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A PROOF OF PROJECTIVE DETERMINACY 

DONALD A. MARTIN AND JOHN R. STEEL 

O. INTRODUCTION 

Let OJ be the set of all natural numbers. W OJ is the set of all functions from 
OJ to OJ. We regard W OJ as a topological space by giving it the product of the 
discrete topology. (With this topology it is homeomorphic to the irrationals.) A 
subset of the finite product j (w OJ) is projective if it comes from an open subset 
of some k (w OJ) via repeated applications of projection and complementation. 
The projective sets admit a natural hierarchy: a set is l:.~ iff it is open, n~ iff 
it is the complement of a l:.~ set, and l:.~+1 iff it is the projection of a n~ set. 

Although the projective sets are in some sense simply definable, many ques-
tions concerning them cannot be answered within ZFC, the standard system of 
axioms for set theory. In general, ZFC gives a good theory of Borel sets, decides 
some questions concerning n: and n~ sets, and decides little about n~ and 
beyond. For example, while ZFC proves that all n: sets are Lebesgue mea-
surable (Lusin, cf. [12, p. 105]), it neither proves nor refutes the assertion that 
all n~ sets are Lebesgue measurable (Godel, Solovay; cf. [3, pp. 528, 537]). 
The situation is similar with regard to other "regularity" properties of projective 
sets, for example the Baire property and the property of either being countable 
or containing a perfect subset. In a different direction, ZFC proves that all n: 
relations admit n: selection functions (Novikov, Kondo; cf. [12, p. 227]), but 
does not decide whether all n~ relations admit projective selection functions 
(Levy [6]). 

There is, nevertheless, a fundamental regularity hypothesis concerning pro-
jective sets, one which seems to decide all of the open questions about them. To 
each set Y and each A ~ Wy is associated a two-person infinite game played 
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as follows: 
I Yo Y2 
II Y1 Y3 

Each Y; must belong to Y. I wins a play of the game if and only if (Y; liE 
w) EA. The notions of strategy and winning strategy for the game associated 
with A (and Y) are defined in the natural way. A is determined (as a subset of 
Wy) if one of the two players has a winning strategy for the associated game. 
n~ determinacy is the assertion that all n~ subsets of W ware determined; 
projective determinacy, or PD, is the assertion that all projective subsets of Ww 
are determined. 

During the last 25 years or so, descriptive set theorists have shown that PD 
settles all the classical questions about projective sets left undecided by ZFC. 

The earliest results concerned the regularity properties: PD implies all pro-
jective sets are Lebesgue measurable (Mycielski, Swierczkowski), have the Baire 
property (Banach, Mazur), and either are countable or have a perfect sub-
set (Davis) (cf. [12, pp. 295-301]). Later, through the work of Kechris, 
Moschovakis, and others, it was shown that, under PD, the deepest methods 
and results of the classical theory can be generalized and extended to the whole 
of the projective hierarchy. For example, Moschovakis found the proper gener-
alization of the classical sieves on n: sets (a basic tool for dealing with such 
sets), and showed that under PD n~II+1 sets admit such "generalized sieves." As 
a consequence, n~lI+ I relations admit n.~I1+ I selection functions [12, p. 317]. 
The theory of projective sets one gets from PD generalizes in a natural way 
the theory of Borel, n:, and n~ sets one gets from ZFC; indeed, with the 
benefit of hindsight we can regard much of the latter theory as based on n~ 
determinacy, which is provable in ZFC (Gale and Stewart; cf. [12, p. 289]). 

Because of the richness and coherence of its consequences, one would like to 
derive PD itself from more fundamental principles concerning sets in general, 
principles whose justification is more direct. 

We know of one proper extension of ZFC which is as well justified as ZFC 
itself, namely ZFC + "ZFC is consistent." Extrapolating wildly, we are led to 
strong reflection principles, also known as large cardinal hypotheses. (One can 
fill in some intermediate steps.) These principles assert that certain properties 
of the universe V of all sets are shared by, or "reflect to," initial segments r--:. 
of the cumulative hierarchy of sets. (Reflecting reflection, we get ordinals K 

such that certain properties of V reflect to smaller V's. This is the form of K B 
the principles below.) Reflection principles have some motivation analogous to 
that for the axioms of ZFC themselves, and indeed the axioms of infinity and 
replacement of ZFC are equivalent to a reflection schema (Levy, Montague; cf. 
[5]). 

The principles of interest to us assert the existence of nontrivial elementary 
embeddings j of the universe V into transitive classes M. The greater the 
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resemblance between M and V, the stronger the principle. (M = V is im-
possible by a result of Kunen; cf. [3, p. 314]). The critical point of such an 
embedding j or crit (j), is the least ordinal a such that j(a) =I- a. To see 
the reflection inherent in such a principle, notice that if P is a property of 
K = crit(j) , and M resembles V enough that P(K) is true in M, then M 
satisfies (3a < j(K))P(a). so that if j is elementary with respect to P, V 
satisfies (3a < K)P(a). 

The "large cardinal" associated to an elementary j : V -+ M is its critical 
point; the more M resembles V, the larger this cardinal must be. A cardinal 
K is measurable iff K = crit(j) for some nontrivial elementary j : V -+ M . 
A cardinal K is superstrong iff K = crit(j) for some nontrivial elementary 
j : V -+ M with Vj(K) £;; M. A cardinal K is w-huge iff K = crit(j) for 
some nontrivial elementary j : V -+ M with VjlU(K) £;; M, where jw(K) = 
SUp{j(K). j(j(K)). j(j(j(K))) • ... }. By Kunen's result there is no nontrivial 
elementary j: V -+ M with Vjw(K)+1 £;; M. 

The first indication that large cardinals are connected with determinacy was 
Solovay's proof (cf. [3, p. 556]) that PD implies there is an inner model with 
a measurable cardinal. This suggested that large cardinal hypotheses would 
be necessary in proving determinacy. Results of Gaifman, Rowbottom, and 
Solovay suggested they might suffice, and indeed in [7] Martin showed that the 
existence of a measurable cardinal implies n: determinacy. The next natu-
ral target was n~ determinacy. By extending Solovay's arguments, Martin, 
Simms, and Green showed that small fragments of n~ determinacy imply the 
existence of inner models with many measurable cardinals. Thus one needed a 
hypothesis stronger than the existence of many measurables in order to prove 
n~ determinacy. 

During the ten years between [7] and [8] considerable effort was devoted 
to deriving n~ determinacy from the existence of supercompact cardinals, a 
hypothesis slightly more powerful than the existence of superstrong cardinals. 
There was no success. Then Martin [8] showed that the existence of w-huge car-
dinals implies n~ determinacy. Although the hypothesis seemed outlandishly 
strong, the proof looked natural to descriptive set theorists. This and the earlier 
failure with supercompacts and the like led to a general opinion that the exis-
tence of an w-huge cardinal was a necessary hypothesis for n~ determinacy. 
This opinion was reinforced by subsequent work of Woodin, who showed that 
PD (and more) follows from large cardinal hypotheses somewhat stronger than 
the existence of an w-huge cardinal. It seemed one had only to wait for the 
inner model theory to reach these very large cardinals in order actually to prove 
them necessary for PD. Unfortunately, the inner model theory had bogged down 
well below superstrongs. 

It came as a great surprise when Woodin [13], using freshly minted techniques 
of Foreman, Magidor, and Shelah [2], showed that the existence of supercom-
pact cardinals implies all projective sets are Lebesgue measurable. This meant 
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that if there are inner models with supercompact cardinals which resemble in 
certain very basic ways the known inner models with measurable cardinals and 
the like, then these models with supercompacts must be quite complicated-too 
complicated to construct under the hypothesis of PD. If the pattern of connec-
tion between large cardinals and determinacy that was known in detail at the 
level of n: determinacy and slightly beyond were to persist, this meant that 
supercompact cardinals must imply PD. In fact, Woodin and Shelah soon low-
ered the large cardinal hypothesis for the Lebesgue measurability of projective 
sets below superstrongs. In particular, Woodin showed that the existence of n 
"Woodin cardinals" (as they are now known) with a measurable above them 
all implies that all n!+2 sets are Lebesgue measurable. If the earlier pattern 
were to persist, this meant that the existence of n Woodin cardinals with a 
measurable above them all must imply n!+1 determinacy. 

In this paper we show that this is in fact the case. Thus the existence of 
infinitely many Woodin cardinals implies PD. We also give the proof, using a 
result of Woodin, that every set in L(.9R) is determined if there are infinitely 
many Woodin cardinals with a measurable cardinal above them all. 

Our large cardinal hypotheses are essentially weakest possible. For the case of 
n~ determinacy, we show this in [11] by getting an inner model for a Woodin 
cardinal in which n~ determinacy fails. Similar results can be proved for 
higher levels of the projective hierarchy. More recently Woodin has shown 
that, e.g. n~ determinacy implies that there is an inner model for a Woodin 
cardinal, and he has gotten some equiconsistency results relating determinacy 
and Woodin cardinals. 

As the foregoing capsule history of determinacy proofs suggests, the authors 
owe a great debt to the work of Foreman, Magidor, Shelah, and Woodin. Nev-
ertheless, the technical ideas in our proof have no relation to that work. We 
arrived at our proof by asking what it is about Woodin cardinals that makes their 
inner models so complicated. In earlier work on inner model theory, there had 
arisen the worry that superstrong cardinals might generate complicated "itera-
tion trees" (cf. §3). It turns out that Woodin cardinals generate such trees, and, 
while this is a problem for inner model theory, it can be used to prove determi-
nacy. Our proof also makes heavy use of the connection between determinacy 
and homogeneous trees and of the method for constructing homogeneous trees 
of [9]. 

For more on the background of our theorems, as well as condensed versions 
of some of the proofs, see [10]. 

We have tried to make this paper fairly self-contained. Thus in § 1 we de-
velop the theory of the ultrapowers given by towers of measures and especially 
the theory of extenders in some detail, although we are presenting mostly mate-
rial familiar to large cardinal experts. Similarly, in §2 we develop the theory of 
homogeneous trees from the beginning, a theory well known to experts in deter-
minacy. The reader needs: for § 1 a familiarity with axiomatic set theory at the 
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level of an introductory graduate course and an acquaintance with measurable 
cardinals (with the ultrapowers they give and with Rowbottom's Theorem); for 
§2 the definition of the projective hierarchy and the normal form for n: sets 
in terms of well-orderings. At the end of §2 we state our Main Theorem, using 
the concepts introduced in §2 and the bare definition of Woodin cardinals. We 
then deduce the determinacy results mentioned above. The rest of the paper is 
devoted to proving the Main Theorem. In §3 we introduce and study our prin-
cipal technical concept: that of iteration trees. In §4 we develop the theory of 
Woodin cardinals, relating them to other large cardinals and showing how they 
can be used to generate iteration trees. The results of §§3 and 4 are combined 
in §5 to prove the Main Theorem. No new assumptions of knowledge on the 
part of the reader are made in §§3-5. 

In order to avoid technicalities that might obscure the intuitive ideas, we 
have made free use of proper classes. The reader who would like not to think 
about technicalities but who nevertheless wants to regard the paper as proving 
results in a definite formal theory should think of Kelley-Morse set theory as the 
working theory of the paper. With one exception, everything we do obviously 
makes sense and goes through in KM. (We explain how to deal with the excep-
tion when it arises.) Actually all our uses of proper classes could be eliminated, 
since we need apply our lemmas about proper classes only to certain specific 
classes, so our main results are provable in ZFC. We shall occasionally make 
comments about our uses of proper classes. 

Our exposition has been influenced by a set of lectures given by Matthew 
Foreman on our results in 1985. Readers familiar with notes from those lectures 
should be warned, however, that the proof, the concepts, and the terminology 
are somewhat changed. 

1. EXTENDERS 

In this section we assemble various concepts and facts from the theory of 
large cardinals. 

Convention. Throughout this paper we shall mean by a measure on a set X a 
function /-l : 9'(X) -+ {O. I} (where 9'(X) is the power set of X) which is 
finitely additive and satisfies /-l(X) = 1. By a measure we mean a measure on 
some set. 

Later in the paper we shall have to deal with ultrapowers with respect to two 
kinds of towers of measures: extenders and sequences of measures associated 
with homogeneous trees. A bit of the theory of these two kinds of ultrapowers 
can be developed in a common framework, and that will be our first task. Our 
framework will be just general enough to cover our two examples. 

Let D be a directed nonempty set of sets: if a . bED then there is aCE D 
such that aU b ~ c. Suppose that Z is a set and (/-la I a E D) is such that 

(1) each /-la is a countably additive measure on a Z = {f If: a -+ Z} ; 
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(2) the Jla are compatible: if a ~ band Jla(X) = 1, then 
Jlb ({f 1ft a E X}) = 1. 

