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ON THE TOPOLOGY OF THE

EVEN-DIMENSIONAL COMPLEX QUADRICS

HON-FEI LAI

ABSTRACT.   Neat proofs are given of the explicit structures of the homo-

topy groups and cohomology rings of the even-dimensional complex quadrics.

1. Introduction.   It is well known that the complex quadric  Q     ,  defined

by the equation  z. + •• • + z2        = 0 in homogeneous coordinates in complex

projective space  CP "     ,  is diffeomorphic with the Grassmannian Ry 2     oí

oriented 2-planes through the origin in Euclidean space  R "     .   The homo-

topy sequence of the fibration  V,   in ,-»R, ,   ,  where   V.   ., ,  is the
rJ 3 2t7+2,2 2.277 2t7+2,2

Stiefel manifold of orthonormal 2-frames in  R ,  easily yields the homo-

topy groups of  R? in terms of the homotopy groups of spheres, but with-

out giving any insight into the homotopy structure of R? 2   .   On the other

hand, the explicit generators of the (integral) cohomology ring of R2 2     have

been determined [3] using complicated calculations with Schubert varieties.

In this paper, using the observation that the Hopf bundle S "     —>CP" is in-

duced from the bundle   V'     ., , ~* R, ,  , and employing standard sphere bun-
2t7+2,2 2,2« r

die and characteristic class techniques, we show that the homotopy groups

and cohomology groups of R2 2     are isomorphic to those of S      x CP",

where both S2n  and  CP"  are naturally embedded in  R, ,   ,  and give the cup

product formulas for the cohomology.

2. Complex quadric and oriented Grassmannian.  Let e,, ••• , e be

an oriented orthonormal basis of R , and consider  C as the complex-

ification of R .A natural diffeomorphism between R2 2    and Q      is

given explicitly as follows:   For any two orthonormal vectors  v., v    in

R n+2, the oriented 2-plane spanned by i7j, v2  corresponds to 77(7;   + iv )

in Q2n, where  77 is the natural projection C2"+2\jOi —»CP2n+1.   For details

see, for example, [2, p. 280].   We orient R2 2    by the complex structure on

0„   , and will identify the two manifolds.*- 277
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Introduce in  R an almost complex structure   /  by defining  Je =

e. . fot  j m 1, .. • ,72 + 1.   Then there is a natural embedding   i. : CP" —»

R, ,    which sends a  '-complex line in R2"+2  to its underlying oriented 2-
2,277 ' '

plane.   Let  K denote its image in R, ,  .   Extend  / to a complex linear

automorphism of C "     .   Take an oriented 2-plane co spanned by orthonormal

vectors  v., v2  in R . Clearly co is in  K if and only if v2 = Jv., that is,

if and only if ]{v. + ivA = - i{v. + ivA. Following the convention in differ-

ential geometry, we can therefore say that K is the 72-dimensional projective

subspace of CP " defined by the (72 + 1)-dimensional linear subspace of

vectors of type  (0,1 ) in  C2"+2.

There is also a natural embedding  », : S     —» R2 2     obtained by taking

the oriented 2-planes in  R that are spanned and oriented by  e.   and an

orthogonal vector.   At any co £ ¡AS ") defined by  e.  and  v,  where  v is in

the linear space  R^"*    spanned by e2'~ " ' e2n+2' tne tanz?ent sPace to

i AS ") can be identified with the 272-dimensional subspace of R+"       that is

orthogonal to v.   Therefore we can orient  iAS ") in such a way that its tan-

gent bundle is induced from the natural oriented 272-plane bundle over R2 2

whose fibre over co £ R2 2     is tne oriented orthogonal complement of co in

R        .   With this orientation, it is straightforward to show that the intersec-

tion number of   K and  z',(S  ") in R, .,     is equal to +1.
2 2 ,277 *

We observe that there is a commutative diagram

v,   ..-—2—s2"+1
277+2,2

P h

R, ,    —!-CP"
2 ,277

where  h is the Hopf map which sends a unit vector  v £ R  "       into the /-com-

plex line defined by it, p is the natural projection, and s is the inclusion

map s{v) = {v, Jv).   The Stiefel manifold   V2n+2 2   can also be considered as

the unit tangent bundle of S "     , and s  is a section.

3. The homotopy groups and cohomology ring of R, ,   .

Theorem 1. ?7fe(R2 2n) = »I(,«rA(CP") 0 ^f**^2"^ lor k^1' where #

denotes induced homomorphism.

