
proceedings of the
american mathematical society
Volume 123, Number 1, January 1995

ISOMETRIES OF NONCOMMUTATIVE METRIC SPACES

EFTON PARK

(Communicated by Palle E. T. Jorgensen)

Abstract. A. Connes has shown that a unital C*-algebra equipped with an un-

bounded Fredholm module can be viewed as a "noncommutative" metric space.

In this paper, the author defines a notion of an isometry of a noncommutative

metric space, and computes several examples.

For many years it has been fruitful to think of C*-algebras as "noncommuta-

tive" topological spaces. However, until recently, there has not been a notion

of a noncommutative metric space. In [1], Connes shows that for C*-algebras,
the appropriate notion of a metric is that of an unbounded Fredholm module.

Definition. Let A be a unital C*-algebra.   An unbounded Fredholm module
(MA, D) over A consists of

(i) a Hilbert space Mf and a representation of A on MA ;

(ii) an unbounded, self-adjoint operator D on MA such that:

(a) the set  {a e A : [D, a]  is densely defined and extends to a

bounded operator on M'} is norm dense in A .

(b) (1 + D2)~x is a compact operator.

To see why an unbounded Fredholm module should be thought of as a non-
commutative analogue of a metric, consider the following prototypical example:

let M be a compact Riemannian manifold and let A be the C*-algebra of con-

tinuous, complex-valued functions on M. Let S be a bundle of Clifford mod-
ules over M, and let D be the associated operator of Dirac type on L2(M, S),

the Hilbert space of L2-sections of S. Then A acts on L2(M, S) by multipli-
cation and (L2(M, S), D) is an unbounded Fredholm module. Connes points

out in [1] that the geodesic distance d(p, q) between any two points p and q

on M can be computed by the following formula:

d(p, q) = snp{\f(p) - f(q)\ :feA, \\[D, f]\\ = 1 }•

Thus we can recover the geodesic distance (and hence also the Riemannian

metric) from the unbounded Fredholm module (L2(M, S),D).
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Research on noncommutative metric spaces is in its infancy. However, it is

already clear from the work that has been done in [1] and [2] that this subject will

be very important in the future. For this reason, the author has been interested

in finding and studying the appropriate notion of isometry of a noncommutative

metric space.

Definition. Let A be a unital C*-algebra and let (MA, D) be an unbounded

Fredholm module over A . The isometry group of A with respect to (MA, D) is

denoted by Iso(^, M', D), and is defined to be

Iso(^, M', D) = {<p e Aut(v4) : there exists a unitary U on MA such that

UD = DU and tp(a) = U*aU for every a e A }.

We will call the elements of Iso(^ ,M" ,D) isometries with respect to (MA,D) ;

the justification for this name comes from the following result, which we shall

prove in the next section.

Theorem. Let M be a compact oriented manifold, equipped with a Riemannian

metric g, let L2(A*(M)) be the Hilbert space of L2-forms on M, and let d+d*
be the deRham operator on L2(A*(M)). Then lso(C(M), L2(A*(M)) ,d + d*)
is naturally isomorphic to Iso(Af, g).

In this paper, we will compute Iso(^4 ,MA,D) for several naturally occurring

unbounded Fredholm modules (MA, D). The author hopes that these exam-

ples will show that the isometry group of an unbounded Fredholm module is

an interesting object worthy of further study, and that the following concrete

computations will shed light upon what happens generally.

1. The commutative case

Let M be a compact, oriented manifold, and let g be a Riemannian met-

ric on M. Let L2(A*(M)) be the Hilbert space of complex L2-forms on

M, and let d + d* be the deRham operator on L2(A*(M)). Then C(M)
acts on L2(A*(M)) by pointwise multiplication, and (L2(A*(M)), d + d*) is
an unbounded Fredholm module over C(M). The following theorem shows

that lso(C(M), L2(A*(M)), d + d*) can be naturally identified with the group
lso(M, g) of isometries of M with respect to g . However, before we prove

the theorem, let us state a lemma that will be useful in the sequel.

Lemma 1.1. Let (MA, D) bean unbounded Fredholm module over a unital C*-

algebra A, and suppose <fr is in lso(A ,MA,D). If a e A has the property that

[D, a] is bounded, then [D, <¡>(a)] is also bounded, and \\[D, </>(a)]\\ = \\[D, a]\\.