We wish to define the ultrapower (of the universe V) by (Jla I a ED). (This 
will really be a direct limit of ultrapowers rather than an ultrapower proper, 
but calling it an "ultrapower" is by now standard.) Suppose F : a Z -+ V and 
G: bZ -+ V with a, bED. We say 

F rv G ¢} Jlc({h I F(h t a) = G(h t b)}) = 1 
for some c ;2 aub with c ED (iff, by directedness and compatibility, Jlc({h I 
F(h t a) = G(h t b)}) = 1 for all c ;2 aub with c ED. Let [FD be the set of 
all members of minimal rank of the equivalence class of F with respect to the 
equivalence relation rv. For F : a Z -+ V and G: b Z -+ V, let [FDE[GD ¢} 

Jlc( {h I F(h t a) E G(h t b)}) = I for some (all) c;2 aU b. The ultrapower by 
(Jla I a E D), Ult( V; (Jla I a E D}) is the proper class model for the language of 
set theory whose domain is the class of [FD such that (3a E D)(F : a Z -+ V), 
with "E" interpreted by E. (The only models we shall deal with in this paper 
are models for the language of set theory, sometimes with constants added.) 

Los's Theorem holds for our ultrapower construction: For any formula 
91(v, ' ... ,vn) and any F, ' ... ,Fn , 91 [[F,D, ... ,[FnD] holds in Ult(V; (Jla I 
a E D}) if and only if I-lc( {h I 91[F, (h t a,) , ... ,Fn(h t an)) holds in V}) = 1, 
for some (all) c ;2 U'~j~naj' where aj Z = domain(F). Thus we get an ele-
mentary embedding i = i(JJalaED) with i: V -+ Ult(V; (Jla I a E D}). (Note our 
systematic abuse of notation: we do not distinguish between a model and its do-
main unless there is a possibility of confusion. Thus we write V above, meaning 
the proper class model (V; E), and we often write Ult(V;(Jla I a ED}) or 
the like when we are talking of the domain of this model.) i is defined by 
i(x) = [c;D for some (all) a ED, where c;(f) = x . 

Ult( V; (Jla I a E D}) mayor may not be wellfounded. If it is wellfounded, 
then it is isomorphic to a unique transitive class by a unique isomorphism. 

Convention. If Ult( V; (Jla I a E D}) is well founded, we let [FD be, not the 
equivalence class of F, but rather its image under the isomorphism. (It is 
usual to use "Ult" in this way; what is unusual is our use of "Ult" for the 
literal ultrapower in the nonwellfounded case.) This convention applies also to 
ordinary ultrapowers by single measures. (These are always wellfounded for 
countably additive measures.) 

There is an alternative way of building the ultrapower by (Jla I a E D). For 
each a E D we can form the ordinary ultrapower Ult(V;Jla). Since Pa is 
countablyadditive, Ult( V; Jla ) is by our convention a transitive class. We have 
the elementary embedding iJJa : V -+ Ult(V;Jla) given by iJJ)x) = [c;D JJa . 
(We use the subscript Jla to indicate in what ultrapower c; is representing the 
object.) For a, bED with a ~ b, let 

ja.b: Ult(V;Jla) -+ Ult(V;Jlb) 
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be given by )a,b([FDp) = [F'D pb ' where F'(g) = F(g r a). By compatibility, 
the functions )a ,b are well-defined and are elementary embeddings. 

«(Ult(V 'Ila) I a E D), Ua,b I a ~ b & a ED & bED) 

is a directed system of models and elementary embeddings. Let «(M, <) a ,00 I 
a E D) be the direct limit of this system. M is canonically isomorphic to 
Ult( V; (Ila I a E D). We shall not distinguish notation ally between these two 
objects. Note that if the empty set 0 ED, then i(PalaED) corresponds to )0,00 . 

Lemma 1.1. The following are equivalent, 
(a) The ultrapower by (Ila I a E D) is not wel/founded. 
(b) There are a countable D' ~ D and (Xa I a ED') with lla{Xa) = 1 for 

each a E D' such that there is no f : U D' -+ Z with f raE Xa for 
all a E D'. 

Moreover, if D is countable then (a) and (b) are equivalent to: 
(c) There is (Xa I a E D) with each lla(Xa) = 1 such that there is no 

f: UD -+ Z with (Va E D)f raE Xa. 

Proof. We first show (a) ~ (b). Let ([FjD liE OJ) be an infinite descend-
ing sequence of "ordinals" of Ult( V; (Ila I a E D). For each i E W, let 
F j : ai Z -+ ON with aj ED. By directedness and compatibility, we may as-
sume that i :s ) ~ aj ~ aj • Let D' = {a j liE OJ}. Let Xao = aoZ and 
let Xai+ 1 = {f E a;+IZ I F j +I (/) < Fj(/ r a)}. Clearly lla;(Xa) = 1 for 
each i. Suppose I: U jEw a j -+ Z and I r aj E Xa; for all i E OJ. Then 
F j +1 (/ r a j + l ) < F j (/ raj) for each i, giving us an infinite descending se-
quence of ordinals in V and so a contradiction. 

Now let us show (b) ~ (a). Let D' and (Xa I a ED') witness (b). Let 
D' = {a j liE OJ}. By directed ness, compatibility, and countable additivity, we 
may assume that i :s ) ::} a j ~ aj and that whenever i :s ) & I E Xaj then 
I r aj E Xa; . Let 

T = {(/j I i < n) I n E OJ & (3/)(/ : an _ 1 -+ Z & (Vi < n)1; = f r a) 
&(Vi<n)J;EXa), 

If we partially order T by Sl -< S2 <=> Sl properly extends S2' then (T, -<) is 
a wellfounded partial ordering. Let 

Fn(/) = rankT{(J; I i < n + 1) I (Vi < n + 1)(1; = I raj»)} 

for I EX, where rankT(s) is defined inductively for SET by an 

rankT(s) = sup{rankT(s') + 1 I s' properly extends s & s' E T}, 

The [FnD form an infinite descending sequence of ordinals of Ult(V; (Ila 
a ED). 



78 D. A. MARTIN AND J. R. STEEL 

(b) '* (c) in general. To see this let D' and (Xa I a ED') witness B. For 
a E D' - Diet Xa = a Z. (Xa I a E D) witnesses (c). If D is countable, 
obviously ( c) '* (b). 0 

Iterations. We need to consider not just ultrapowers and their elementary em-
beddings but also iterated ultrapowers and the associated iterations of embed-
dings. First we prove two simple very general facts. 

Lemma 1.2. Let Mk , k E w, be transitive proper class models of ZFC and let 
(im.1I I m :5 nEw} be such that each im.1I : Mm ---+ Mn is an elementary 
embedding and such that in.p 0 im.n = im.p for m :5 n :5 p, where 0 de-
notes composition. Let ( Moo ' (i k.oo IkE w}) be the direct limit of the system 
((Mk IkE w} , (im.n I m :5 nEw)). 

(a) Moo is i/lfounded if and only if there are ordinals Pk , k E w, with each 
Pk E Mk and (m < n '* im .n(Pm) > Pn). 

(b) Assume Mo = V. Let ek E Mk for each k E w. Define measures vk 
as follows: 

The vk are compatible and they are Ie-complete, where Ie is the smallest 
critical point of the im.lI • Moreover, Ult( V; (vk IkE w)) is wellfounded 
if Moo is wellfounded. 

Proof. (a) If the Pk 's exist, then (im .00(Pm) I mEw} is an infinite descending 
sequence of ordinals of Moo' Suppose then that Moo is illfounded, and let us 
show that the Pk 's exist. Let (bk IkE w) be an infinite descending sequence 
of ordinals of Moo' Let Yk and mk be such that imk .00(Yk) = bk . We may 
assume without loss of generality that mo = 0 and kl < k2 '* mkl < mk2 . For 
0:5 q < mk+1 - mk ' let Pmk +q = imk .mk+q(w, Yk + mk+1 - mk - q). 

(b) The compatibility of the vk is easily verified, as is the Ie-completeness 
of the vk . For m:5 nEw, let jm.n: Ult(V;vm) ---+ Ult(V;vlI ) be the elemen-
tary embedding as defined earlier (in the alternative definition of Ult( V; (Pa I 
a ED))). For each k E w, define 1Ck : Ult( V; vk) ---+ Mk by 

It is easy to see that 1Ck is well defined and is an elementary embedding. More-
over, we have the following commutative diagram: 

;",,11 -
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This is because 

nnUm .n([FDv..,» = nn([FIDv) 

= (io.n(FI))((iml .n(eml ) I ml < n)) 

= (iO.n(F))((im, .n(eml ) I ml < m)) 

= im.n((io.m(F))((iml.m(eml) I ml < m))) 
= im.n(nm([FDv..,» , 

79 

where FI(f) = F(f t m). Hence we get an elementary embedding noo : 

Ult(V;(vk IkE w)) --+ Moo defined by nooUk.oo(x)) = ik.oo(nk(x)). If Moo 
is wellfounded, then Ult( V; (vk IkE w)) , which is embedded into Moo' must 
be wellfounded also. 0 

As in the case of a single measure, the notion Ult(M, (}J.a I a E D)) makes 
sense when M is a transitive (set or class) model of ZFC and M satisfies "D 
is a directed family of sets and (J.la I a E D) have, with some Z, properties 
(1) and (2)." (( 1) and (2) are the properties formulated at the beginning of this 
section.) Just let Ult(M; (}J.a I a E D}) be (Ult( V; (}J.a I a E D) ))M • 

By an internal iteration on M of length q + 1 , with M a transitive proper 
class model of ZFC and q E w, let us mean a system ((Mk I k :5 q) , (im.n I 
m :5 n :5 q}) such that each Mk is a transitive proper class model of ZFC with 
Mo = M, each im.n : Mm --+ Aln is an elementary embedding, in .p 0 im.n = im.p 

whenever m :5 n :5 p, each ik .k+1 is i(Jl~laEDd for some Zk and (}J.a I a E Dk) 
with Mk satisfying "Dk is a directed family of sets and (1) and (2) hold of Zk 
and (}J.: I a E Dk) ", and each Mk+1 = Ult(Mk ; (}J.! I a E Dk})· 

An internal iteration on M of length W is a system ((Mk IkE w) , (im.n I 
m :5 nEw}) such that each ((Mk I k :5 q) , (im .n I m :5 n :5 q}) is an internal 
iteration on M of length q + 1 . 

Remark. The foregoing definitions are an example of our unnecessary use of 
proper classes. The models Mk and the embeddings im .n are completely de-
termined by the systems of measures and the model M. Thus we could have 
defined an internal iteration as a sequence ((}J.: I a E Dk) IkE w} . This would 
make an internal iteration a set instead of a proper class. 

Lemma 1.3. If ((Mk IkE w) , (im.1I I m :5 nEw)) is an internal iteration on 
M of length wand ( Moo ' (i m.oo I mEw}) is the direct limit of this internal 
iteration, then Moo is wellfounded. 
Proof. Assume that the lemma is false. Let M be such that there is an internal 
iteration on M of length W witnessing the falsity of the lemma. There is 
then, by Lemma 1.2(a), an ordinal a such that there is an internal iteration 
((Mk IkE w), (im .n I m :5 nEw)) on M of length wand there is a 
sequence (Pk IkE w) such that each Pk is an ordinal and im .n(Pm) > PII 

whenever m < n and such that Po = a. Let a be the least such ordinal and 
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let (Mk IkE w), (im ,11 I m $ nEw) ,and (Pk IkE w) witness that a has this 
property. Let ((,u~ I a E Dk ) IkE w) witness that this is an internal iteration. 
Let Y be an ordinal such that both (Pk IkE w) and ((,u~ I a E Dk ) IkE w) 
belong to V)'. 

Consider a formula q1(VI • v2 ) , indicated as follows. 
q1(VI • v2): VI and v2 are ordinals and there are ((it~ I a E jjk) IkE w) 

and (Pk IkE w), both in Vth ' and there is an internal iteration «(Mk IkE 
• - k ~ 

w). (im,,, I m $ nEw)) on V of length w such that ((ita I a E Dk) IkE w) 
and (Pk IkE w) witness that this iteration is internal, such that 'm ,,,(Pm) > P" 
whenever m < n , and such that Po = V I . 

M satisfies q1[a. y], for otherwise the set of all finite attempts to build a 
witness that M satisfies q1[a. y] , partially ordered by putting proper extensions 
before the initial parts they extend, is wellfounded in M. By the absoluteness 
of well founded ness, this partial ordering is really wellfounded. But (Pk IkE w) 
and ((,u~ I a E Dk ) IkE w) give an infinite descending chain in this partial 
ordering. 

Similarly M satisfies" a is the least ordinal e such that q1(e. y)." Hence 
MI satisfies" io,l(a) is the least ordinal e such that q1(e, io,I(Y))'" But 
«(Mk+1 IkE w). (im+I,1I+1 I m $ nEw)) is an internal iteration on MI' 
Hence absoluteness arguments as before show that MI satisfies q1[PI • y]. Since 
y $ io,I(Y)' MI satisfies q1[PI .io,I(Y)]' Since PI < io)a) , this is a contra-
diction. 0 

Extenders, to which we now turn, are a refinement due to A. Dodd and 
R. Jensen of an analysis by W. Mitchell of arbitrary elementary embeddings 
j : V -> M in terms of directed systems of measures. Our definition here is a 
little more general than that of Dodd and Jensen (see [I D, since it is convenient 
for us to permit arbitrary transitive sets and not just ordinal numbers as supports 
of our extenders. 

