 (1-k(x))/]x|q < o, k(n)(0)= 0 for n<q. After a similar expansion of kj’ also

around 0, we therefore get

ky -k = (k[q]/[q1!><xj[QJ J[ o+ Qg+ k (la 1+1)<x )%, [a]+1
([ql+1) %% [q]+l

- (1 +1) 1) k. X)X, ,
(1/Clq]+DH Y 5 ( J) §
*k
where XJ lies between 0 and Xj. This Taylor series expansion is valid when
Xj VAG] Tl/(2q+1)) < X, Xj = j/ (v Tl/(2q+1) <x, i.e., if

i =3 = min(T-1, [xvy Tl/(2q+1)] [Ele/(2q+1)]).

write 7/ 2D (sT-1 0 ¢ YEZ.] as
15 737773

j=-T+
o1/ QeI yEg. 4 o7/ QDET-L popm o op(a/2qHL) Tl pn
j=1""7] ] 3=3+173 3 J—J+1 3773

= 2B, + 2B, + 2B,.

Consider Bl:
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Bl=Tq/(2q+1>(k<[q])(o)/[q ,)zg G T1/(2q+1)))[q1 (36 2, (9 55

j
) Tq/(2q+l)(l/([Q]+1)!)E}-lkj([ qal+l) % )( e Tl/(2q+1))[q]+183j
= B11 + B12 + 313.
If [q] < g, then since 1im|x|90((1-k(x))/(|x]q)) <o, ko) -0 5 Bj, = 0. So

assume [q] = q. Then B, = (k(q)(O)/[q]!)(1'q-y'q)z! quEEj B 0 since v 9-v79 8 g,

11

and |ZJ an | = ZJ jq|aj| < q|a j< . Now consider B Since the [q]+1

co
Z5-1d 12°
derivative of k is bounded on [0,x],

1/2q+1

|Eo;1sloy], and J<[xyT 1,

- la)-Ly(a- Ll -1/ Qe gleyt P9 apen

B .-
B, = = o,

\ © .q+.5 .-q-1.5 __ .[q]+1 .[q)-q9-.5 .
Since zj=1J |aj| < @, |aj| = ¢, > |aJ| < ¢, ==>the final

“lq]-q+.5 c(lal-at. 5)/(2q+1))

sum in the above inequality for |B is O(y from which

12!

B o. A similar argument shows that B Bo->3 Bo.

it follows that |B 13 1

121 7

Now consider 32 defined above. We have

b (q+b)/(2q+1) -b -~
2| 17 J—J+1J |Eaj|
b (q+b)/(2q+1) © -b-q-1.5
27 —J+1J
“b +b 2q+1l).-b-g-.5
e\ ofatb)/(2q )J -q-

|B

IA

IA

C

1A

R
min[T-1,xy Tl/(2q+1) 1/(2q+1)] 50

since the sum approaches zero for any of the three lower bounds. That 83 B 0 can be

established by exactly the same argument,

~ A

Lemma A8: If v B v =0, Tq/(2q+1)[ET 1oy, (0,-3,)] B 0.

=-T+173°7°3 7]
9/ (2a+)T-1 o

Proof: Write J—-T+1 3

g.-0.) as
] J)
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Tq/(2q+1)(;o_;0) + [ 21¥/(2atly f 1 k (; a ) ]
B 1/2 % 1/2
= o (1) + [ 2T775(8-6)6, + 2h, T " (6-0)6,

~ 2 A A 4
+ 2T(6-00) G + 2T(6-80) GA + 2T(9—00) G5 1,

c. = T 1/2)/(2q+l)g T 1 k R.., i-1,2,
i Fi-1 %484
6, = 1CTD/QatDI-1y o io34, 5,
1 J=1 J 1]
. 1/2 . . B s
see A-6, Since T (0-0 ) = 0 (1), it suffices to show G. 30, i=1,...,5.
For i-1,2, G, = TO 1/2)/(2q+l) T-1 k. -kR,, + 1O 1/2)/(2q+1) T-1 y R... The
i Fi-1 57%90R4 ¥j=1 %3R4
proofs of Lemma A6 and A7 are easily adapted to show that the first summation is
o (1) (since Ef L (k k )R is just E} i (kJ -k, )aJ with cross moments of h and h "

replacing own moments of ht)' A standard proof of the consistency of kernel

estimators (Andrews (1991)) shows that the second summation is Op(l), and thus for

i=1,2 Gi B 9. For Gi’ i=3,4,5: since kj is bounded and |k(x)]| = c2|x|-b,

1/(2q+1)
6,1 = ¢ r¢ A/ QagIT }

Rl.| +
b ( -q- 1+b)/(2q+1) T-1
27 Zj=[T

(o]

71/ (2a+1) R1j|] B o

1+

A

by Markov’s inequality, since, yb R 1b and, by assumption 2b, E|Rij|£2D.