Proof. With the notations of §2, we can lift the inclusion z'2 : S "  —♦

R over the projection p to an inclusion  i   i S      —> V , by defining

z'(iz) = {e  , v) fot a unit vector v orthogonal to e  ,   We note that  i    is the
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.277 -2t7 + 1
inclusion of S       as a fibre of the bundle   V.     , , —► S which has a

2 77 +¿ ,¿

section s. Hence

^277 + 2.2)=¿3^(S2n)®Srf2"+1)-

Incorporating this into the homotopy sequences of the bundles  S   —► V

—» R2 2    and S    —» S "      —« CP", we get the following commutative dia

gram in which each three-term sequence is exact:

277+2,2

ny) nAS>)

itt
0 -, nk{S2») _^U nAV2n+2t2) _JL_ nk{S2»") - 0

ii

77^2")
2H

*nk{R2.2n)   -

_ +    id\"A-I^

1H

77fe(CP")

>LW

The theorem then follows easily.

There are a natural oriented 2r2-plane bundle ç and a natural oriented 2-plane

bundle ¿r   over  R, ,   , where the fibre of ¿   over a point co £ R-, ,     is the
* 2,277 r 2 ,2t?

2-plane &),  and the corresponding fibre of f is the orthogonal complement

of (¿j  in  R
2 77+2

Let 0, Q be their Euler classes.  Let k be the Poincare'

dual of the 2z2-dimensional homology class of R2 2    represented by  K.  Thus

ñ £ f/2(R, -  ) and 0, k e tf2"(R       ).
2 ,277 2 ,2 77

Theorem 2.   T/>e cohomology groups of R zzre isomorphic to those

of CP" x S2", 72z7777e/y, /or 0 < * < 4t2,

Hk{R
2,2n

1 if k  is even and k 4 2n,

(Z©Z     if k = 2n,

0 if k  is odd.

As a ring,   H (R2 2f) is generated by Ú and k, with the relation Q,"     =

2k uO.   Moreover, fi + 0   = 2 k, k LI Ú   = (-1 )  ,  k U 0 = 1,  k ij k =

(1 + (_l)")/2, fi2" = 2(-l)", and 0 U 0- 2.

Proof.  The Gysin cohomology sequence of the 272-sphere bundle V2   +2 2
-277+1

splits since the bundle has a section s.   It follows easily that
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ÍZ     if k= 0,2n,2n+ I   ot An+ 1,

0     otherwise.

Then the Gysin cohomology sequence for the 1-sphere bundle   V —>

R2 2     shows that the cohomology groups of  R2 2    are as stated in the theo-

rem, and that cup product with ií gives isomorphisms   r/2;(R2  ,   ) =

/i2y+2(R2i2n)   for   ;=   0,  I,.-., 72-  2,  72+  1,  ...   ,  272-  1.

Since   /i2"(R0 -,   ) = Z   © Z  and Í), Ù", k ate three elements in it, there
¿ ,2n '

is a linear relation

(1) pCl + qÚ    = ru,    where  p, q, r £ Z.

We will calculate the values of  i.   and  i    on the cohomology classes  fi, fl

and k and so solve for p : q : r.   Let a £ H (CP ) be the generator of

H (CP") which is the Poincaré dual of the homology class represented by a

projective hyperplane in  CP".   Then the Euler class of the Hopf bundle

{S2n+1,h, CP") is -a[l], so z*(ñ) = -a, or i*Gîn) = (-l)V.   On the

other hand,  z'.(ß) is the Euler class of the bundle   i cf over  CP" which is

the normal bundle to the Hopf bundle.   By the duality theorem on Chern clas-

ses,  c(z'çf)= (1 - a)     ,  and in particular,  z'*(fi) = c  (z'<f) = a".