We shall in fact give two different, but essentially equivalent, definitions of 
"extender". The first definition is more elegant and fits into the general theory we 
have been developing. The second, which we shall use in the bulk of the paper, 
has special technical advantages for the uses to which we shall put extenders. 

Let Y be a transitive set and let K be a cardinal number. An extender with 
critical point K and support Y is a system E = (Ea I a E <wry]) (w[Y] is the 
collection of all finite subsets of Y) with the following properties: 

(i) Each Ea is a K-complete measure on a(VK ) , and at least one Ea is not 
K + -complete. 

(ii) The Ea are compatible in the sense defined at the beginning of this 
section. 

(iii) Ea({f If: (a. E) ~ (range(f); En) = 1. 
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(iv) If F : a(VK) -+ VK and Ea({f I FU) E U(rangeU»)}) = 1, then there 
is ayE Y such that Eau{y}({f I FU r a) = fey)}) = 1. 

(v) Ult(V; (Ea I a E <w[Y]) is wellfounded. 

Remarks. (a) Properties (i) and Cii) imply that VK and (Ea I a E <w[Y]) satisfy 
(1) and (2) above (with Z = VK and D = <w[Y]. 

(b) One could also speak of K as the completeness of E instead of the critical 
point of E. 

(c) The term "extender" should really also be applied if we replace VK by an 
arbitrary set. We use the more restrictive definition here because it is convenient 
to deal only with extenders in our restrictive sense. 
Lemma 1.4. Let E = (Ea I a E <w[Y]) be an extender with critical point K. Let 
i E : V -+ Ult( V ; E) be the canonical elementary embedding. Then i E r VK is 
the identity but iE(K) > K. CThus K is the critical point, in the usual sense, of 
i E.) 
Proof. The proof of the first assertion is just like that for the corresponding fact 
about the embedding from a single K-complete measure on K: One proves, by 
induction on rank, that constant functions with values in VK represent their 
values, using the K-completeness of the Ea. For the second assertion, let Ea 
be not K+-complete. Let X"' for a < K, be such that Ea(Xo) = 1 but suppose 
also that EaCn'<K Xu) = o. Let F : aCVK) -+ K be given by FU) = the least 
a < K such that f ¢. X". It is easy to see that a < [FD for each a < K but 
[FD < iECK). 0 

Lemma 1.5. Let E = (Ea I a E <w[Y]) be an extender with crit(E) (the critical 
point of E) = K. For each y E Y and each a E <w[Y] with yEa, let 

H;C!) = fey) 

for all fEa(VK). In Ult(V;E), y=[H;D. 
Proof. We prove the lemma for all y and a by induction on rank(y). Note 
first that the definition of the ultrapower gives directly that [H;D = [H;D for 
any a and b with yEa n b . 

Suppose the lemma holds for all z E Y with rank(z) < rank(y). Let z E y. 
Let a be such that {z, y} ~ a. By clause (iii) in the definition of extender, 
Ea( {f I fCz) E fCy)}) = 1. Thus EaC {f I H;C!) E H;U)}) = 1, and so 
[H;D E [H;D. Since z = [H;D by our inductive assumption, it follows that 
z E [H;D. By the remark at the beginning of the proof, z E [H;D for any b 
with y E b. 

Now suppose yEa and [FD E [H;D with F : aCVK) -+ V. Then 
EaC{f I FU) E fey)}) = 1 so Ea({f I F(!) E U(range(f»)}) = 1. By clause 
(iv) there is a z E Y such that Eau{z} ({f I FU r a) = f(z)}) = 1. Hence 
[FD = [H:U{Z}D = z. But we also have Eau{z} ({f I fCz) E f(y)}) = 1 , and 
so (iii) gives that z E y. Hence [FD E Y as required. 0 
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Example 1. Let j: V --+ N be an elementary embedding with N transitive. Let 
KEY ~ Vj(K) n N with Y transitive, where K = crit(j). For each a E <w[Y] 
define a measure Ea on a(VK) by 

Ea(X) = 1 ¢} j-I t j(a) E j(X). 

Let E = (Ea I a E <w[Y]) . 
It is easy to see that each Ea is a K-complete measure on a(VK) and that 

the Ea are compatible. E{K} is not K+-complete, since j moves K = crit(j). 
Thus (i) and (ii) in the definition of extender hold. (iii) holds since j-I t j(a) : 
(j(a) , E):::::: (a, E). To verify (iv), let F: a(VK) --+ V with 

Ea ( {F IF(J) E U(range(J» }) = 1. 

By definition, U(F»U- I t j(a» E U(a). Thus (j(F»U- 1 t j(a» E y for 
some yEa. Therefore U(F»)(r l t j(a» = z for some z E Y, since Y is 
transitive. By the definition of Eau{z}' 

Eau{z}({f I F(J t a) = f(z)}) = 1. 

Let k : Ult( V; E) --+ N be defined by 

k([FD) = (j(F»U- 1 t j(a» 

for F E a (VK ). It is easy to check that k is well-defined and is an elementary 
embedding. Since, in particular, this means that k is a monomorphism of 
Ult(V; E) into the well founded model N, we have (v) and so have that E is 
an extender. 

In addition, we have the following commutative diagram: 

N 

~ Ik 
V ~ Ult(V;E) 

To see this, note that if c; : a (VK ) --+ {y} is the constant function then 
k(iE(y» = k([c;m = (j(c;»U- 1 t j(a» = j(y). 

Suppose Y E Y. By Lemma 1.5, k(y) = k([H;D) = (j(H;»U- 1 t j(a» = 
U- I t j(a»U(y» = j-IU(y» = y. In other words, k t Y is the identity. 

We shall call the extender E defined from j and Y as above the extender 
derived from j with support Y. 

If E is an extender with support Y, then Lemma 1.5 implies that Y ~ 
Ult( V; E) , and so we can define the extender E' derived from i E with support 
Y. We see as follows that E' is just E itself: Let E = (Ea I a E <w[Y]) and 
let E' = (E~ I a E <W[YJ). We have that E~(X) = 1 ¢} i;1 t iE(a) E iE(X). 
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For yEa, i~I(iE(Y)) = y = [H;D. Hence i~l t iE(a) = [((f(y) lYE a) I 
f E a(VJ)D = [(f I f E a(VK))D = [ida(V,)' Hence E~(X) = 1 ¢:> [ida(VK)D E 
iE(X) ¢:> Ea({f I f E X}) = 1 ¢:> Ea(X) = 1. 

Thus every extender is the extender derived from some j : V --+ N with 
support some Y ~ Vj(K) n N. We could, if we wished, have made this our 
definition of extender and have taken our present definition as a derived result. 
In [10] we do define extenders in this way. 

Example 2. Let E be an extender with support(E) = Y, i.e. with Y the 
support of E. Let Y' ~ Y be transitive with Y' ct VK. Let E' = E t Y' , i.e. 
let E' = (Ea I a E <w[Y')). It is easy to check that E' is an extender with the 
same critical point as E and with support(E') = Y' . In fact, E' is the extender 
derived from i E with support y', as the argument of two paragraphs ago 
essentially shows. Thus we have the elementary embedding k : Ult( V; E') --+ 

Ult( V; E) as in Example 1. k can also be defined by k([FDE,) = [FDE' since 
if F : a(VK) --+ V then (iE(F))(i~1 t iE(a)) = (iE(F))([ida(VK)DE) = [FD E . 

We gave the particular definition of extender that we did because it fits 
directly into the general scheme introduced at the beginning of this section. 
But our definition has one defect: The measures Ea are essentially measures 
on lal (VK ) but they are not literally measures on lal (VK ). This small differ-
ence would produce-if we continued to operate with our official definition-
numerous small notational problems. For this reason we shall use an alternative 
definition of extender (whose specific form was suggested to us by M. Foreman). 

We replace (Ea I a E <w[Y)) by (£(q) I q E <wY) where <wY is the col-
lection of all finite sequences of elements of Y. Each E(q) is a measure on 
fh(q)(VK) , where fh(q) is the length of q. Let 

E(q)(X) = Erangc(q)({f I gr EX}). 

where gr(n) = f(q(n)). We no longer have a system satisfying (1) and (2), 
so the uitrapower must be defined differently: Elements of the ultra power are 
of the form [FDq , when q E <wYand F : fh(q)(VK) :::} v. [FDq = [GD r ¢:> 

E(q~r)({h I F(h t fh(q)) = G((h(fh(q) + m I m < fh(r)))}) = 1. (q~r is 
the concatenation of the sequences q and r.) The characterization of when 
[FDq E [GD r is totally analogous. We leave to the reader the easy verification 
that this ultrapower is isomorphic to the ultra power by the system E described 
previously. 

Our new definition of extender is thus finally: An extender with critical point 
K and support Y is a system (E(a) I a E <wY) such that 

(i *) Each E(a) is a K-complete measure on €h(a)(VK) and at least one E(a) 
is not K + -complete. 

(ii *) The E(a) are compatible in the sense that if (E(a))(X) = 1 then 

(E(a~b))({z I z t fh(a) EX}) = 1. 
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(iii *) (E(a»)( {zl(V'm < fh(a»)(V'n < fh(a»)(a(m) E a(n) ¢} z(m) E z(n»)}) = 
1 , and if 7r is a permutation of fh(a) , then 

(E(a 0 7r»)( {z 0 7r I z E X}) = (E(a»)(X). 

(iv*) If F: fh(a)(VK ) - VK and (E(a»)({z I F(z) E U(range(z»)}) = 1, then 
there is ayE Y such that 

(E(a~(y))({z I F(z t fh(a» = z(fh(a»)}) = 1. 

(v *) The ultrapower Ult(V; E) as described above is wellfounded. 
Note that we are reverting to using" E " and" a " when we talk of extenders in 

the new sense, but we write E(a) instead of Ea to indicate that we are dealing 
with an extender in the new sense. Our two notions of extender are equivalent 
in that there is a natural one-one correspondence between extenders of the two 
types, and corresponding extenders have isomorphic ultrapowers. 

We shall sometimes want to consider ultrapowers Ult(M; E) where M is 
a set rather than a proper class and where M may not satisfy full ZFC. Let 
ZC be ZFC without replacement (but with Aussonderung). Assume that M is 
a (set or proper class) model of ZC + 1:2-replacement + (V'x)(3a)x E Vo' The 
ultrapower of M by a system (JL(a) I a E D) such that M satisfies "D is a 
directed set of sets and (JL(a) I a E D) and some Z have properties (1) and 
(2)" makes sense and is definable in M. 

We shall often want to form the ultrapower of a model by an extender of 
a different model. Suppose M and N are transitive (set or class) models of 
ZC+1:2-replacement + (V'x)(3a)x E V" and suppose that VK +1 nM = VK +1 nN 
for some ordinal 1C of M n N. Suppose M satisfies "E is an extender and 
crit(E) = 1C ." We can form Ult(N; E) , the ultrapower of N by E, as follows. 
If a and b belong to <w(support(E» and both F : th(a)(VK n N) - Nand 
G: fh(b)(VK n N) - N belong to N, then 

(F ,a) '" (G,b) 

¢} (E(a~b»)({z I F(z t fh(a» = G«(z(fh(a) + mlm < fh(b)})}) = 1. 

is an equivalence relation, and we can therefore form equivalence classes 
(n their members' minimal rank) which we denote [FD: . As usual we define 
Ult(N ; E) and get the embedding i; : N - Ult(N; E). (If confusion is pos-
sible, we shall henceforth denote the embedding of M itself into Ult(M; E) 
by /;.) i; is elementary if N satisfies replacement for the domain Vcrit(E)' 

In general Ult(N ;E) need not be wellfounded, even if M and N are proper 
classes. The following lemma gives a useful sufficient condition for its well-
foundedness. 

Lemma 1.6. Suppose M and N are transitive (set or class) models of ZC + 1:2-

replacement + (V'x)(3a)x E V;., that VK+lnM = VK+lnN for some 1C E MnN, 
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and that M satisfies "E is an extender and crit(E) = K ." Suppose also that M 
is countably closed, i.e. that W M ~ M. Then Ult(N; E) is wellfounded. 
Proof. Assume for a contradiction that Ult(N; E) is illfounded. Let ([F]NI 

I a, 
i E w) be an infinite descending "E-sequence" of Ult( N ; E). We may assume 
that i::; j => a i ~ a j. Just as in the proof of the (a) => (b) part of Lemma 1.1, 
define Xa = fh(ao)(VI() and X. = {z E fh(a,+il(V )IF+1(z) < F(z f eh(a))}. o af+1 K I I I 

Each Xa;, , EN and so each Xa,., EM. As in the proof of Lemma 1.1, there 
is no f : w --> VI( with each f r eh(ai) E Xa;, or else we have an infinite 
descending E-sequence in V. But M is countably closed, so (aili E w) E M 
and (Xa, liE w). But then M does not satisfy "E is an extender," contrary 
to hypothesis. 0 

Lemma 1.7. Suppose M and N are transitive (set or class) models of ZC + ~2-
replacement + (Vx)(3a)x E v", that Vp+1nM = Vp+1nN, that K ::; p E MnN, 
that M satisfies "E is an extender with critical point K and support Y," and 
that Ult(M; E) and Ult(N; E) are wellfounded. Then 

(a) Vi~/(P)+l nUlt(M;E) = Vi~:(P)+l nUlt(N;E). 
(b) Y ~ Ult( N ; E) . 
(c) For x E Vi;!(P)+l nUlt(M;E), the same functions with range ~ Vp+1 

represent x in Ult(M; E) as in Ult(N; E). 