Proof of Theorem 1: Follows from Lemmas A6, A7 and ASB.

Proof of Theorem 3: Since k,.o.=0 R , it suffices to show QZT-l k.o, B 0. We have
0°0 "0 0 3=1 7373
T-1 . * T-1 0 ~ T-1 " ° ~
z, k,o, = Z, k.o, + Z. k.{(c.-0. H, + H
-1 %395 T By By P Ey Kylegregp) = H
Let
b’ = min(b,2q+l1).

Then |k(x)|5c|x|'b : for |x|=1, |k(x)15c|x|'b for arbitrary b’>1; for |x|>1,
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|‘l<(x)|5c?_|:h<|-b ==> |k(x)|5c|x|-b for any b’ between 0 and b. Let ¢ be as in Theorem
1. Let n be chosen so that O0<n<l/2, (q/2)-¢ > n{2q+1)/2b’ + .25{1-[(2q+1)/b']}; this

can always be done since (g/2)-¢>0 by (3-17) and .25(1-[{(2q+1)/b’'] < 0. Then using

-br_ . -b!TbI b/ (2g+1)

]kj|sc|xj| = cj , we get

lHllSCTb'/(2q+1)T-l/2+nT-b'/2+[25b'/(2q+l)](T(1/2)-25/(2q+1)7)b'2§;ij-b'Tl/Z-nlsjI_

A

The term in v is op(l) by Lemma A5, since (gq+.5)d<e ==> 2¢/(2q+l)>d. The final
summation is op(l) by Markov's inequality. And by assumption, n is chosen so that 0

> b’ /(2q+1) - (1/2)4n- (b’ /2)+[2eb’ /(2q+1)] ==> H; Bo.

Now consider H2. As in the proof of Lemma AS,

T-1 7 -~ 1720 = 1720
2j=1 kj(aj-aj) =T (6-90)H21 + hﬁT (9 00)H22
+ T(E-BO) H23 + T(G-GO) H24 + T(B-Bo) H25,
H, =125 k. i=1,2,
2i j=1 "3 ij
H, =T ' ' kR, i=3,4,5,
2i j=1 73 1ij

with Rij defined in A-6. The proof of Lemma A8 shows that H21 B 0, i=3,4,5. That

H,. B0 for i=1,2 follows by writing R,, = (R,,.-ER,.) + ER_.; the logic used to show
2i ij ij ij ij

Hl B 0 shows that the summations involving (Rij-ERij) are op(l); absolute summability

of autocovariances maintained in assumptions 2c¢ and 3a are easily shown to imply

that the summations inveolving ERij are op(l).
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Additional Appendix
This additional appendix contains material omitted from the published paper to
conserve space: (l)a sketch of the proof of Theorem 2; (2)additional simulation

results.

" 1/(2q+1)

Lemma A9: Let y=vT Let N be an arbitrary integer = 1. Then if v B 0

N _ T-(N+1)/(2q+1)

« 0, 1(ly]+1) Ny, 0 (1).

Proof: We have

N

l([y]+l)-N-y' ) ([y]+l)_NI1 - (([Y]+1)/y)NI

y N Lysavi+vo M - cayi+n N

y'N'lop<1)|y|ll - (yl+nY,

I

where the final equality follows since 0 < y/([y]+l) < 1 and y=0. The result will now

follow if
(A-11) 1L - Uyl = 0,(1)

Now, ([y]+l)/v =1 + dT/y for some 0 < dT < 1, and the "T" subscript is present to

emphasize that dT is random. Thus

. .
1 Wyt = 2 e (dy/y)
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where the Cj are the negative of the binomial coefficients, cj = -NU/[j'(N-j)!].
Upon multiplying the summation in the preceding expression by y and taking absolute

values, we obtain

N j,.3-1
(A-12)  ejdp + Zy s (dp/y” )|

1T

(cjd%/wj-l)(l/T(j_l)/(2q+l)) B0 since P T B w0, 0< cjd% < cjd% - 0,(L).

