
QUESTIONS OF SIGNS IN POWER SERIES1

WOLFGANG B. JURKAT

This paper deals with the signs of the (real) coefficients of a power

series k(x) = 2~lv=o k,xv, which is the quotient of the two power series

Q(x)= XXo Q"x" and P(x)= XXo Pv%"- Questions of this type have

been previously treated by Kaluza (1928) and Szego (1926) in the

special case of q(x) = l. Their significance for inclusion theorems for

Norlund means was shown by Hardy (1949), §4.5.

By consideration of a general power series q(x) instead of q(x) = 1

it is possible to include the known results2 of this subject in a single

theorem (§1.1). Moreover the method of proof used allows us to estab-

lish a second type of theorem using simpler conditions (§1.2). For this

second type of theorem the introduction of a general q(x) is essential

for applications, because the results are still trivial for q(x) = l.

There are two different principles to generalize. Thereby the second

kind of theorem becomes also applicable in the case of q(x) = 1

(§§2.1, 2.2, 2.4). The statements now obtained can even be used

conversely for a second proof of the theorems first obtained (§2.3).

The results of this paper are, as in the book of Hardy, funda-

mentally for application to inclusion of Norlund means and related

questions. These applications will be discussed in a following paper

Some new inclusion theorems for Norlund means. Also some concrete

examples for the general theorems on distribution of signs will be

found there.

1. Distribution of signs in k(x). In the following we begin always

with the formal product

k(x)p(x) = q(x)    or    2~1 kyx'2~l P^x" = 2~2 QnXn,

i.e. with the relation

n

(1) 2 k,pn-, = qn for n ^ 0.
r=0

1.1. All the known results on the distribution of signs in k(x)

= 2-^kvX" are included in
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5 Another but similar question is that concerning the product of two power series

instead of the quotient. Cf., for this, Davenport-P61ya (1949).
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Theorem 1. If pn and qn satisfy the conditions

(2) pn>0    (n = 0),        2*±/> for 0 = nf?
Pn

and

(3) -y forO^nS,
Pn

then kn = 0 for n = 1.   (Hence it follows that either   E^« = + °°   or

E^n = hm»,i_0 k(x), where both terms exist.)

To explain the contents of the theorem we consider first some

specializations:

Because we placed no hypothesis on the signs of qn, we may re-

place the terms qn, kn in Theorem 1 by — qn, —kn. In this way we

obtain immediately

Theorem 2. If pn and qn satisfy (2) and

(4) —\ forO^nS,'
Pn

then kn^L® for n^l. (Hence it follows that either E^« = — °° or E^»

= limI^i_0 k(x), where both terms exist.)

Theorem 2 clearly contains the following result4 of Kaluza (1928)

and Szego (1926).

Theorem 3. Let (2) hold and qo = l, qn = 0 (ra^l) (the latter means

k(x) —l/p(x) in the formal sense).

Then we have ko = l/po>0, kn^0 (»^1). If moreover p(x) = z~lp*x"

is convergent for \x\ < 1, then it follows that E^» = hma;^i_o l/p(x) ^0,

where both terms exist.

If in Theorem 1 we have always qn>0 (or only q0>0), then &„ = 0

for m^O holds, because of k0 — q0/p0. In this case the assertion of

Theorem 1 can be taken from the proof of Hardy (1949) for his

Theorem 23 (p. 69). By a short cut in the proof given there it is pos-

sible to deal with both cases qn<0 and q„>0 at the same time.

Proof of Theorem 1. Let n = 1 and if n > 1 assume moreover

h, • • • , &„_i = 0. Then we have to show that £n = 0. By (1) we have

3 The symbol "/"" resp. "\ " means increasing resp. decreasing (equality allowed).

* Cf. Hardy (1949), p. 68, Theorem 22. An example for such a distribution of signs

is to be found in Knopp (1926), p. 331.
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^ v^1 l ($»-'    ^"-i-A , ,   P«    ?»     ?»-i
(5) 2^    M-)  +   kn   - =-■

_0 \   pn Pn-1 / Pn pn pn-1

and further by (2)

pn-,      pn-i-, (= 0    for    v = 0,

Pn Pn-1     1=2   0      for       l|)i|»-l,

Substituting in (5) gives by use of (3)

,    po       qn       <?n-l
kn — ^-^ 0, q.e.d.

/>n Pn Pn-1

1.2. An undesirable feature of the above theorem is the somewhat

complicated condition (2). If 2~Lp*x" ls convergent for |x| <1 (as it

will always be in later applications), then it follows from (2) that

pn is decreasing. The next theorems will use this weaker condition.

Theorem 4. If pn and qn satisfy the conditions

(6) po>0,       pn\ forO^n/1

and

(7) Aqn = — A~Pn for n ^ 1,«
Po

then kn = 0 for n = 1. (Hence it follows that either X^» = + °° or 2~2kn

= limx^.i_o k(x), where both terms exist.)

As in Theorem 1 there is no supposition on the sign of q„, and

therefore we may replace again qn, kn by — qn, —kn. This gives im-

mediately

Theorem 5. Let (6) and

?o -
(8) Aqn =: — Apn for n = 1.

po

Then we have kn ̂  0 for n =• 1. (Hence it follows that either 2~^kn = — °°

or ]>2&„ = limx..i_o k(x), where both terms exist.)

For the reciprocal power series l/p(x) we obtain directly from

Theorems 4 and 5 only two rather trivial results.