(Note that here, as always, we identify a wellfounded ultrapower with the 
isomorphic transitive set or class.) 

Proof. (c) is obvious. (c) => (a). (a)=> (b) since Y~ Vi:!(I()nUlt(M;E). 0 

Lemma 1.8. Let M and N be as in Lemma 1.6 and suppose that Nand Y, 
as well as M, are countably closed. Then Ult( N ; E), which is wellfounded by 
Lemma 1.6, is countably closed. (For arbitrary sets or classes such as Y, let us 
take countable closure to mean that every countable subset of Y belongs to Y.) 

Proof. Suppose we are given ([F]N liE w). We must show that this sequence 
I a, 

belongs to Ult(N; E). Each ai belongs to Y, since Y is countably closed. 
~ 1 

Hence b = (ai liE w) E Y by the countable closure of Y. Let F: (VI()nN--> 
N be given by 

F«(y)) = { (Fi(y(i)) I ~ E w) if y : w --> N & (Vi)(y(i) E fh(a;\VI()); 
o otherwise. 

Each Fi EN. Hence (Fi liE w) E N by countable closure of N. Since 
h 1/ ~ ~ N e (ai) is the n such that domain(Fi) = (VI() n N, FEN. Hence [F](b} E 

Ult(N;E). Since (E«(b)))({(y) I y: w --> N & (Vi)(y(i) E fh(a;)(VI())}) = 1 
(essentially by Lemma 1.5), we have that [F]~) is a function with domain w. 
Furthermore, [F]~)(i) = [Fi]:' for each i, since 

E«(b)~ai)({(Y)~z I z = yU)}) = 1. 0 
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2. HOMOGENEOUS TREES 

In this section we shall introduce the basic concepts needed to state our 
Main Theorem and prove some well-known facts about these concepts-facts 
that, however, do not seem to have been literally proved in any publication. 
We then deduce (assuming large cardinals) projective determinacy from these 
results and the Main Theorem (to be proved in §5). We also deduce ADL(.'H) 

from these results, the Main Theorem, and a theorem of H. Woodin. 
A tree is a partially ordered set (T, -<) with the property that, for each 

x E T, the set of all y -< x is wellordered by -<. In descriptive set theory, the 
word "tree" is often used in a more special sense, for a set T of finite sequences 
which is closed under initial segments. If we order such a T by x -< y <=> x 
is properly extended by y, then (T, -<) is indeed a tree. Unfortunately it 
is also customary to order T backward, letting x -< y mean that x properly 
extends y. This is because the main interest is often in whether or not T is 
wellfounded with respect to this backward partial ordering. 

We adopt the following conventions. 
( I) We use tree in the general sense (for a partially ordered set with wellordered 

initial segments). 
(2) Bya tree on a set X we mean a subset T of <w X such that (s ~ t & 

t E T) =} sET, partially ordered by s -< t <=> t properly extends s. (Hence 
a tree on a set is literally a special kind of tree.) Since the partial ordering is 
determined by T, we usually speak of T itself as a tree. 

(3) We define other notions as in descriptive set theory: a tree T on X is 
wellfounded just in case ~ is a wellfounded relation on T, i.e. just in case T 
has no infinite branches, where an infinite branch of T is an J: OJ -+ X such 
that each x t nET. [T] is the set of all infinite branches of T. (So T is 
wellfounded <=> [T] = 0. ) If T is wellfounded, then we define inductively, for 
t E T, the rank oj t in T, rankT(t) by rankT(t) = sup{rankT(s) + I I s E 
T & t S; s}. The rank oj T is sup{rankT(s) + 1 Is E T}. 

When we deal with trees on cartesian products we shall always pretend that 
the trees consist of pairs of finite sequences instead of finite sequences of pairs: 
If T is a tree on X x Y then we regard the members of T as pairs (s, t) with 
s E <w X, t E <Wy , and fh(s) = fh(t). Similarly we regard the members of 
[T] as pairs (J, g) with JEw X and g E WY. 

If A E W X x WY, pA, the projection oj A, is {J: (3g)(J ,g) E A}. 
If K is a cardinal number and B 5; W X, B is K-Souslin if there is a tree T 

on X x K with B = p[T] . 
We are primarily interested in subsets B of W OJ. The axiom of choice is 

easily seen to give that every such B is i~o -Souslin. Proofs of determinacy 
from large cardinal axioms-including the proofs in this paper-typically de-
pend on showing that the relevant set is not just K-Souslin for some K but 
homogeneously Souslin. It is to this concept that we now turn. 
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A tree T on Y x Z is homogeneous if there is a system (f.ls Is E <wY) such 
that 

(1) each f.ls is a countably additive measure on ~ = {t I (s • t) E T} ; 
(2) if Sl ~ S2' then f.lSI (X) = 1 ¢:} f.ls/ {t Itt th(sl) EX}) = 1 ; 
(3) if x E p[T], then the ultrapower by (f.lxtll In E w) is wellfounded. 
(3) makes sense, as we can set D = w, Z = Z, and f.lll = f.lxtll' and then 

(2) asserts compatibility in the sense of § 1. 

Lemma 2.1. A tree T on Y x Z is homogeneous just in case there are (f.ls I s E 
wY) such that (1) and (2) hold and (3') il x E p[T] and f.lxtll(XII ) = 1 for all 
nEw, then there is an IE Wz with (Vn)1 t n E Xn . 

Proof. The lemma follows from Lemma 1.1. 0 

Remark. There is a more general notion of homogeneous tree which has certain 
advantages and disadvantages. Replace (f.ls I s E <w Y) by (f.ls I s E R) , where 
R ~ <Wy is a tree on Y. Replace (3) by: if x E p[T] then (Vn)(x t n E R) and 
the ultrapower by (,uxtn I nEw) is wellfounded. All our results in this paper 
would go through with this liberalized definition. Among the advantages would 
be that it is a theorem of ZF that every closed subset A of Wy is p[T] for 
some homogeneous (in the liberal sense) T. (Let R = {sl(3x)ls ~ x & x E A} . 
Let T = {(s • s) Is E R}. Let f.ls be the measure on {s}.) The disadvantages-
having to pay attention to R -are more important for us here. 

A tree T on Y x Z is K-homogeneous if some (f.ls Is E <wY) witnesses that 
T is homogeneous with each f.ls K-complete. A set A ~ Wy is homogeneously 
Souslin if A = p[T] for some homogeneous T. A is K-homogeneously Souslin 
if A = p[T] for some K-homogeneous T. 

The notion of homogeneous trees has its roots in [7], but the general notion 
was only isolated much later by Kechris [4] and Martin independently and was 
motivated in part by work of K. Kunen. 

The following theorem provides the basic example of a homogeneous tree. It 
comes essentially from [7]. 

Theorem 2.2. If A ~ Ww is n: and K is a measurable cardinal, then A is 
K-homogeneously Souslin. 
Prool. As is well known, we can associate with each s E <w W a linear ordering 
<s of fh(s) in such a way that Sl ~ S2 => <Sl ~ <S2 ' and hence that a linear 
ordering <x of w is associated with each x E W w, so that 

(Vx E W w)(x E A ¢:} <x is a wellordering). 

In fact, the existence of such an association s 1-+ < is equivalent with A 's x 
being n:. 

Define a tree T on W x K by 
T = {{s. t} Is E <w w & t E <wK & th(s) = th(t) 

& (Vm < th(s»(Vn < th(s))(m <s n ¢:} t(m) < t(n))}. 
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A = p[T], since an f with (x, f) E [T] is just a verification that <x is a 
wellordering. (So far we have used only that K ~ WI .) 

Let v be a normal, K-complete measure on K. By Rowbottom's Theorem 
(see Theorem 70 of [3]), if F : n[K] -+ {O, I} , where nEw, then there in an 
X ~ K with veX) = I and F f n[X] constant. Thus we can define, for each 
s E <w W , a measure Ils on ~ by 

Il/X) = I ¢:} (3X' ~ K)(V(X') = I & (Vt)(t E ~ & range(t) ~ (X')) ::;. t EX)). 

(Note that range(t) determines t for t E Ts .) 
Each Ils is K-complete, since v is K-complete. It is also easy to see that 

property (2) in the definition of homogeneous trees is enjoyed by (Ils I s E <w w) . 
To prove that T is homogeneous, we must then verify property (3) and so, using 
Lemma 2.1, we need only verify property (3'). 

Let Xn C Txtn with Ilxtn(X,,) = 1 for each nEw and let x EA. For each 
n, let X~ ~ K be such that v(X~) = 1 and (t E Txt" & range(t) ~ X~) ::;. t E 

X". Let X = nnEw X~. Since x E A, <x is a wellordering. Since X is an 
uncountable set of ordinals, there is an f: W -+ X such that (Vm)(Vn)(m <x 
n ¢:} f(m) < f(n)). For each n, f f n E Txtn and range(j f n) ~ X ~ X~, 
so f t n E Xn • 0 

Remark. The theorem continues to hold-with essentially the same proof-if 
we let A ~ wy with ..,A No-Souslin. 

For our purposes, the most important property of homogeneously Souslin 
sets is determinacy. The following theorem is a standard fact in determinacy 
theory, but does not seem to have appeared in a published work. The theorem 
is a generalization of [7]. 

Theorem 2.3. Let A ~ W Y be K-homogeneously Souslin for some K > I YI. A 
is determined. 

Proof. Let T on Y x Z be K-homogeneous with A = p[T]. Let G be the 
game given by A. Let G* be the game played as follows. 

The rules are: Each y; must belong to Y. Each z; must belong to Z. Each 
((Yi I i < n), (z; I i < n)) must belong to T. The first player to disobey one of 
these rules loses. If all rules are obeyed, I wins. 

G* is a closed game and so is determined. If I has a winning strategy for 
G* , then I has a winning strategy for G. (Just play the y; 's given by the 
strategy for G* .) 

Suppose then that r* is a winning strategy for II for G* . Let (Ils Is E <wY) 
witness that T is K-homogeneous for some K > I YI. We now define a strategy 
r for II for G. Let (Y; I i ~ 2n) be a position in G with II to move. Since 
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.u(.I';li~lI) is I YI+ -complete, there is ayE Y such that .u(y;li~lI) ({t E 11+1 Z I r* 
calls for 1/ to play y in the position given by (Yi I i ~ 2n) and t}) = 1 . Let 
r call for II to play this y in the position (Yi I i ~ 2n) . 

Let x E Wy be a play of G consistent with r. For each nEW, let XII = 
{t E II+I Z I r*calls for II to play x(2n + 1) in the position given by x r 2n + 
1 and t}. By the definition of r, .uxtll+I(XII) = 1 for each n. Assume for 
a contradiction that x EA. By Lemma 2.1, there is an JEw Z such that 
(Vn) If r n + 1 E XII' But then x and f give a play of G* consistent with r* 
with all rules obeyed, contradicting the fact that r* is a winning strategy for 
II. 0 

Our determinacy results will be proved via Theorem 2.3. In particular, we 
shall prove PD by showing-assuming Woodin cardinals-that every projective 
subset of W W is homogeneously Souslin. To do this we shall use Theorem 2.3 
and our Main Theorem, which will give us a method for propagating homoge-
neous Souslinness up the projective hierarchy. 

A well-known fact (whose ultimate origin is [9])-but which, like Theo-
rem 2.3, does not seem to have been published (though see [4])-is that, if 
B <;; wY x Ww is homogeneously Souslin and A = -,pB, i.e., x E A ¢:> 

(Vy E ww)(x, y) ft B, then A is K-Souslin for some K via a tree T con-
structed in a canonical fashion from a homogeneous T with B = p[T] plus 
measures witnessing the homogeneity of T. Our Main Theorem will say that 
under certain conditions T is '1-homogeneou3 for certain '1. 

Shortly we shall define the operation giving T, but first we shall describe a 
simpler operation, starting with a tree T on Y x Z for some Z and (.us I 
s E <w Y) witnessing the homogeneity of T, and giving a tree T* such that 
p[T*] = -,p[T]. There is a theorem simpler than the Main Theorem, giving 
that T* is under certain conditions 'I-homogeneous for certain '1. In §5 we 
shall first present the proof of this simpler theorem, since all the ideas needed 
for the Main Theorem's proof appear in a more easily digested form in the 
proof of the simpler theorem. 