1t follows that (A-12), which is just (A-11) rewritten, is Op(l)’ which is the

- : j,d-1, _
We have 0 < cldT < ¢y 2> c,d., = Op(l)' For j=2 (cde/y 3

desired result.
Lemma AlQ0: Under the assumptions of Theorem 2, Tq/(2q+1)[z§;%T+l(Ej-kj)(Ej-E;j)] Bo.

Proof: Choose v and define a so that
1+ 1/(2b-2) < v < 5/4, a — [T/ 29},
b>3 guarantees that this can he done. We need to show that

1/ DA (% k(5. -Es,
( /%=li S iy (q/2q+1)_T-1
9/2q+1)gT-1 ¢ = gy . q/2q+1)5T- 5 -E
+2T RPN CIS R A NG

= B
= 2Fl + 2F2 + 2F3 3 0.

The Lipschitz condition and Lemma A9 imply that

1, 11/ PE0 gy (art/ QI - g pprt/ Py 15 6 )

(q-2)/(2q+l)a .\~ .~
- cO_(1)T 5 -E7.|.
e0p (1) =117
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It follows from the proof of Lemma A6 that the right hand side of this expression

(q-2)/(2q+1)T-1/2T2v/(2q+l) - 0, which in turn

converges in probability to zero if T
follows since v < 5/4.
That F3 B 0 was already established in the proof of Lemma A6. That F2 Bo

follows from a similar argument.

Lemma All: If v B 4 = 0, T‘V(zq”‘)[zT 1T+1(k K, )EUJ] Bo.
Proof: Define
1/(2q+1)

j = min{(T-1), [xyT

We need to show that

TQ/(2q+l)EJ (k.-k,)Eo, + 21/ G GT-1 ¢ po 5pd/ (241 T-1 k.Eo,
j=1"77 ] J=J+1 j 3 J=j+13 ]
= R
= 2D, + 2D, + 2D, 5 O.

As In the proof of Lemma A7, for 1 < j = 3, expand Ej and kj around k(0). It

follows from the proof of that lemma that

D1=Tq/<2q+1>(k<[q1>(0)/{q]1)2q U/l T1/(2q+1>]+1)[q1_(j/ Tl/(2q+1>)[q1]E;

]

o+

D1y * Dygp *+ Dyss

[}

1/(2q+l)] +1),

* Fok
where x, lies between 0 and x, ﬁJ/({vT xj between 0 and

X, —(J/ Tl/(2q+1)) By Lemma A9,
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(g-[q]-1)/(2q+1) 5

!Dlll < cT =1

(al o= B
j |Eaj|0p(1) Eo

since 0 > q-[q]-1 and E;=1jq|aj| < «. That D12 B o, D13 B 0 follows from the argument

used to show B12 B 0, 313 B 0 in the proof of Lemma A7.

B 0, B B 0 in the

That D2 B 0, D3 B 0 follows from the argument used to show B 3

2
proof of Lemma A7.

: o B q/(2q+1) ST-1 = = > = . B
Lemma Al2: If v B 4, T (%5 pyp (&g k) (o575, B0,

Proof: Follows by logic similar to that used in proving Lemmas A8, Al0, and All.

Proof of Theorem 2: Follows from Theorem 1 and Lemmas AlQ, All and Al2.
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(2)ADDITIONAL SIMULATION RESULTS
Here are: (a)a version of Table IV that contains results for additional

kernels, (b)a version of Table V that contains results for additional kernels,
and (c)sample MSE’s relative to QS for various kernels.