Proof. Choose a unitary U on MA that commutes with D and implements

4>. Then if [D, a] is bounded, so is U*[D, a]U = [D, U*aU] = [D,tp(a)].

Furthermore, \\[D, a]\\ = \\U*[D,a]U\\ = \\[D, U*aU]\\ = \\[D, <p(a)]\\.   D

Theorem 1.2.  Iso(C(M), L2(A*(M)), d + d*) * Iso(M, g).

Proof. Define n : Homeo(M) — Aut(C(M)) by »/(*)(/) = /oO"1 . It is well
known that this map is an isomorphism; we shall show that n restricts to an

isomorphism from Iso(M.g) to lso(C(M), L2(A*(M)), d + d*).

For any isometry ¥ of (M, g), define Uv : L2(A*(M)) — L2(A*(M)) by
(U<v)<a = (xY-])*(co). It is easy to check that (£/»+■)* = i/y-i , so U^(U^)* =
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(Uv)*Uv = I, and thus Cfy is unitary. Given / € C(M), let Mf : L2(A*(M))

—y L2(A*(M)) denote pointwise multiplication by /. Then

UyMfUy = M(f0y-\y

A routine calculation shows that t/y commutes with exterior differentiation,

and since *F is an isometry, Uy commutes with *d* as well, where * is

the Hodge star. Thus Uy commutes with d + d*, and therefore nÇY) is in

Iso(C(M), L2(A*(M)) ,d + d*) for every isometry ¥ of (M, g).
To show that n maps lso(M, g) onto lso(C(M), L2(A*(M)), d + d*),

take cf> in lso(C(M), L2(A*(M)), d + d*), and choose <X> e Llomeo(M) so
that n(®~x) = 4>. Let p and q be any two points in M. We use Lemma 1.1,

the geodesic distance formula mentioned in the introduction, and the fact that

<f> is an automorphism to get

d($>(p), <t>(q)) = sup{|/(0(p)) - m(q))\ : f e C(M), \\[D, /]|| = 1}

= s\ip{\<p(f)(p) - <i>(f)(q)\ ■ f e C(M), \\[D, /m = i}
= supW)IP) - <p(f)(q)\ ■ </>(/) 6 C(M), \\[D, <p(f)]\\ = 1 }
= suv{\g(p) - g(q)\ : g e C(M) ,\\[D, g]\\ = 1}

= d(p, q).

Thus <P is an isometry with respect to geodesic distance. This implies that O

leaves g fixed [3, p. 61], so O is an isometry. Hence «P-1 is also an isometry,

and therefore n : lso(M, g) —> Iso(C(Af), L2(A*(M)), d + d*) is an isomor-
phism.   D

Remark. The group Iso(Af, g) is usually endowed with the compact-open

topology. If we use the isomorphism from Theorem 1.2 to push forward the

topology on Iso(Af, g) to Iso(C(Af), L2(A*(M)), d+d*), we get the topology
of pointwise convergence.

2. Reduced group C*-algebras

Let T be a discrete group, and let C*(Y) denote the reduced group C*-

algebra of Y. An important class of unbounded Fredholm modules over C*(Y)
arises in the following manner. Let S be a set of generators of Y, and let L

be the word length function with respect to S. We define an operator D on

l2(Y) by requiring that D(ôx) = L(x)ôx for each x in r;here âx denotes the

unit point mass at x . As long as there are words in Y of arbitrarily long length

with respect to S, (l2 (Y), D) is an unbounded Fredholm module over C*(Y)

[1]. In this section, we record several results involving the isometry groups of

these unbounded Fredholm modules.

Lemma 2.1. Suppose that <p is in Iso(C*(r), l2(Y), D), and let x denote the
standard trace on C*(Y). Then x o <p = x.

Proof. Let e denote the identity of Y. Since e is the only element of Y that

has length zero, the kernel of D is the one-dimensional subspace spanned by ôe.