We begin with the construction of T*. Let T be a tree on Y x Z. Let 
(.us I S E <wY) witness that T is homogeneous. For S E <wY , let js = i/.l, : 
V --+ Ms = Ult( V; .us)' For S I <;; S2' let JSI ,S2 : Ms, --+ MS2 be given by 
js s ([FD ) = [F'D" ,where F'(t) = F(t r lh(sl))' As noted in §1, js s is 

I ' 2 /.1'1 ""2 I ' 2 

well defined and is an elementary embedding. Define T* on Y x ON by 

(s , u) E T* ¢:> (lh(s) = lh(u) & 
(ViI < Ih(s»(Vi2 < lh(s))(il < i2 => u(i2) < jstil ,sti2(u(iI)))) ' 

Lemma 2.4. 
p[T*] = p[T* r (2Izl)+] = -,p[T] , 

where T* r a = {(s , u) I (s , u) E T* & u E <w O!} . 
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Proof· Suppose x E p[T*]. Let (x, I) E [T*]. We have jxti.x : Mxti -+ Mx ' 
with Mx the ultrapower by (JLx ti 1 i E w) , for each i E w. Now 

jxti .x(f(i» = jxti+,.xU'<ti .xti+, (f(i))) > jxti+,.x(f(i + I». 
Hence UXti .x(f(i)) 1 iE w) is an infinite descending sequence of ordinals in 
the ultrapower by (J1.xti 1 i E w). Hence x ¢. p[T]. 

Suppose then that x ¢. p[T]. T(x) = {t 1 (3n)(t E Txtn )} is a well-
founded tree. For t E Txtn ' let Gn(t) = rankT(x/' Let f(n) = [GIlDJlxr,,' 
Since Gn+,(t) < Gn{t t n) for all t E Txtn+" f(n + 1) = [GIl+,DJI.tr,,+1 < 
jxtn.xtn+,[GnDJI.q " = jxtn.xtn+,(f(n». Hence (x,1) E [T*] and so x E 
p[T*] . 

If Z is finite every x belongs to p[T]. If Z is infinite, then If(n)1 = 
I[GnDxtnl :s I{F 1 F : nZ -+ rank(T(x))}1 :s IZIIzl = 21zl. (This part of the 
lemma is not really important.) 0 

Suppose now that T is a tree on (Y x w) x Z and that (JL(s .I}.I S E <Wy & t E 

<ww & lh(s) = lh(t)) witness that T is homogeneous. Let ro' r, ' ... enumer-
ate <w w so that each finite sequence is enumerated before any of its proper 
extensions. Define a tree T on Y x ON by 

(s, u) E T ¢:} (V'i')(V';2)[(i, <;2 < lh(s) & ril ~ ri) 

=> u(i2) < j(stth(ril}.ril}.(stth(ri2).r'2}(u(i,))) , 

with the obvious definition of the j(sl .II} .(S2 .12) • 

Lemma 2.5. peT] = peT t (2Izl)+] = {x I (V'y) (x ,y) ¢. p[T]}. 
Proof. Assume first that x E p[T]. Let (x, I) E [T]. Let YEw w. Let 
rik = y t k for all k E w. Then 

f(ik+') < j(xtk .ytk} .(xtk+,.ytk+,}(f(ik» 
for all k E w. As in the proof of Lemma 2.4, this gives us an infinite descending 
sequence of ordinals in the ultrapower by (JL(x tll.y tn) In E w). Hence (x, y) ¢. 
peT] . 

Now suppose that (V'y E Ww)(x, y) ¢. p[T]. Let S = T(x) = {(r, t) I 
«x t lh(r) , r) ,t) E T}. S can have no infinite branches, i.e. S is well-
founded. Let G,.(t) =,~ranks( (ri ' t)) and let g(i) = [G1·D. . As in 

Jl(.\ t IhtT;) ,r,) 

the proof of Lemma 2.4, if ri S; rj then Gj(t) < Gi{t t lh(r)) for all t E 
T(xtth(rj) .rJ . As in the proof of Lemma 2.4, this implies that g(j) < 
j(xtth(r,) .ri} .(xtfh(rj) .r,} (g(i)) and so that (x, g) E [T]. Thus x E p[T]. 

Also as in the proof of Lemma 2.4, g(i) < (2Izl)+ for each; . 0 

In order to state our Main Theorem, we must formulate our large cardinal 
hypothesis. This means we must define the relevant kind of large cardinals: 
Woodin cardinals. In this section we shall give only the bare definition. Woodin 
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cardinals will be studied in §4 and will be related to more familiar kinds of large 
cardinals. A cardinal J is Woodin if, for every f : J -+ J , there is a K < J 
such that K is closed under f and such that there is an elementary embedding 
j: V -+ M with crit(j) = K, M transitive, and ~j(f))(K) EM. 

Main Theorem (Theorem 5.11). Let J be a Woodin cardinal, let (/1-(5,r) I s E 
<WW & r E <WW & lh(s) = lh(r)} witness that the tree T on (w x w) x Z 

+ ~ ~ 

is J -homogeneous, and let T be defined as above, For each a < J, T is 
a-homogeneous, 
Remarks. (1) The measures witnessing the a-homogeneity of T for various 
a < J all concentrate in some sufficiently large <w p. Hence they witness that 
the set T t P is a-homogeneous. 

(2) The theorem remains true-and our proof continues to work with essen-
tially no change-if we let T be a tree on (Y x w) x Z for any Y E V,j . 

Corollary. For each nEW, if there is a measurable cardinal larger than n 
Woodin cardinals, then (n~+ I) determinacy holds. 
Proof. Let J 1 < J 2 < .,. < J" be Woodin cardinals if n > O. Let Jo = w. 
Let p > J" be measurable. Let J; < a; < J;+I for i < n and let an = p. 
By induction we show that every n:+1 set is a,,_;-homogeneously Souslin, for 
O<i<n. 

-Forthe case i = 0, Theorem 2.2 gives that every n: set is p-homogeneously 
Souslin. 0.11 _ 0 = all = p. 

Assume that every n:+1 set is all_;-homogeneously Souslin, for 0 ~ i < n. 
Let A ~ <WW be n:+2 • Then A = {x I (Vy)(x, y) ¢. B} with B E n:+ 1 . 
Let T on (w x w) x Z for some Z witness that B is a,,_;-homogeneously 
Souslin. Since J II _; < 0.11 _; and all-(i+I) < J II _;, the Main Theorem implies 
that T (and so T t P for some P) is a"_(i+I)-homogeneous. By Theorem 
2.5, p[T] = A and hence A is all_(i+I(homogeneously Souslin. 

The case i = n gives us that every n:1+ 1 set is homogeneously Souslin and 
so, by Theorem 2.3, determined. 0 

More determinacy can be deduced from a combination of the Main Theorem 
and results of H. Woodin. 
Theorem (Woodin). If there is a measurable cardinal larger than infinitely many 
Woodin cardinals, then every subset ofww in L(.9f) isoftheform {x I (Vy)(x ,y) 
¢. p[ Tn for some tree on (w x w) x Z , for some Z, such that T is J+ -homoge-
neous for some Woodin cardinal J. 
Corollary (to the Woodin Theorem and the Main Theorem). If there is a measur-
able cardinal larger than infinitely many Woodin cardinals, then every subset of 
W w in L(.9f) is determined (hence the Axiom of Determinacy holds in L(.9f)). 

The corollary follows directly from the Woodin Theorem, the Main The-
orem, and Theorem 2.3. Assuming the existence of more Woodin cardinals, 
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Woodin can strengthen the conclusion of his theorem, replacing L(!Jf) by larger 
classes. The conclusion of the corollary is correspondingly strengthened. From 
the stronger hypothesis that a supercompact cardinal exists, Woodin proves the 
conclusion of his theorem in [13]. In (13] Woodin states his conclusion in terms 
of weakly homogeneous trees. For our purposes a weakly homogeneous tree is 
a tree on Y x (w x Z) such that the corresponding tree on (Y x w) x Z is 
homogeneous. 

Embedding normal form. If a tree T on Y x Z is homogeneous and A = p[T] , 
then there is a system ((Ms Is E <wy), (ks, .S2 lSI S;;; S2 & Sl ,S2 E <wY}) such 
that 

(a) Mo = V and each Ms is a transitive proper class model of ZFC. 
(b) kSI .S2 : Ms, ~ MS2 is elementary and (Sl S;;; S2 S;;; S3 :;. ks, .S3 = kS2 .S3 0 

ks, .S2) . 
(c) if x E wYand (Mx ' (kxtn .x I nEw)) is the direct limit of the system 

((Mxtn In E w), (kxtm.xtn I m ~ nEw)), then x E A {::} Mx is 
wellfounded. 

(Just let (Jls I S E <wY) witness that T is homogeneous, and let kSI .S2 = 
is, .S2 : Ms, ~ MS2 ' where Ms = Ult( V; 11) and is, .S2 is the canonical elemen-
tary embedding.) 

Let us say that ((Ms I S E <wY), (kS, .S2 I Sl S;;; s2 & Sl ,s2 E <wY)) gives 
an embedding normal Jorm Jor A if (a), (b), and (c) hold and that A has an 
embedding normal Jorm if some system gives an embedding normal form for 
A. 

In proving the Main Theorem, it will help our motivation if we aim directly 
for an embedding normal form for {x I (Vy)(x ,y) ¢. p[T]} , rather than for 
full homogeneity of t. Once we get embedding normal form, we will see that 
our method for doing so also gives homogeneity. 

3. ITERATION TREES 

In order to prove (under the hypotheses of the Main Theorem) that p[T] 
has an embedding normal form-and that the conclusion of the Main Theorem 
holds-we shall associate with each x E W W not just a single sequence of el-
ementary embeddings but rather a whole tree of elementary embeddings. One 
branch of this tree will provide us with the sequence of embeddings which give 
an embedding normal form. We need the rest of the tree to be able to control 
the wellfoundedness of the direct limit model along the main branch. 

For nEW, an iteration tree on V oj length n + 1 is a system 

(-< , (Mk I k ~ n) , (Ek I k < n) , (Pk I k < n}) 
with the following properties: 

( 1) (n + 1, -<) is a tree with 0 the -<-least element, and -< respects the 
natural ordering on n + 1 . 
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(2) Each Mk is a transitive proper class model of ZFC and Mo = V. 
(3) (Pk I k < n) is a nondecreasing sequence of ordinals. 
(4) kl $. k2 $. n ~ Vp +1 n Mk = Vp +1 n Mk . 

k\ 1 k\ 2 

(5) Mk satisfies "Ek is an extender" (so, in particular, Ek E Mk ). 
(6) Support(Ek):2 VPk+1 n Mk . 
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(7) Let k* be the immediate predecessor of k + I with respect to -<, for 
k < n. Pk' ~ crit(Ek) and Mk+1 = Ult(Mk• ; Ek) . 

Remarks. (a) Our definition is almost the same as that of [11]. In [11] only 
extenders with ordinal supports are considered. This necessitates a change in 
(6). The natural replacement is 

(6') Vpk+1 n Mk ~ Ult(Mk ;Ek ). 

Allowing only ordinal supports and replacing (6) by (6') makes no real change 
in the concept: For any iteration tree in one of the two senses, there is an 
iteration tree in the other sense with the same models Mk , the same ordinals 
Pk ,and the same elementary embeddings of Mk• into Mk+1 . In [11], however, 
the clause corresponding to (6) (in the final official definition) is not (6') but 
rather 

VPk +2 n Mk ~ Ult(Mk ; Ek)· 
The reason for this is certain technical problems connected with iteration trees 
of transfinite length. We shall not consider such trees here, so we keep the more 
natural Pk + 1 . 

(b) In [11] iteration trees not on V are considered. There not only the 
condition Mo = V is dropped but also the condition that the Mk be proper 
classes is dropped and the condition that they be models of ZFC is weakened. 

(c) Note that (4) guarantees that (7) makes sense-that there is an 
Ult(Mk • ;Ek ). «4) actually follows from the other clauses.) 

(d) The possibility that superstrong cardinals might generate complicated 
iteration trees arose as a worry in Steel's work on inner models for large cardinal 
axioms (see [11]). 

(e) Implicit in (7) is the requirement that Ult(Mk • ;Ek ) be wellfounded. In 
fact, it can be proved that this is automatically the case. See [11]. Here we shall 
avoid having to prove this by considering only "countably closed" iteration trees. 

An iteration tree on V of length n + 1 is countably closed if each Mk satisfies 
"support(Ek ) is countably closed." By Lemma 1.8, this implies-and so is 
equivalent with-the countable closure of all the Mk and all the support(Ek ). 

(f) Note that (-<, (Ek I k < n), (Pk I k < n) completely determine the 
iteration tree. If we were being careful about sets versus classes, we would have 
defined this set to be the tree. 

Lemma 3.1. Let (-<, (Mk I k $. n) ,(Ek I k < n) ,(Pk I k < n) be a countably 
closed iteration tree on V of length n + 1. Let E E Mn and P ~ Pn-I' if 
n > 0, be such that Mn satisfies "E is an extender with countably closed support 
and support(E) :2 Vp+I '" Suppose ii $. n is such that crit(E) $. Pit. There 
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is a unique countably closed iteration tree (-<', (M~ I k ~ n + 1) ,(E~ I k < 
n + 1) , (p~ I k < n + 1)) on V of length n + 2 with M~ = Mk for all k ~ n , 

, d E' E fi k ' 1 E' E' d -P k = P k' an k = k or < n, -< f n + = -< , II = ,P II = P, an n 
the immediate predecessor on n + I with respect to -<'. 
Proof. Let -<' f n + I = -< and let k -<' n + I ¢:} k ::$ ii. By (4), the critical point 
Ie of E satisfies VK +1 n Mii = VK +1 n Mil' Thus we can form Ult(Mii ; E) . 
By Lemma 1.6 and the fact that Mil is countably closed, we get that M~+l = 
Ult(Mii ;E) is wellfounded. By Lemma 1.7, Vpn+1 nMII+1 = Vpn+1 nMII • Thus 
( 4) holds with k2 = n + I . 0 

An iteration tree on V of length OJ is a system 
!T = (-< , (Mk IkE OJ) , (Ek IkE OJ) , (Pk IkE OJ}) 

such that each y;;" = (-< f n + I ,(Mk I k ~ n) ,(Ek I k < n) ,(Pk I k < n)) is 
an iteration tree on V of length n + I. !T is countably closed if each y;;" is 
countably closed. 