(a) Table IV, with Additional Results
Sizes of Nominal 1, 5, and 10 Percent Tests, Experiment A
1y (2 (3a) (3b) (4a) (4b)  (4c) (5a)  (5b)  (5¢)
Kernel PW? bandwidth m Experiment Al Experiment A2
or lag selection Size Size
parameter n 1.0 5.0 10.0 1.0 5.0 10.0
Al AZ
1. Bartlett 4 5 4.5 12.4 18.6 2.7 8.1 14.0
2. QS-AR(1) n.a. n.a. 3.6 1l.6 17.4 3.0 8.5 15.1
3. QS-AR(1) ¥y mn.a. n.a. 3.9 11.2 17.3 2.3 7.3 13.4
* QS-AR(1) y n.a. n.a. 4.3 11.6 18.4 2.5 7.5 13.9
4. Truncated 4 5 3.0 18.3 24.6 4.8 11.8 18.2
5. Population § n.a. n.a. 0.3 1.4 3.8 0.5 2.5 5.8
6. Bartlett, 8 13 5.9 14.9 20.9 4.5 10.7 16.7
population ~
7. Bartlett 4 5 4.6 13.1 19.7 3.5 9.3 15.0
8. Bartlett 12 15 11.0 19.7 27.0 5.2 11.6 17.9
Bartlett with n=[4(T/100)%/¢] 3.1 9.1 1l4.4
Bartlett with n=[12(T/100)1/9] 4.5 10.9 17.3
9. Bartlett vy 3 3 4.8 12.9 19.1 3.0 8.5 14.1
Bartlett vy 6 7 6.0 14.7 20.9 3.3 10.1 15.9
* Bartlett y 3 3 4.9 13.2 19.8 2.9 8.7 14.9
* Bartlett y 6 7 6.4 15.5 22,1 3.8 10.3 15.7
10.Parzen 4 5 5.5 15.3 21.7 3.3 9.8 15.4
11.Parzen 12 15 17.0 25.6 34.1 7.9 14.7 21.5
12 Parzen v 3 3 5.1 13.4 20.8 3.3 9.8 15.5
Parzen y 6 7 8.2 17.3 23.6 4.5 11.3 17.9
* Parzen y 3 3 5.7 14.5 20.5 3.6 9.8 15.7
* Parzen v 6 7 8.6 17.9 24.1 4.6 11.6 17.3
13.Q8 4 4 5.0 14.0 21.4 3.1 9.1 15.3

A line number in the leftmost column indicates a row that also appears in Table IV in
the paper.

"*" in the leftmost column indicates that the OLS estimate of A was used in
prevhitening, with no adjustment for singular values.
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AA-T7

(c)EMPIRICAL MSE’S RELATIVE TO QS, VARIOUS KERNELS

Kernel PW?

Relative MSE's, Experiment A

bandwidth m
or lag selection
parameter n

T=300

.062
.016
.025

277

.992
.010
.010
.031
.021
.009
.992

518
479

.005
.026
.003
.000
.983
.593
493

Al A2 Al A2
1. Bartlett 4 5 0.966 1.016
2. QS-AR(D) n.a. n.a. 1.036 1.061
3. QS-AR(1) ¥ n.a. n.a,. 0.959 0.945
* QS-AR(1) ¥ n.a. n.a, 1.021 1.028
4. Truncated 4 5 1.003 0.945
6. Bartlett, 8 13 1.005 0.942
7. Bartlett 4 5 1.011 0.989
8. Bartlett 12 15 1.296 1.166
9. Bartlett y 3 10 0.976 0.900
Bartlett vy 6 13 1.052 0.953
* Bartlett y 3 10 0.996 0.916
* Bartlett ¥ 6 13 1.057 0.956
10.Parzen 4 5 1.029 0.986
11.Parzen 12 15 1.430 1.205
12 . Parzen y 3 7 0.989 0.901
Parzen y 6 14 1.126 0.992
* Parzen ¥y 3 7 1.000 0.899
% Parzen ¥ 6 14 1.121 0.989
13.Q8 4 4 1.000 1.000
Relative MSE's, Experiment B
bandwidth or
Kernel lag selection
parameter Bl
T=300 T=1000 T=300 T=1000
1. Bartlett 4 5 0.955 1.213
2. QS-AR(1) n.a. n.a. 0.982 1.199
3. QS-AR(1) y n.a. n.a. 1.035 0.967
* QS-AR(l) y mn.a. n.a. 58.533 4,329
4. Truncated 12 12 1.107 0.987
6. Bartlett, 16 24 0.901 0.937
7. Bartlett 5 6 0.878 0.912
Bartlett 15 20 1.013 1.154
8. Bartlett 12 12 0.981 0.976
9. Bartlett y 10 21 0.879 0.838
Bartlett y 13 28 0.893 0.876
*# Bartlett y 10 21 73.748 5.361
* Bartlett y 13 28 73.762 3.914
10.Parzen 4 5 0.865 0.833
Parzen 14 17 1.052 1.117
11.Parzen 12 12 1.007 1.005
12 .Parzen y 7 9 0.869 0.780
Parzen y 14 18 0.938 0.854
* Parzen y 7 9 77.631 5.583
* Parzen y 14 18 67.302 4.670
13.QS 12 12 1.000 1.000