Let U be a unitary that implements (j> and commutes with D. Then U also

commutes with all the spectral projections of D, whence U(ôe) = Xàe for some

complex number X of modulus 1. Thus, for every X in C*(Y), (x o <p)(X) =

(tf>(X)(ôe),ôe) = (U*XU(ôe),ôe) = (XU(ôe),U(ôe)) = (X(kôe),Xôe) =

(X(ôe),8e) = x(X).   U
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The next result gives a way to obtain elements of Iso(C*(T), l2(Y), D).

Proposition 2.2. Let Y be a finitely generated discrete group, and let S be a

finite set of generators of Y.  Suppose that a is an automorphism of Y that
maps S* = S U S~x to 5±, and suppose that x is a homomorphism from Y
to the circle group T. Then the map Xz i-+ x(z)K(z) extends to an element of

lso(C;(Y),l2(Y),D).

Proof. Define an operator U on l2(Y) by the formula

U(ôx) = x(a-x(x))âa-l{x).

It is easy to check that U*(SX) = x(x)Sa{x) and UU* = U*U = I, so U is

unitary. Define </> : /2(T) —- l2(Y) by (p(T) = U*TU. Then <f>(Xx) = x(x)Xa(x)
for every x in Y, and therefore <j> maps C*(Y) to C*(Y). A similar compu-

tation shows that <j>~1 also sends C*(Y) to itself, so <p is an automorphism of

c;(Y).
To show that <f> is an isometry of (l2(Y), D), we verify that U commutes

with D, or equivalently (since D is self-adjoint), that U* commutes with

D. Now, since U*D(ÔX) = L(x)U*(ôx) = L(x)x(x)(ôa{x)) and DU*(ÔX) =
X(x)D(Sa(X)) = L(a(x))x(x)(öa(X)), it suffices to show that L(a(x)) = L(x)

for all x e Y. Suppose L(x) = n, and choose n elements gx, g2, ..., gn

in S± such that x = g\g2...gn. Then a(x) = a(gx)a(g2)...a(g„), and hence

L(a(x)) < L(x). On the other hand, since S± is a finite set, a maps 5* onto

itself, and so if a(x) = hxh2...hm for some hx, h2, ..., hm in S± , then x =

a~x(hx)a~x(h2)...a~x(hm), whence L(x) < L(a(x)). Hence L(a(x)) = L(x),

and therefore tp is in Iso(C;(T), l2(Y), D).   D

Proposition 2.2 shows that Iso(C*(T), l2(Y), D) is typically nontrivial. For

certain groups Y, all of the elements of Iso(C*(T), l2(Y), D) are produced by

the construction in Proposition 2.2:

Theorem 2.3. Let Y be a finitely generated discrete group, and let S be a fi-

nite set of generators with the property that if gx, g2, hx, h2 are in S± and

g\h\ = 8ih2 / e, then gx = g2 and hx = h2. Let Auts±(r) be the group of
automorphisms of Y that map S± to S± . Then Iso(C*(r), /2(T), D) is iso-
morphic to a semidirect product Hom(r, T) x Auts±(r), with group operation

defined by (xx, ax)(x2, a2) = ((Xi ° a2)X2, a\a2) »

Proof. In the proof of Proposition 2.2, we described a way to associate to each

X in Hom(r, T) and a in Aut5± (Y) an element of Iso(C;(r), l2(Y), D) ; let
ß : Hom(r, T) x Aut5±(r) —» Iso(C;(T), l2(Y), D) denote this map. Direct
computation shows that ß is a group homomorphism. Clearly ß is injective,

so all that remains is to show that ß is surjective.

Choose <p in Iso(Cr*(r), l2(Y),D), and g ¿ e in S± . Expand <t>(Xg)(ôe)

in terms of the standard orthonormal basis for l2(Y) : <j>(Xg)(ôe) = ¿3x€r c*àx >

where cx = (<f>(Xg)(ôe) ,ôx). Since Xg is unitary, so is (p(Xg), and therefore

i = \\oe\\2 = \\<f>(xg)(ôe)\\22 = y\cx\22.
xer

Using Lemma 1.1, we also get

1 = \\[D, Xg]\\2 = \\[D, cf>(Xg)]\\2 > \\[D, <p(Xg)](ôe)\\2 = yL(x)2\cx\2.
xer
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We have two relations involving the coefficients cx :

y\cx\2 = Y

yL(x)2\cx\2<i.