Let !T = (-< ,(Mk I k < a) ,(Ek I k + I < a) ,(Pk I k + I < a)) be an iteration 
tree on V of length a with 0 < a ~ OJ. The canonical elementary embeddings 
associated with !T are the ik, .k2 for kl ::$ k2 < a, defined as follows. 

(i) ik k is the identity: Mk - Mk . 
I. I I I 

( ") . .Mk * M M 
II 'k* .k+1 = 'Ek : k* - k+l' 

(iii) ik, .k) = ik2 .k) 0 ik, .k2 for kl ::$ k2 ::$ k3 . 
A branch of an iteration tree on V of length a ~ OJ is a maximal linearly 

ordered subset of OJ with respect to the -< of the iteration tree. An infinite 
branch of an iteration tree on V of length OJ is then an infinite, maximal 
linearly ordered (-<) subset of OJ. If b is a branch of an iteration tree, we can 
form the direct limit 

(Mb ' Uk .b IkE b)) 
of the directed system «(Mk IkE b), Ukl .k2 I kl ::$ k2 E b)). In order to 
get embedding normal form results, we would like to be able to build iteration 
trees with infinite branches b so that we can control whether or not Mb is 
well founded. It is easier to guarantee that an Mb is illfounded than that it is 
wellfounded. (Just build in an infinite descending sequence of "ordinals" of 
Mb .) Lemma 3.2 will help us to deal with this problem. What Lemma 3.2 
says is that, if all infinite branches other than bare illfounded and if this is 
witnessed in a sufficiently continuous fashion, then Mb is well founded. 
Lemma 3.2. Let !T = (-<, (Mil I n E OJ), (Ell I n E OJ), (P II I n E OJ)) be a 
countably closed iteration tree on V of length OJ and let b be an infinite branch 
of !T. Suppose that there are ordinal numbers (c!1I I n E OJ - b) such that, for 
each n with n* f/. b, c!1I+1 < ill •. II+I(c!II') (i.e. c!'1+1 < i:';'·(c!II'))· Then Mb is 
wellfounded. 
Proof. Let im .lI , m ::$ n, be the canonical elementary embeddings associated 
with our iteration tree. Let y be a limit ordinal such that, for each n, 
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support(En) E Vio,,(y)' We may assume without loss of generality that each 
C;" for n r;. b is in M" a limit ordinal of cofinality > iO.n(Y) with V~" sat-
isfying I:2-replacement. (Just replace the given C;" by the C;nth limit ordinal C; 
of co finality > iO.n(Y) such that V~ satisfies I:2-replacement in M".) 

Assume for a contradiction that Mb is illfounded. By Lemma 1.2(a) let 
(C;n I nEb) be such that C;n+1 < i~:'" (C;"o) for each n such that n + I E b . 

Our plan is to replace ((M" I nEb), (im ." I m ::5 nEb) by an internal 
iteration ((M" I nEb), (1m." I m ::5 nEb). We shall have elementary 
embeddings 7Cn : M n ~ M" , embeddings that commute with the embeddings 
of the two iterations. Furthermore, we shall arrange that each C;n' for nEb, is 
in the range of the corresponding 7C n' This will give us the contradiction that 
the direct limit of the internal iteration is not wellfounded. To get an internal 
iteration, we replace the natural candidates for the M n' n r;. b, by models 
which belong to earlier models Mm' This is done by taking Skolem hulls of 
ranks in the natural candidates. The C;n ' n r;. b, will give us the ranks in 
which to take these hulls. Note that we are not building a new iteration tree, 
but only a kind of approximation to one. 

We begin by defining a sequence of countable sets which contain the impor-
tant elements of the Mn' For each dE M1I+1 ' choose I: E Mn. and a: E Mn 
such that d = [I: D~""E" ' making sure that I: has minimal possible rank. 
For m, nEW we shall define, by induction on m, subsets C~n of Mn' Set 
C~ = {en' E" ,p,,}. If C;;I has been defined for each n, let 

m+1 m {d I d m} f.d d m , *} C" = Cn U an E C,,+I U { II' I E C"'+I & n = (n) . 

Now let Cn = UmEw C~" . We shall see that 
(i) each Cn is a countable subset of M,,; 

(ii) for each n, {e", E" ,p,,} ~ c" ; 
(iii) whenever d E C,,+I ' there are a E C" and I E C"o such that d = 

[/DMn' ; 
a.E" 

(iv) for each nEW - b, Cn - {c;,,} ~ V~" ; for each n and each dE Cn+1 ' 

if n r;. b then a: E V~n and if n* r;. b then f,~ E V~no . 
(i), (ii), and (iii) are obvious. For (iv) we proceed by induction on m, 

showing that C~" - {en} ~ V~" for each n r;. b. For m = 0 and n r;. b we have 
that support(En) E Vio,,,(Y) ~ V~" and that VPn n M" ~ support(En) , the latter 
by the definition of iteration tree. Since C;" is a limit ordinal, these facts imply 
En E V" and p E V" . Now let us consider the induction step, for m + I . It 

~" Il."" 

suffices to show, for d E C~: 1 ' that if n r;. b then a: E V~" and if n * r;. b then I: E V~no . Now a: E <w(support(E,,» E V~" for n r;. b. Assume n* r;. b. 
By induction we have that d E V" +1' Since d = [f.ndD"!;E this means that 

",,,+1 all' n 

[I: Da~ .En E V~"+I + 1 ~ Vi:'!:" (~"o) by the fact that en+ 1 < i~no (eno)' By the 
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minimal rank constraint on the choice of f.d, this implies that f.dn (z) E V" 
Il \;'". 

for every z. Since ~n- > PII _ ~ crit(En) and since ~II_ is a limit ordinal of 
cofinality > io.1l (y) we get that J,~ E V~,,_ as desired. 

We next turn to the main construction of the proof of the lemma, in which 
we replace the iteration along b by an internal iteration which nevertheless has 
illfounded direct limit. 

We shall define, by induction on n, (M n I nEw), (En I nEW), (PII I n E 
w) , and (1Cn I nEw) such that 

(a) for each nEb, Mil is a countably closed transitive proper class model 
ofZFC; 

(b) for each nEw - b, Mil is a countably closed transitive set model of 
ZC +l:2-replacement (see § 1); 

(c) for each nEb, 1CII : M n --+ Mn is an elementary embedding with 
en ~ range(1Cn ); 

(d) for each nEW - b, 1Cn : Mil --+ V~II n Mil is an elementary embedding 
with ell - {ell} ~ range(1CIl ) ; 

(e) for each n, 1Cn (PIl ) = PII ; 

(f) each M n satisfies" E n is an extender with countably closed support 
and support(En) '2 Vp,,+! "; 

(g) Mn+! = Ult(MIl _ ;En) for each n such that n + 1 E b; 
(h) for each n with n + 1 E b , we have the following commutative diagram: 

i~lI· 
- E'I -
Mil- --+ Mn+! 

(i) for each n, VplI+! n Mil = VplI+! n Mm for every m ~ n; 

U) for each n, 1CII t Vp.,+! n Mn = 1Cm t Vp,,+! n Mm' for every m ~ n; 
(k) for each nEw - b, MilE Mil' where n is the largest element of b 

smaller than n (in the natural order of w). 
Let M 0 = V and let 1CO : V --+ V be the identity. 
Assume that (Mk I k :5 n), (Ek I k < n), (Pk I k < n), and (1Ck I k :5 n) 

are defined and satisfy (a)-{k). 
Let us consider first the case that n + 1 E b. By (c) and (d) and property 

(ii) of ell' we may define En and Pn by 1CII {EII ) = Ell and 1Cn{Pn) = PII ' (e) 
holds by definition. If nEb the elementarity of 1CII : Mil --+ Mil «c» gives 
(f). If n i. b then 1Cn : Mil --+ V~., n Mil is elementary, and so we need only 
check that V~II n Mil satisfies "En is an extender with countably closed support 
and support(En) '2 Vp,,+1 ." But the definition of iteration tree implies that Mil 
satisfies this formula and the formula is absolute in Mn for limit ranks. 
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crit(EII ) ~ PII ., by the definition of iteration tree, and 7C IIO (PII O) = 7C1I (PII .) = 
PII., so crit(EII ) ~ PII •. Therefore (i) guarantees that Vcrit(E'n)+1 n Milo = 
Vcrit(E'n)+1 n Mil' We may then set M'HI = Ult(MII • ;EII ). We have the el-

ementary embedding i~I". : Milo - M II+1. By (a), (b), (d), and (f), Lemma 
1.6 gives that M'HI is wellfounded, and Lemma 1.8 gives that it is countably 
closed. Hence (a) holds for n + I . 

Define 7C1I+1 : M II+1 - M II+1 by 

7C1I+1([/D:'f) = [7CII .(f)D:";:).E,,· 
To see that 7C1I+1 is well defined, let a, b E <w(support(EII», let m = lh(a) , 
and let m' = lh(b). 

[/DM~ = [gDM~ 
a .E" b .E" 

<=> (EII(a~b»)({z! I(z t m) = g«z(m + k) ! k < m'))}) = I 
<=> (7CII(EII(a~b)))(7CII({Z! I(z t m) = g«z(m + k)! k < m'))})) = I 
<=> (since 7CII and 7Cn• agree on Vp"o+1 nMn• and since crit(En) ~ Pno) 

(7CII(EII(a~b»)(7CII.({Z! I(z t m) = g«z(m + k)! k < m'))})) = I 

<=> (En(7CII(a)~7CII(b»)({z! (7Cno (f))(Z t m)=(7Cno (g»)«z(m+k)!k< m'))}) =1 

<=> [7CII • (f)D:";:) .En = [7CII • (g)D:'(~) .E" . 

A similar argument shows that 7Cn+1 : M II+1 - Mn+1 is elementary, as re-
quired by (c). 

To check that the rest of (c)-that Cn+1 ~ range(7Cn+l ) -holds, let dE Cn+! . 
By property (iii) of Cn+! ' let a E Cn and IE CII. be such that d = [/D~~" . 
By (c) and (d) for nand n* and by property (iv) of CII and Cn. ,let 7C1I (a) = a 

- <w -and 7C 110 (f) = I. By the elementarity of 7C n' a E (support( En»' The 
elementarityof 7Cn• gives that f: lh(ii)(crit(En» - Milo, since 7C".(crit(E,,» = 

- - - -M. 
7Cn(crit(E,,» by (j) and the fact that crit(EII ) ~ Plio, Let then d = [/Dii.i . 

7C,,+1 (d) = [7Cn• (f)D:'(~) .E" = [/D~~" = d. Hence dE range(7C,,+!) . 

Let us next check (h). Let d E M ".' i;'''· (d) = [cdD;:i" , where Cd : 

°Vcrit(E',,) - Mno is the function with value d. Hence 

7C1I+1 u;'no (d» = [C1tno(d)D;':~" = ;If,,no (7C"o(d». 

To check (i), note first that Ult(M",E,,) is well founded by Lemma 1.6. 

Since Pn < i;'n(crit(En» ~ i;'n(Pno) and Vpno +! n Mno = Vp"o+! n Mn' 
Lemma 1.7(a) gives that Vp,,+1 nUlt(Mno ,E,,) = Vpn +! nUlt(M",En). Since 
support(En) ;2 Vp,,+1 n Mil' it follows that 

Vp,,+1 nMn+1 = Vpn+1 nUlt(Mno ;En) = Vpn+1 nM". 
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The rest of the requirement of (i) will be seen to be fulfilled if we can prove 
that n' ~ n ~ P", ~ p". But 0) and (c) give that 1C"(p,,,) = 1C",(p",) = P", ~ 
P" = 1C,,(p,). So the elementarity of 1C" implies that P", ~ P" . 