Lastly, to calculate   z'.k, we make use of a well-known fact, that for any

embedding  j '■ X —> Y of a compact orientable manifold into another compact

orientable manifold, if DX denotes the cohomology class in   V which is the

Poincaré" dual of the homology class represented by  j{X), and  Q    denotes

the Euler class of the oriented normal bundle of X  in   V,  then  Í2„ = j\DX)

(see [1, p. 72]).   We apply this fact to the embedding  z. : CP" —» Q     , and

conclude that  i Ax) is equal to the Euler class of the normal bundle  v of

CP"  in g,   -We know*- 2«

civ) = cifAHQ,  WHCP")-1 = i*c{T{Q? ))(1 + a)-<"+1>.
1        *-2?7 i ^ 2n

Using the above quoted fact on normal Euler classes again, we see that the

Euler class of the normal bundle  v'   oí CL     in  CP  "       is   /   {DO-  ) =
* 27! ' '2«

j (2a), where j: Q2   —» CP "is the inclusion map and a  is defined in

CP2"+1  as  a is defined in  CP".  We note that / o ¿j   is the inclusion of CP"

in CP "     ,  and since by  §2  this is a projective subspace in standard posi-

tion,  (/' o i  ) â = a. We therefore know that the total Chern class of  i Ay )

is  1 + z*/*(2ä) = 1 + 2a.   Hence

i\dTÍQ2n)) = (; o ¿ifc(r(CP2"+1))(l + 2a)"1 = (1 + a)2"+2(l + 2a)"1.
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Finally,

c(l,)=(l+a)2" + 2(l+2a)-1(l + a)-("+1)=(l + a)" + 1(l - 2a + 4a2- 8a3 + ... ).

In particular, the Euler class of  v is

Cn(v) =   i (-D"2"   +     (* +   l \   (-1 y-»2—»   +   a a .

-^[(l-2)"+1-l]a"=Cr(7z)a">

where

!1,   72 even,

0,   72  odd.

Thus we have shown that  z'z< = oin )an.  This, together with the earlier for-

mulas for  iSl and  i (]" and the relation (1), shows that

(2) P + (-1)"? = oin)r.

We now calculate   z  .  From §2  we know that  z'zf is just the tangent

bundle of S2n,   so its Euler class   z'*(0) = 2/3, where  ß  is the standard gen-

erator of  H "(S  ").  On the other hand, the bundle  z'cf has a nowhere zero

section defined by  e,,  so its Euler class   i AÜ) vanishes.  To evaluate   z'k,

we take the fundamental class  ¿ £ H-,  {S  ") and calculate the Kronecker
* 2t!

pairing

(»'K, £\ = ' K, i    C) - intersection number of   K and   z'2(S  ")   =1.

This means that  »', z< = /3.  Therefore from (1 ) we get

(3) 2p=r.

The equations (2), (3) then yield p : q :r=l  : 1  :2,  so(l) reduces to

W 0 + ^" = 2k.

We now calculate the cup products.  Let  r\ £ H .   (R2 -   ) be the funda-
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mental class of  R. ,    defined by the complex structure on  0,   ,  and ( , )
2 ,2t7 ' r *- 2t7

the Kronecker pairing.   Then

(k u a, j,) = (0, knv)-<o, z1+(CP")) = (,*o, CP") = i,

as shown earlier.   We can therefore write

(5) KUQ-1.

Similarly, we prove   k U k = «7(77) and

(6) z<ufl* = (-l)".

From these formulas and the fact that fi U fi = 0, we can take the cup prod-

ucts of (4) with Í2, fi    and Í2, respectively, and obtain Í2        = 2k U 0, Í2

= 2(-l)" and fi u 0 = 2.

From (6) it follows that k U 0" is a generator of H "(R2 2n), so a

fortiori  ku!1  is a generator of  H "    (R2 2   ).  Also, using the above formu-

las for the cup products, we can calculate the determinant

= (-!)",

0" u 0"    0" u k

K     U    U X     U    K

so that Í2", k together generate  W "(R2      ). We can now write down a set of

generators for the cohomology groups of  R2 2  > U, 0, 0  ,• • • , 0   , K, k U Q,

•-., z<ufl"!.

4.  Some remarks.  (1 ) In [4, Theorem 3.3], the cohomology ring structure

of  R, ,     is applied to find a lower bound for the number of parallel trangents
?     +9

of an embedding of a 272-dimensional compact orientable manifold  M in R

Now a proof without using calculations with Schubert varieties can be given

by noticing that, if z/: R —» R is the map which reverses orientations

of 2-planes, we have a{iï) = -Í2 and cT{(l) = -0.

(2) Calculation of the normal geodesies to   K in  R2 2n  shows that there

are two embedded  CP"  in  R-, ,   ,  denoted by  K and   K~, suchthat R., ,\K"
2 ,2t7 ' 2,277

is an open disc bundle over   K.   This is a more general structure than a sphere

bundle over  K with section, and one can ask the question whether the prod-

uct structure of homotopy groups holds for any space with this kind of decom-

position.
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