See notes on page 5 of additional appendix.
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.000

B2

T=1000

RPOOQOrHERHREROCORPRPEPHFHOQLKOR

103
.999
.054
.892
.975
.020
.023
.040
.017
.012
.005
.918
.911
.008
.013
.001
.002
.987

911

.924
.000



(1) Bartlett

(2) Parzen

{3) Quadratic
Spectral

{(4) Truncated

{5) Population

(1) Bartlett
(2) Parzen
(3) Qs

(4) Truncated

(5) Population

Notes:

A

1. Q

Table 1

Summary of Kernels and Estimators

A, Formulas for Estimators of §

+ (1 - §/(mel)) (@ + y0)

£ BI@DRI - 6(i/(ml))? + 6(3/(m1))®) Ay + y7)

+ I eysz1a241 - (G/(mHL1)3(0; + B4)

0, + Stk (@ + ;1)
ky = k;(»y) = 25 sin(6nx;/5) -
12x%x3% 67x,/5
Qg + Z0.,(Q; + 05")
Oy + T5-1(0; + Q;°)
B. Key Parameters

(L (2) (3)

q c, max rate of increase
of lag selection
parameter n

1 1.1447 o (T?/9)

2 2.6614 o(T4/25)

2 1.3221 0(T?/23)

© n.a. n.a.

n.a. n.a. n.a.

cos(6nxj/5))

(4)
Asymptotic MSE
relative to QS

1.086

is an estimate of the j'th autocovariance of either (a)the cross products of

instruments and regression disturbances (ﬁt), or (b)the residual from a VAR({1)

A
estimated for such cross-products (hf).

A
2. Let oy

A
= w'Ql;w, where a given experiment's weight vector w is defined below; let

A A A A A A A A
= ¢ {s®/g(M)2/ 20D yhere s{V=232_,j%., s V=g +25%_ 0., q, ¢c,, and n are as in
i 7 3=1] 79 ots23=195, 9, C4

Table IB, and the exact values of n used in the experiments are given below; T is

the sample size.

A
Then in our recommended procedure, m=[yT/(2¥*1)} for the Bartlett

and Parzen kernels, where "[.]" denotes "integer part of" and m iIs as in Table IA,

xj=j/(§T1“2¢”’) for the QS kernel, where x; is as in Table IA.

3



Table II

Estimators used in Monte Carlo Experiments

A. Feasible Estimators, Bandwidth Not Chosen By Our Procedure

Kernel Formula for Pre- Relevant lines in:

bandwidth m whitened? Table IV Table V
(1)Bartlett [4(T/100)1/4] no 1 1
(2)Qs? T3 no 2 2
yes 3 3

(3)Truncated [4(T/100)1/3] no 4 none
12 none 4

B, Estimators that are not Feasible

Kernel Formula for Pre- Relevant lines in:
bandwidth m whitened? Table IV Table V
(4)Population S n.a. no 5 5
(5)Bartlett [yT/3] no 6 6

C. Feasible Estimators, Bandwidth Chosen By Our Procedure

Kernel Formula for lag selection Pre- Relevant lines in:
parameter n whitened? Table IV Table V
(6)Bartlett [4(T/100)%/°] no 7 7
[12(T/100)%/9)] no 8 none
12 no none 8
[3(T/100)%/°] yes 9 9
(7)Parzen [4(T/100)%/25) no 10 10
[12(T/100)%/25] no 11 none
12 no none 11
[3(T/100)2/25] yes 12 12
(8)Qs [4(T/100)32/23) no 13 none
12 no nomne 13
Notes:

1. See notes to Table I.

2. In,line (2) ¥ was estimated by computing s‘?’ and s‘® from an AR(1l) fitted
to w'h, or w'h{, where a given experiment’'s w is defined in Table III and hy

and h! are defined in note 1 of Table I.