xer

Let t denote the standard trace on C*(Y). Then apply Lemma 2.1 to obtain

0 = x(Xg) = x((p(Xg)) = (<j>(Xg)(ôe), ôe) = ce . Therefore the two relations above

imply that cx = 0 unless L(x) = 1 ; that is, cx is nonzero only if x is in

5'± . Thus <j)(Xg)(ôe) = Ylxç.s± c*àx ■ Moreover, since each element of C*(Y) is

determined by its value on Se , <f>(Xg) = J2xes± c^x ■ Next,

i = cp(xg)(cp(xg))* = (y \cxA i + y cxcykxy-x,

\xes±        '        x,yes±
x¿y

and therefore,

y    cxCyXxy-\ = 0.

x,yeS±
xiy

By hypothesis, the group elements xy~x in the above sum are all distinct.

This, combined with the requirement that Z)xes± Ie*I2 = 1 > imPfies that cx

is nonzero for exactly one element x e S± , and \cx\ = 1 for that x. Thus

4>(Xg) = cxXx for some \cx\ = 1 and x e S* . Moreover, since S generates Y,

we see that for any y in Y, there exists a complex number c of norm 1 and

an element z in Y so that 4>(Xy) = cXz.

Define maps a : Y —> Y and x '■ T —► T so that <j>(Xx) = x(x)Xa(X) for

all x e Y. Then for all x,y e Y, x(xy)Xa{xy) = <p(Xxy) = <p(Xx)<p(Xy) =
X(x)x(y)K(x)a(y), whence x and Q are homomorphisms. The fact that <f> is

an automorphism of C*(Y) implies that a is an automorphism of Y. Finally,

the computations we did earlier in the proof show that a maps S± to 5* ,

so a € Auts±(r). Clearly ß(x, a) = tp, so ß is surjective and defines an
isomorphism between Hom(r, T) x Aut5±(r) and Iso(C;(r), /2(T), D).   D

There is a variety of groups that admit generating sets S satisfying the hy-

potheses of Theorem 2.3.

Example 2.4.  Fn , the free group on   n   generators   g■ , g2, ... , g„ ;   S  =

{gi, gi, ■■■ , gn) ■

Every automorphism a of F„ is determined by its values on the generators.

Since we require that a map 5* to 5* , there exists a permutation o in S„ ,

the symmetric group on n letters, with the property that a(gt) = gkit,, where

k, = ±1. Therefore AuXs±(F„) s (Z2)n x Sn .

Since Fn is free, Hom(F„ ,T)sf , and thus

Iso(C;(F„), l2(Fn), D) * T" x ((Z2)" x Sn).

Example 2.5. The free product Zm * Z„ of finite cyclic groups, with m, n > 2
and m ¿ n; S = {lm, 1„}.
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Since m ^ n, any automorphism of Zm * Z„ that takes S* to itself must

map lm to ±lm and 1„ to ±1„. Thus Aut5±(Zm * Zn) £* Z2 0Z2.

To determine Hom(Zm * Z„, T), observe that lm and l„ can only be sent

to m th and n th roots of unity, respectively. Therefore Hom(Zm * Z„, T) s

Zm © Z„, and

iso(c;(zm * z„), /2(zm * z„), z)) s (zm © z„) x (z2 © z2).

Example 2.6. The free product Zm * Zm of a finite cyclic group with itself,

m > 2; S = {1, 1} . (We use the tilde to distinguish between elements of the

two copies of Zm .)

There are eight automorphisms of Zm * Zm that take S± = {1,1,-1,-1}

to itself. Let a be the automorphism for which it is true that a(l) = -Ï and

a(\) = 1, and let ß be the automorphism given by ß(l) = 1 and ß(l) = 1.

Then a has order 4, ß has order 2, and ßa = a~xß . Therefore Auts±(Zm*Zm)

is isomorphic to the dihedral group D4 .
By an argument similar to that used in Example 2.5, Hom(Zm * Zm, T) =

Zm © Zm , so

Iso(C;(Zm * Zm), l2(Zm * Zm), D) S (zm © Zm) x z>4.