Finally let us verify 0). By what has just been proved, it is enough to 
show that 1C1I+1 t (Vp,,+1 n M"+I) = 1C" t (Vp,,+1 n Mil)' Suppose then that 

d E Vp,,+1 n M II +1. Since P" + I < i;',"o (PliO)' d = [f]:'f" for some a 
and some f : fh(a\Vcrit(E) ~ Vp"o' crit(E,) ~ P"o, so f is essentially 

a member of Vp"o+I' By Lemma 1.7(c), d = [f]~t. Hence 1C,,(d) = 

[1CII(f)]~:;a) .E" . Since 1C"(f) is essentially a member of Vp"o+l ,Lemma 1.7(c) 
gives that 1C1I (d) = [1C,,(f)]~';:) .E,,' But 1C 1I (f) = 1C"o(f) , by 0). Hence 

1C 1I (d) = [1Cllo(f)]~'(:).E'" But this is just 1C1l+1([f]:'f) = 1C,,+I(d). 
Now let us turn to the case n + 1 ~ b. We proceed in two steps, the first 

analogous to the case n + 1 E b , and the second to take care of (k). 
Define E" and P" as before by 1C,,(E,,) = Ell and 1C,,(p,,) = p". As before, 

(e) and (f) hold. Now set M~+1 = Ult(M"o ; E,,). M~+1 is wellfounded and 
countably closed by Lemmas 1.6 and 1.8, and we have the elementary embed-
ding i~n"o : MilO ~ M~+1 . In particular we get (b ') M~+1 is a countably closed 
set model of ZC +l:2-replacement if n* ~ b and a countab1y closed proper 
class model of ZFC if n * E b . 

fi ' , De ne 1C,,+1 : M"+1 ~ M"+1 by 

1C~+I([f]:'f) = [1C IlO (f)]:;;:).E,,· 

The arguments of the case n + 1 E b give us that 1C:1+1 is well defined and also 

(d') 1C~+I: M~+1 ~ VY'HI n M'1+1 is an elementary embedding with C"+I ~ 
range(1C~+I)' where 1'11+1 = i~/o (~II0) if n* ~ band 1'11+1 = ON if n* 
E b; 

(1") V M' V M Pn+1 n 11+1 = 1',,+1 n " ; 
(j') 1C:1+1 t (Vp,,+1 n M~+I) = 1C1l t (Vp,,+1 n M,,). 
Let C~+I be the preimage of CIl+1 under 1C;I+I' Since M~+I is countably 

closed, C~+I E M~+I and M~+I satisfies "C:1+1 is countable." 
Let 1C;1+1 (~;I+I) = ~"+I' M~+I satisfies ZC and so M~+I contains a set S of 

Skolem functions for V~''''I n M~+I . 
Let 2'1+1 be the smallest subset of V~'''+I n M~+I such that 

(i) 2,,+1 is countably closed; 
(ii) 2,,+1 is closed under the Skolem functions in S; 

(iii) (Vp,,+1 n M~+I) u C~+I - {~~+I} ~ 2,,+1 . 
, M' M' 

211+1 E M II+1 and 12"+11 'HI = IVp,,+.1 "'1. 

Let it,,+1 : M II +1 ~ 2,,+1 with M'I+I transitive. Let 1C,,+1 = 1C~+1 0 it,,+1 . 
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(b) holds. (d) holds since 1t~+1 t (V~'n+1 nM~+I) : V~'''+I nM~+1 -+ V~n+1 nMII +1 
is an elementary embedding and since C~+I - {~II+I} E range(n ll+ I ). (i) holds 
since Vpn+1 nM~+1 s:;; ZII+I and (i ') holds. U) holds since nll+1 t (Vp,,+1 nM 11+1) 
is the identity and (j ') holds. 

It remains only to check (k). crit(E II) is inaccessible in Mil' so it is inaccessi-
ble in Mil' ,since, by the same argument as in the case n+ 1 E b, crit(En) ~ Pn• 

and so Vcrit(E,,)+1 n Mil' = Vcrit(E,,)+1 n Mil' Thus i!f"n. (crit(E II )) is inacces-

sible in M:'+I' IZII+IIM~+I = IVPn+dM,:+, < i!f,,'" (crit(E II )) , because PII + 1 s:;; 
- - , support(EII ) s:;; V:i7". . _ . Hence M II+1 belongs to V:i7". . _ nMn+l • But 

I..., (cnt(E,,)) I..., (cnt(E,,)) 
1:." 1:." 

V - _ n M' = V - - n Ult(M ; E ) E M . Thus M E M . 
.. 11,,' ( 'I(E)) n+1 i!!"(crit(E )) n n II n+1 II 
'En en " f.",," 

Since Mil = M ';;1 or M n E Mil = M 1H:i. ' it follows that M 11+ 1 E M n+"1 ' as 
required. 

Now let us use our construction to get a contradiction. For each n, EnE M n 
and so Ell E Mil whenever n 1:. b. If n + 1 E b, then either n* = n or else 
n* = fz. In either case, n + I E b implies that Ell E Mil' . Thus 

Z!"O 
V = Milo ~I Mill 

is a internal iteration, where 0 = ~ n 1 ,n2_' .•. is an enumeration of b in 
order of magnitude. Let Ink ,Ilk' : Milk -+ M nk' be the obvious elementary 
embeddings for k ~ k'. Let (M b ,(Ink ,Ilk' , I k ~ k' E w)) be the direct limit 
of the system «(Milk IkE W), (Ink ,Ilk' , I k ~ k' E w)). By Lemma 1.3, Mb is 
wellfounded. 

By (h) we have the commutative diagram 

for k ~ k'. 
Let <!nk be given by 1tnk (<!n) = ~nk ' using property (ii) of Cnk and (c). Since 

~nkl < ink ,nk'(~n)' it follows that <!nkl < lllk ,n)<!n)' Thus (Ink ,b(<!n) IkE W) 
is an infinite descending sequence in the ordinals of M b' This contradiction 
completes the proof of the lemma. 0 

Remark. We are dealing with countably closed iteration trees simply because the 
proofs of Lemmas 3.1 and 3.2 are simpler than the proofs of the assertions that 
would result from deleting all occurrences of "countably closed." Nevertheless 
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those resulting assertions are true-and are proved in [11]. Armed with them, 
we could delete all occurrences of "countably closed" from the rest of this paper. 

In the proof of the Main Theorem, we shall be concerned with iteration 
trees living in a certain Vts and with homogeneous trees whose measures are 
15+ -complete. It will be important to know that the canonical elementary em-
beddings associated with the iteration trees act trivially on the elementary em-
beddings from the 15+ -complete measures and that the latter act trivially on the 
former. This is the content of the following lemma. The proof of the lemma 
is at bottom the same as the proof that embeddings witnessing two distinct car-
dinals are measurable act trivially on one another. The extra complexity is due 
to the facts that our iteration tree embeddings are from extenders rather than 
measures and-more importantly-the extenders do not belong to the model 
the embeddings are applied to. 

Lemma 3.3. Let g- = (-< • (Mk I k < a) . (Ek I k + 1 < a) . (Pk I k + 1 < a)) be 
an iteration tree on V of length ~ w. Let im.n , for m ::S n. be the canonical 
elementary embeddings associated with g-. Let Jl be a d-complete measure 
on X, let v be a d-complete measure on X'. and let q : X -+ X' be such 
that yeA) = 1 <=> Jl( {z I q(z) E A}) = 1, with 15 a strong limit cardinal with 
each support(Ek ) E Vts. Let j = iJl' let)' = iv' and let / : Ult(V;v) -+ 

Ult(V;Jl) be the elementary embedding given by j*([FDv) = [FDJl' where 
F(z) = F(q(z)). Then 

(a) iO.nU) = j t Mn; io.n()') =)' t Mn" and io.n(/) = / t ),(Mn)· 
(b) U(im.n)) t ON=()'(im.n)) t ON) = im.1I tON. 

Here, for example, io nU) = U io (j f V ). • (l".11 0' 

Proof. We shall first prove (a). Let us begin by showing 
(i) if Y ~ io .II (X) and Y E Mn' then (iO.II(Jl))(Y) = 1 if and only if 

Jl({z I io .lI (z) E Y}) = 1. 

Proof of (i). Assume (i) holds for all n ~ m. Let Y c io .m+1 (X) with Y E 

Mm+ 1 • Assume that (io .m+ 1 (Jl)) (Y) = 1 . Let Y = [fD:"E~" . Let 

K = {x E lh(a) (Vcrit(E,,) I (io .m' (Jl))(f(x)) = I}. 

(En(a))(K) = 1. For each x E K, our inductive assumption gives that (i) 
holds for n = m* , and so there is a Zx ~ X such that Jl(Zx) = 1 and 
(\lw E Zx)(io.m'(w) ~ f(x)). Let Z = nXEK Zx' Since Jl is d-complete and 
15 > crit(Em). Jl(Z) = 1 . 

WE Z =? (\Ix E K)(w E Zx) 
=? (\Ix E K)((iO.m'(W)) E I(x)) 
=? (Em(a))({x I io.m'(w) E f(x)}) = 1 

=? im •. m+l(io.m'(w)) E [fD::~'n =? iO.m+,(W) E Y. 
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We have shown then that (iO,n+I(.u))(Y) = 1 ~ .u({z I iO,n+l(z) E Y}) = 1. 
If (iO,n+I(.u))(Y) = 0, then .u({z I iO,n+l(z) E iO,n+I(X) - Y}) = 1 and so 
.u({z I iO,m+l(z) E Y}) = O. 

For each n E (J) and each F E M n (io.,,(X)) M let cI> (F) . X -. M be n n' n' n 
given by 

(cI>n(F))(z) = F(io ,n(z)), 

(ii) For each G EX Mn there is an FE Mn n (io.,,(X)) Mn such that 

[cI>n(F)DJl = [G]Jl' 
Proof of (ii). Assume that (ii) holds for all n ~ m. Let G : X -. Mm+1 . 
For each Z EX, let G(z) = [fzD~":~m' Since .u is t5-complete and t5 > 
Isupport(Em)I there must be an a E <W(support(Em )) such that 
.u( {z I az = a}) = 1. For this a, .u( {z I G(z) = [fzD:,£)) = 1. Define 
G* : X -. Mm- by 

G*(z) = fz. 

Our inductive assumption gives that (ii) holds for n = m* , and so there is 
an F* E Mm- with F* : io .m* (X) -. Mm- such that [cI>m- (F*)DJl = [G*DJl . 
Define h : Ih(a)(Vcrit(EIII)) -. Mm* by letting h(x) : iO,mo(X) -. Mm- with 
(h(x))(z) = (F*(z))(x). Let F = [hD:'~1I . We must show that 

.u({z I FUO,m+l(z)) = G(z)}) = 1. 

We know that .u({z I G(z) = [fzD:'Eon & F*(io,mo(z}} = G*(z)}} = 1. Let z 
belong to this set. Then 

Hence FUO,m+l(z)) = FUm* ,m+IUO,m*(z))) = [fzD:'~" = [fzD~":~III = G(z}. 
(i) implies that cI>n induces an elementary embedding of (iO.nU))(Mn) into 

j(Mn)' To see this, let f//(v1, ... , vk) be a formula of set theory and let 
G1 , ••• , Gk be elements of Mn n io.,,(X) Mn' 

UO,nU))(Mn) F f// [[GID~:'(Jl)'''' ,[GkD~~n(Jl)] 
¢> (iO.n(.u))({z I Mn F f//[G1(z), ... , G/(z)]}) = 1 
¢> (by (i)) .u({z I Mn F f//[G1UO.n(z), ... , Gk(io,n(z))]}} = 1 
¢> .u({z I Mn F f//[(cI>n(G1})(z}, ... , (cI>n(Gk})(z)]}) = 1 

¢> j(Mn} F f//[[cI>n(G1)DJl , ... , v[cI>n(Gk}D;]. 

(ii) implies that the elementary embedding induced by cI>n is a surjection and 
so is an isomorphism, i.e. is the identity. Since cI>n sends each constant function 
to the constant function with the same value, it follows that (iO.nU)) = j t Mn' 
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Using functions <I>~ analogous to the <1>11 , we similarly get that (iO.1I ()')) =)' r 
Mil' To see that (iO.II(t)) = t r ),(MII ) , note first that (io.lI(t))([FD~~,(v)) = 

[F 0 iO.II(q)D~~,{P)' but t([<I>~(F)D~) = [(<I>~(F)) 0 qD; = [F 0 io.1I 0 qD; = 

[F 0 io.lI (q) 0 io.II D; = [<I>II(F 0 iO./I(q))D;. Since <1>/1 and <I>~ induce the 
identities on equivalence classes, this completes the proof of (a). 

Now let us turn to (b). Let n be arbitrary. Since J1. is a-complete, leV) is 
closed under sequences of length < a. The elementarity of io .11' thus implies 
that (io .11' (J))(MII .) has the same sequences of ordinals of length < io .11' (a) 
as does Mil" Now (io.II.(j))(M".) = )(MII ,), as we already showed. Hence 
)(MII ,) has the same sequences of ordinals of length < iO./I,(a), and hence 
the same functions F : <W(Vcrit(En)) --> ON as does Mil" Since )(E,) = Ell' 
it follows that )U"o .11+1) = in' .n+I' Since n was arbitrary, (b) follows by the 
definition of the i III .n • 0 

Remark. In our applications, J1. and v will be, for example, J1.x tn and J1.xtlll ' 

respectively, for some m < nEW, where (J1.s I s E <w w) witnesses that some 
tree is c5-homogeneous. In this case q is given by q(t) = t r m. 

In §5 we shall often be dealing with iteration trees of a particularly simple 
sort: alternating chains. Let -<* be the partial ordering of w given by 

m -< * n ¢} (m < n & (m = 0 V n - m is even)) . 