Table III

Description of Artificial Data

A. Experiments Al and A2

Yt = 81 + gzxt + ... + ﬂsxt_a + U (A].),
= 01 + azxt + ... + 55Xt_4 + 97Xt__5 + eext_ﬁ + ut (A2),
X, ~ AR(p) with iid normal innovations,
u, ~ AR(p) with iid normal inmovations,
X., U, independent all t,s;
Al: p=4; A2: p=6;
#,'s and parameters of x, and u, processes given in footnote 6;
Al: estimate y, = 81 + 0,8, + ... + Oy + 0%y + BaXpep + U,
test HO: 97=68=0.
A2: estimate y, = 01 + 8,8, + ... + 0g%ig + O0g%es1 + O10Xp2 + 011Xpag + Uy,
test HDZ 69=010=€11=0.
Al: First 10 autocorrelations of w'hy = (01 ... 1)'Xu, =
.226, .121, .133, .124, .050, .029, .024, .018, .011, .008.
A2: First 10 autocorrelations of w'hy = (01 ... 1)'X,u, =

.307, .101, .158, .021, .106, .088, .021, .029, .013, .007.

B. Experiments Bl and B2
Xy = ep-fy13, ey = epotnetery, £ = eptey;
7., €, independent, €.~N(0,02); 0% = 5;
ny ~ GARCH(1,1), n¢/(07:)"2 ~N(O,1),

o%t =1+ 0.059%, + 0.85baﬁﬂ,1 (B1)

2
Ot

1 + 0.309%.; + 0.60bo2 , , (B2);

Bl and B2: Estimate xy = 8; + #;X4-13 + 03Xp-14 + Wy,
test HD . 01=02=03=0 .

Bl: First 10 autocorrelations of (0 1 L)X,u, = w'h, =
.883, .738, .606, .487, .381, .288, .208, .141, .087, .046

B2: First 10 autocorrelations of (0 1 1)Xu, = w'hy =
.874, .722, .587, .468, .365, .275, ,200, .137, .086, .048

Notes:
1.Sample sizes: Al A2 Bl B2

100 300 300,1000 300,1000
2. In all experiments number of repetitions = 1000.



Table IV

Sizes of Nominal 1, 5, and 10 Percent Tests, Experiment A

(1) (2) (3a) (3b) (4a) (4b)  (4c) (5a)  (5b)  (5¢)
Kernel PW? bandwidth m Experiment Al Experiment A2
or lag selection Size Size
parameter n 1.0 5.0 10.0 1.0 5.0 10.0
Al A2
1. Bartlett 4 5 4.5 12.4 18.6 2.7 8.1 14.0
2. QS-AR(1) n.a. n.a 3.6 11.6 17.4 3.0 8.5 15.1
3. Q5-AR(1) ¥y n.a. n.a 3.9 11.2 17.3 2.3 7.3 13.4
4, Truncated 4 5 9.0 18.3 24.6 4.8 11.8 18.2
5. Population S n.a, n.a. 0.3 1.4 3.8 0.5 2.5 5
6. Bartlett, 8 13 5.9 14.9 20.9 4.5 10.7 16.7
population v
7. Bartlett 4 5 4.6 13,1 19.7 3.5 9.3 15.0
8. Bartlett 12 15 11.0 19.7 27.0 5.2 11.6 17.9
9. Bartlett y 3 3 4.8 12.9 19.1 3.0 8.5 14.1
10.Parzen 4 4 5.5 15.3 21.7 3.3 9.8 15.4
11.Parzen 12 15 17.0 25.6 34.1 7.9  14.7 21.5
12 .Parzen v 3 3 5.1 13.4 20.8 3.3 9.8 15.5
13.Qs 4 4 5.0 14.0 21.4 3.1 9.1 15.3
Notes:

1. Column 1 gives the kernel. See Table I.

2. In column 2, a "y" indicates that VAR(l) prewhitening was done prior to
kernel-based estimation of the spectral density.

3. For m and n defined in the notes to Table I, columns 3a and 3b, rows 1, 4 and 6
give the bandwidth m; other non-zero entries give lag selection parameter n; T=100 in
Experiment Al, T=300 in Experiment A2, The two experiments differ not only in sample
size but in other dimensions as well; see text. The rule used to choose the lag
selection parameter n is presented in Table II.

4. In columns (4a), (4b), and (4c), rows 1-13 give the actual sizes of nominal 1, 5
and 10 percent tests, for experiment Al. Columns (5a), (5b) and (5¢) do the same for
experiment AZ2.
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