3. The rotation algebras

Choose 0 6(0, 1). The rotation C*-algebra is the universal C*-algebra Ae

generated by unitaries V and W satisfying the relation WV = XVW, where
X = exv(2md). In [1], Connes constructs an unbounded Fredholm module over

Ae which is analogous to the unbounded Fredholm module over Aq = C(T2)

defined by the Dirac operator on T2 . We now describe this Fredholm module.
Define an inner product on Ae by requiring that (VkWl,VmWn) = l if

k = m and I = n, and 0 otherwise. Let L2(Ag) denote the Hilbert space
completion of Aq with respect to this inner product, and define an unbounded
operator d on L2(Ag) by d(VkW) = 2m(k + il)VkWl. Next, let MA =

L2(Ae) © L2(Ae). Then

D=(°     9)
u     \d*    0)

is an unbounded operator on MA. With the action X • (|) = (Yz) °f ^ on
MA, (MA, D) is an unbounded Fredholm module over Ag .

In order to compute Iso(^g, M", D), we first examine D more closely. The

eigenvalues of D are numbers of the form ±2nVm2 + n2 , and the eigenspace

of ±2it\lm2 + n2 is spanned by the set of vectors

Suppose <f> is in lso(Ae ,MA,D), and choose a unitary U such that UD = DU
and such that <p(X) = U*XU for all X e Ae. For any element X in Ag,
U*XU(q) = (o) for some Y e Ae, and U*XU is completely determined by

its value at Q . In particular, this is true for X = V. Since (¿) is in kerD,
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£/(q) is in kerD as well, and therefore U(q) = (rsj) for some complex numbers

r and í. Thus

trrvft-vrft = <>

The vector (rsy) is in the span of the 2n and -2n eigenspaces of D. The

components of the eigenvectors of these two eigenspaces are linear combinations
of operators of the form Vk Wl, where k2 + l2 = 1. Therefore the components

are linear combinations of V±x and W±x. Furthermore, since U*VU(q) =

(o) for some Y, we see that for some choice of complex numbers a, b, c, d,

'o)-r
whence

<j)(V) = aV + bV~x +cW + dW~x.

Furthermore,

i = <p(V)(<p(V)y

=   (|fl|2 + |ô|2-r-|c|2-r-|rf|2)/

+ abV2 + âbV~2 + (ac + X-xbd)VW~x + (ad + Xbc)VW

+ (bd + X~xäc)V-xW + (be + Xad)V-xW-x + cdW2 + cdW~2,

which, upon inspection, shows that only one of a, b, c, d is nonzero, and the

one that is nonzero has absolute value 1. Repeating the above argument with

W allows us to obtain a similar result for <f>(W). If we additionally impose the
condition 4>(W)(f>(V) = X<j>(V)ct>(W), then we are left with four families of pos-

sible elements of lso(Ag, MA, D). Specifically, for any two complex numbers
a and b of modulus 1, we have

<j>lb(V) = aV, <pxab(V) = aW-x,

<t>a,b(W) = bW, ^ah(W) = bV,

<P2ab(V) = aV-x, <pab(V) = aW,

<jp.ab(W) = bW-x, <pab(w) = bv-x.

We now show that all of these automorphisms are in lso(Ag ,MA,D). Fix a
and b, and define U : MA —► MA by

fay/TrT+T?VkWl\     (Ta-kb-lVk2 + t2VkWl\

\ (ik + l)VkW )~\ a-kb-l(ik + l)VkW )'

Then U commutes with D and U*XU = <jPa b(X) for all X in Ae. Next, for

j = 1,2,3, tjAa b = tp\ j (¡Pa b. Therefore, to show that all of the automorphisms

above are in Iso(^g , MA, D), we need only show that c/>{ , is in the isometry

group. Furthermore, (<^i,i) =<A2,i and m,i) = 0i i , so all that is left is

to verify that <f>\ , is in lso(Ae ,MA,D).
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Define U : XA —► MA by

Mk2 + l2VkWl\ _ f+iX-'kVk2 + l2V-'Wk\

V  (ik + l)VkW  )~\   X-'k(ik + l)V-'Wk   )'

Straightforward computation yields that U is unitary, commutes with D, and

implements </>}..