Proof of Theorem 4. Let m=T and for w>l assume moreover

ki, • • • , &„_i2:0. Then we have to show that kn^0. By (1) we have

6 We use the abbreviations Aa, = a,—a,-i (y^l), Aa0 = <Jo. Then the condition (7)

is satisfied of itself for n = 0.
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n-l

(9) k0(pn — Pn-l) + E k«(pn-r ~ pn-l-v) +  k„po  =  <?n —  qn-l
r—1

and further

go
h = ■— >        pn-* — pn-i-, ^0 for 1 ^ v ^ n — 1.

£0

Substituting in (9) and applying (7) we obtain

go -
knpo = Ag„-A^>„ = 0, q.e.d.

/>o

1.3. We now compare briefly the conditions of the Theorems 1 and

4. As already mentioned, (6) is in general weaker than (2). Of the

other conditions—as a compensation so to speak—(7) is in general

stronger than (3). More precisely we have

Theorem 6. If 0<pn\for O^n/1, then (3) follows from (7).

If on the contrary (Xpn/1 for O^n/1, then conversely (7) follows

from (3).

Proof. First we state at once the equivalence of the inequalities

qn       qn-i              -         g»-i -

— =-    and    Ag„ =-Apn
pn pn-l Pn-l

for w=i 1. Further by (3) or by (7) we have

?n-i       go
-g — for n == 1.
pn-i      pa

Both together give the assertion with regard to the sign of Apn-

2. Some extensions.

2.1. We have previously defined k(x) by the formal quotient

q(x)/p(x). But in applying the Theorems 1 and 4 we can use as well

the representation

q(x)r(x)        q(x)
(10) k(x) = ■-=- with r(x) = E >",*',

p(x)r(x)       p(x)

and this gives

Theorem 7. // there is a sequence rn such that the sequences

n

(11) <fn  =   E q>rn-y, fn  =   E P'U-v,
,-0
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instead of q„, pn, satisfy the conditions (2), (3) or (6), (7), then &„ = 0

for n = 1.

The proof follows from the relation

n

(12) E k,pn~, = qn for n ^ 0,
p=0

which we have by (1) and (11).

Corresponding to this we can also have extensions of Theorems

2, 3, and 5.

We obtain simple and at the same time general conditions by

setting r(x) = (1 — x)a, i.e.

(a\      (n — a — 1\
1 = 1 j, a any real number.

In this case we shall write

(14) qn = Aagn,        pn = Aapn.

For example we formulate the part of Theorem 7, which corresponds

to Theorem 4.

Theorem 8. // there is a real number a such that

(15) po > 0,        A"pn\ for O^n/,

go -
(16) Aa+1qn = — Aa+1pn forn^l

pa

are satisfied, then kn ^ 0 for n = 1.

2.2. In some cases it is not possible to have results directly con-

cerning the distribution of signs in &(x), but only in k(x)r(x). By ap-

plication of the Theorems 1 and 4 we find

Theorem 9. If there is a sequence rn such that the sequences

n

(17) g„ = E qvtn-v and pn,

instead of qn, p„, satisfy the conditions (2), (3) or (6), (7), then kn

= E"=o^n-v^O/orw = l.

The proof follows at once from the relation

(18) E k,pn-, = qn for n ^ 0.
>«o
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The situation is very similar to that of Theorem 7, and the ex-

amples shown there may be used in this case too. Thus instead of

Theorem 8 we have

Theorem 10. If there is a real number a such that condition (6),

po > 0,       pn\ forO^nS,

and

- go -
(19) A«+»?„ =■ — Apn forn^l

po

are satisfied, then A"kn = 0 for « =T.

Corollary. 7/ instead of (19) with «= — 1 we require the stronger

condition

(20) qn = 0 for n £ 0,

then XXo k^Ofor n^O.

For the proof put r(x) = (1 — *)" in Theorem 9 and use the condi-

tions (6), (7).

The corollary refers to the especially simple case a= — 1. The con-

dition (20) is satisfied e.g. for q(x) = 1, i.e. in the case of the reciprocal

power series k(x) = l/p(x). This example shows what may be de-

duced from the condition (6) alone.

2.3. The last remark enables us to add a second proof of Theorem

4: First let formally \/p(x) = 2~l?~o y,xv, i-e.

" CI    for   n = 0,
(2D lMw=  \

„=,o 10    for    n ^ 1.

Putting rn= 23?_0 y, we have then for «!= 1

n

(22) p,Yn + 2~2 Ap,?n-, = 0,
»=i

which by induction gives r„ = 0 for «j£0 because of (6). On the other

hand we have formally k(x)=q(x)(l/p(x)), hence for w=T

n n

(23) kn = 2-] q,yn-, = qoTn + 2~2 Aq,?n-,-

Then from (7) and (22) follows

?0 x^    <?o   —
kn ^ —poTn + 22 —Ap,Tn^y = 0, q.e.d.

Po »=i po
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This method of proof is related to the method of Hardy's proof6

for the special case of Theorem 1 previously mentioned.

2.4. As we have just now seen the considerations of signs in the re-

ciprocal series l/p(x) are fundamental for the theorems stated.

Therefore it is interesting that we may get further theorems by

combination of the methods of Theorems 7 and 9, which are applicable

to the reciprocal series. For simplicity we restrict ourselves to a com-

bination of the Theorems 8 and 10, which corresponds essentially to

Theorem 4. There is of course a similar theorem resulting from

Theorem 1.

Theorem 11. If there are two real numbers a, fi such that

(24) po > 0,       Aapn\ forO ^ nf

and

(25) A-w-ij, £ i^ A«+i^n forn^l
Po

are satisfied, then Afikn ̂ 0 for n ^ 1.

Corollary. If instead of (25) with /3 = — a — 1 we require the stronger

condition

(26) qn = 0 for n ^ 0,

then A-"-1 K^O for w = 0.

The proof is trivial.
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