Finally, we identify the group operation on these automorphisms. Define a

homomorphism p : Z4 —► Aut(T2) by stipulating p(l)(a, b) = (b~x, a), and

form the semidirect product T2 x^ Z4 , with the binary operation

((a,b),j)((c, d),k) = (p(k)(a,b)-(c, d),j + k).

The map <pka b .-> ((a,b),k) from lso(As,MA,D) to T2 x^ Z4 is clearly

a bijection. Moreover, (¡Pa b<j>kx , = ^(fc)(a m for k = 1, 2, 3 and a and

¿in T.   Hence,  ¿¿^J = '< ,<*<',<, = fl.itf.i*!™«.»)^ -

<fy!(*)(fl,*).(c,rf)   =  K+(k)(a,b),{c,d)^ Whence the maP   <*  ~  ((*>&),*)   ¿S

a homomorphism. Therefore, we have proved

Theorem 3.1. For 0 < 6 < 1, lso(Ae , MA, D) S T2 *„ Z4.    O

4. The C*-algebra generated by the unilateral shift

The isometry groups that we have computed to this point have all been com-

pact Lie groups. In this section, we give an example of an unbounded Fredholm

module whose isometry group is neither compact nor a Lie group.
For each k e N, let Sk e l2(N) denote the unit point mass at k, and let

S(ôk) = ôk+x be the unilateral shift operator on /2(N). Define D : l2(N) —►
/2(N) by D(Sk) = kôk . Then (/2(N), D) is an unbounded Fredholm module

over the C* -algebra C*(S) generated by S.

Lemma 4.1. Let {aj} be a bounded sequence of complex numbers, and define

an operator X on /2(N) by X(Sk) = akSk+x. Then X is in C*(S) if and only
if {aj} converges.

Proof. Suppose that {aj} converges to a. Then X-aS is a compact operator

and thus X = aS + (X - aS) is in C*(S). Conversely, suppose X is in C*(S).

Then there exists a Toeplitz operator T and a compact operator K so that

X = T + K. Now, for each / e N, a} = (X(Sj),Sj+x) = (T(Sj),Sj+x) +
(K(ôj), ôj+x). Since T is a Toeplitz operator, (T(S¡), 6¡+x) = (T(öx), 62) for

all / € N. Since K is compact, lim;_0O(A^(f5J), ôj+x) = 0, so limy-,«,a7- =

(T(ôx),â2) and {aj} converges.   D

Theorem 4.2. Let SA denote the set

{/ : N —»T: {/(«)} converges},

and give SA the topology induced by the metric

d(f,g) = sup\f(n)-g(n)\.

Then Iso(C*(5), /2(N), D), viewed as a topological space with the topology of

pointwise convergence, is homeomorphic to SA.

Proof. Choose <j> e Iso(C*(S), /2(N), D), and let U be a unitary on /2(N) that
commutes with D and implements 4> ■ For each k e N, the /c-eigenspace of
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D is spanned by ôk, and since U commutes with the spectral projections

of D, U(âk) = Xkôk for some complex number Xk of modulus 1. Thus

for each k, (j>(S)(Sk) = U*SU(ôk) = XkXk+xSk, and by Lemma 4.1, the se-
quence {XkXk+x} converges. Define a map a : Iso(C*(5), /2(N), D) —► Sf

by a((/))(k) = XkXk+x. Since 4> is completely determined by its value on S,

a is an injection. Furthermore, given f e SA, define a unitary U on N by

U(Sk) = (jfnZl f(k)) Sk . Then the automorphism of C*(S) that is imple-

mented by U is mapped to / by a, and thus a is a bijection.
Finally, we check that a is a homeomorphism. A net {(/>„} in

lso(C*(S), l2(N), D) converges in the topology of pointwise convergence

if and only if {(j>u(S)} converges in norm. Therefore, to show that a is

a homeomorphism, it suffices to show that for any two elements tj> and

V of lso(C*(S),l2(N),D), \\<t>(S) - <p(S)\\ = d(a(<j>),a(tp)). Write tf>(S) =
Ek€Nakôk, V(S) = Ek^h^k- Then <f>(S) - y/(S) = ËkeN&k ~ h)h,
whence \\(f>(S) - y/(S)\\ = supfc6N \ak - bk\ = d(a(tp), a(\p)).   D
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