An alternating chain on V oj length a:S W is an iteration tree on V of length 
a whose tree ordering is -<* 10:. We shall usually describe alternating chains as 
systems «(Mil In < a) I (Ell I n + 1 < a), (p" In + 1 < a)), i.e. we omit" -<* ." 
Pictorially an alternating chain is 

.MO .M j iMJ 

V - M' I f:O I E2 M £4 
- 0 ............. M 1 ............. 3 ............. 

.. Ito 
"" 'f: j 

4. REFLECTING CARDINALS 

In this section we develop the theory of Woodin cardinals in order to get the 
technical tools we need to build iteration trees in §5. 

First, however, we give some proofs which are not needed for §5 but show 
where Woodin cardinals sit in the hierarchy of large cardinal axioms. A cardinal 
K is A-supercompact if there is an elementary ) : V -> M with M transitive, 
crit(j) = K, and ). M ~ M. K is superstrong if there is an elementary ) : 
V --> M with M transitive, crit(j) = K ,and Vj(K) ~ M. K is Shelah if for 
every J : K --> K there is a ) : V --> M with M transitive, crit(j) = K , and 
VU(f))(K) ~ M. A cardinal a is Woodin if for every J : c5 --> c5 there is a K < a 
closed under f and there is a ) : V --> M with M transitive, crit(j) = K , and 
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VU(f))(K) ~ M. K is A-strong if there is an elementary j : V ---+ M with M 
transitive, crit(j) = K ,and VA ~ M . 

The concept of A-supercompactness is due to R. Solovay. The notions of 
A-strong and superstrong cardinals arose out of the work of W. Mitchell. Shelah 
and Woodin isolated the notions named after them. The lemma that follows 
catalogues some basic facts about the relative strengths of the large cardinal 
axioms corresponding to these concepts. No part of the lemma is due to us. 

Lemma 4.1. (1) If K is 2K -supercompact then there are K superstrong cardinals 
< K. (2) If K is superstrong then K is Shelah and there are K Shelah cardinals 
< K. (3) If K is Shelah then K is Woodin and there are K Woodin cardinals 
< K. (4) If 0 is Woodin then 0 is inaccessible and there are 0 cardinals K < 0 
such that (VA < O)K is A-strong. 

Proof. (1) Let j : V ---+ M witness that K is 2K -supercompact. Let E be the 
extender derived from j with support V.(KI n M . For each a E <W(V.(K) n M , 

J J 

E(a) is a measure on lh(a)(VK) and (E(a))(X) = 1 ¢:} a E j(X). Thus E 

ct.epends only on VPI nM and j t VK+1 • But j t VK+1 E (VK+d M so j t VK+l E 

M. Hence E EM. i'f: M ---+ N is an element embedding, belongs to M, 
and is such that Vj(k) n MEN. We have the commutative diagram 

M 
j/, r k 

V ~ Ult(V;E) 
IE 

Hence j(K) = kUE(K» ~ iE(K) ~ i'f (K). It follows that VW(K)nM EN. Thus 
i'; witnesses that K is superstrong in M. To see that (1) follows from this, 
suppose p < K. In M there is a superstrong cardinal between p = j(P) and 
j(K), so in V there is a superstrong cardinal between P and K. 

(2) Let j : V ---+ M witness that K is superstrong. j also witnesses that 
K is Shelah, for if f : K ---+ K then VU(f))(K) ~ Vj(K) ~ M. Let us check that 
K is Shelah in M also, from which (2) follows. Suppose f : K ---+ K. Let E 
be the extender derived from j with support VU(f))(K)+l U V,,+I. E E Vj(K) 
so E EM. We have k : Ult( V ; E) ---+ M with k 0 i E = j and with k f 
VU(f))(K)+l = the identity. Thus kUE(f)) = j(f). k t VK+I is the identity, so 
k(K) = K. It follows that kCUE(f)(K» = kUE(f»(k(K» = (j(f»(K). Hence 
iE(f)(K) ~ (actually =)(j(f»(K) , and so V(iE!f))(K) ~ VU(f))(K) ~ Ult(V;E). 

Since Vj(K) n Ult( V; E) = Vj(K) n Ult(M; E) and i~ (f) = i'; (f) , we have that 
V(i~(f))(K) ~ Ult(M; E). This means that i'; witnesses that K is Shelah in M. 

(3) Let K be Shelah and let f : K ---+ K. Let g(a) = a + 2 + !Ca) + 1. Let 
j : V ---+ M witness that K is Shelah, with respect to g. Let E be the extender 
derived from j with support VU(f))(K). E: <W(VU(f))(K)) ---+ 9'(9'(K» , so 
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E is coded by an element of VK+2+U(f)(K)+1' Hence E EM. (j(f»(K) = 

(iE(f»(K) = U': (f))(K). Furthermore K is closed under j(f), since j(f) t 
K = I. Thus i': witnesses the Woodinness of j(K) with respect to j(f) in 
M . By the elementarity of j, some embedding witnesses the Woodin ness of K 

with respect to I in V. Since 1 was arbitrary, K is Woodin. Note also that 
E E Vj(K) n M , so we also get that some iF such that F is an extender E V K 

witnesses the Woodinness of K with respect to I in V. (We will see later that 
Woodin cardinals always have this property.) Such an extender belongs to M 
and so witnesses the Woodinness of K with respect to I in M. Moreover, 
for any elementary k : V -+ N with N transitive and crit(k) = K, this same 
extender witnesses the Woodinness of K with respect to 1 in N. But our 
argument has shown that for every I and every such N, K is Woodin with 
respect to I in N. Since there is such an N, the remaining part of (3) holds. 

(4) Let f5 be Woodin. If f5 is not regular then there is a y < f5 and an 
I: y -+ f5 with unbounded range. Let g(O) = y, g(a) = 1(1 + a) for a < y, 
and g(a) = 0 for f5 > a ~ y. No ordinal > 0 is closed under g, so g 
contradicts Woodinness. If limit ordinal y < f5 and 2" ~ f5, let I : f5 -+ f5 
be such that 1(0) = y. If j witnesses Woodinness of K with respect to I, 
then crit(j) is a measurable cardinal. But crit(j) > 1(0) so crit(j) cannot 
even be a strong limit cardinal. This contradiction completes the proof that K 

is inaccessible. 
Assume that p < f5 is such that, for all K with P :5 K < f5 , there is a A < f5 

such that K is not A-strong. For K ~ p, let A(K) be the least A ~ K such that 
K is not A-strong. Let I(K) = P for K < P and let I(K) = A(K)+3 for K ~ p. 
Let j : V -+ M witness Woodin ness of f5 with respect to I. Let K = crit(j) . 
Let E be the extender derived from j with support VU().)(K)' E EM. Since 
VU().)(K) E Ult(M;E) , it follows that E witness that K is «(j(A»)(K»-strong in 
M. But K> p, since K is closed under I, and so K > j(P) = p. This gives 
us the contradiction that K is not «(j(A»)(K))-strong in M. 0 

The argument just given generalizes to give the following useful consequence 
(actually an equivalent) of Woodinness. 

Lemma 4.2. Let f5 be Woodin and let A ~ V6 . There are arbitrarily large K < f5 
such that lor all a < f5 there is a j : V -+ M with j elementary, crit(j) = K , 

M transitive, r--:, ~ M, and Va n A = Va n j(A). Moreover j can be chosen 
as iE lor E an extender E V6 with support(E) ;2 Va and with support(E) 
countably closed. 
Proof. Assume for a contradiction that p < f5 is such that for all K with 
f5 > K ~ P there is an a < f5 for which there is no extender E E V6 with 
support(E) ;2 r--:., support(E) countably closed, crit(E) = K and Va n A = 
Va n iE(A). For K ~ P let a(K) be the least a ~ K + 2 with this property. 
Let I(K) = P + I for K < P and let I(K) be a(K) + WI + I for K ~ p. Let 
j : V -+ M witness Woodinness of f5 with respect to I. Let K = crit(j). 
Let E be the extender derived from j with support VU(a))(K)+wl' E EM, 
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E E Vj(K) , and support(E) is countably closed. We have the commutative 
diagram 

M 

~ Ik 
V -:-+ Ult(V;E) 

IF. 

with k t V(j(a»)(K)+Wt the identity. kUE(A» = j(A), so j(A) n V(j(a»)(K) = 

iE(A) n V(j(Cl»)(K). iE t VK+I = iAf t VK+I' so j(A) n V(j(a»)(K) = iAf (A) n 
V(j(Cl»)(K). Since j(A) n VK = An VK, iAf (j(A» n Vi:!(K) = iAf (A) n Vii!(K) ' and 
so iAf (j(A» n V(j(Cl»)(K) = iAf (A) n V(j(Cl»)(K) = j(A) n V(j(Cl»)(K). K is closed under 
f, so K > P and therefore K > j(P). Thus E contradicts the definition of 
the function j(o:) in M. 0 

Though we do not need the next lemma later, we prove it to show that Wood-
inness of J is always witnessed by extenders in Vo. 

Lemma 4.3. Let J be Woodin and let f : J ---+ J. There is an extender E E 
Vo' with countably closed support and with crit(E) closed under f, such that 
V(it;{f))(cril(E)) ~ support(E) . 

Proof. We may assume without loss of generality, that f(y) ~ "I for all "I < J. 
Let A = f, i.e. A = {("I, f(y)) I "I < J}. Let K be as given by Lemma 4.2. Let 
0: = f(K) + 3. Let E be given as in Lemma 4.2. Since V!(K) ~ support(E), it 
suffices to show that f(K) = (iE(f»)(K). But (K, f(K)} E V!(K)+3 n A and so 
(K, f(K)) E V!(K)+3 n iE(A). Hence (iE(f»)(K) = f(K). 0 

Let J be a strong limit cardinal. Let W $ 0: $ J and P be ordinals and let 
Z E <W(V,s+p). The (0:, p)-type of z relative to J is the set of formulas rp of 
the language of set theory with constants c(a) for elements a of Vo and with 
a constant c(J) for J if P> 0 such that (Vo+p; E, (a I a E Yo}) F rp[z] (or, 
more briefly, Vo+p F rp[z]). Note for future reference that the (0:, p)-type of 
z is essentially a subset of Vo ' for 0: infinite. It follows that if W $ 0:' < 0: < J 
and P' < P then the (0:', P')-type of z relative to J is expressed by a single 
element of the (0:, p)-type of z~(P'). 

For strong limit cardinals J ,ordinals P ,and z E <w (V,s+p) , we say that K < 
J is p-reflecting in z relative to J if for all 0: < J there is an extender E E Vo 
with support(E) countably closed, crit(E) = K, iE(J) = J, Vo ~ support(E), 
and the (0:, p)-type of z relative to J in V the same as the (0:, iE(P»-type 
of iE(z) relative to J in Ult(V; E). Note for future reference that if K < J 
and P' < p , then the assertion that K is p' -reflecting in z relative to J is 
expressed by a single element of the (K + 1 ,p)-type of z~ (P') . The only non-
obvious point in the verification of this is using the fact that VO+idPI)nUlt( V; E) 
satisfies rp[iE(z) , a] if and only if E(a)( {x I VO+P' satisfies rp[z ,x]}) = 1. 
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Lemma 4.4. Let r5 be an inaccessible. The following are equivalent. 
(a) r5 is Woodin. 
(b) For all p and all Z E <W(VJ+p) ' the set of K which are p-reflecting in 

Z relative to r5 is unbounded in r5. 
(c) For all Z E <w (VJ+ I)' there is a K < r5 such that K is I-reflecting in Z 

relative to r5. 

Proof. We first show that (a) implies (b). Assume that r5 is Woodin, that p is 
an ordinal, and that Z E <W(VJ+p )' In the sequel we omit the phrase "relative to 
r5 ." Let A = the (r5 ,p)-type of z. By Lemma 4.2 there are unboundedly many 
K < r5 such that for all 0: < r5 there is an extender E E VJ with crit(E) = K, 

~,~ support(E), support(E) countably closed, and ~,nA = VaniE(A). r5 is 
inaccessible and E E VJ ' so iE(r5) = r5. iE(A) = the (r5, iE(P»-type of iE(z) 
in Ult( V ; E) , so the fact that Vo n A = Va n i E (A) means that the (0:, p)-type 
of z in V is the same as the (0:, i E(p»-type of i E(z) in Ult( V; E). Thus all 
of these unboundedly many K are p -reflecting in z. 

We complete the proof by showing that (c) implies (a). Assume that r5 sat-
isfies (c). Once again we shall omit "relative to r5." Let f : r5 --+ r5. Let K 
be I-reflecting in (f). Let 0: = max{K + I, sup{f(e) + I Ie:::; K}}. Let E 
witness for 0: that K is I-reflecting in (f). Let e :::; K and let y = f(e). 
The fact that y = fee) is expressed by a member of the (0:, I)-type of (f). 
Hence the same element of the (0:, I)-type of iE«(f) expresses the fact that 
(iE(f»(e) = y. For e < K this gives us that (iE(f»(e) = y = fee) < 0: :::; iE(K) 
and so that fee) < K. Hence K is closed under f. For e = K we get that 
(iE(f)(K) = y = f(K). Since V!(K) ~ support(E), iE witnesses the Woodin-
ness of K with respect to f . 0 

Our goal in the rest of this section is to prove a technical lemma which will 
give us the individual steps in our construction of iteration trees in §5. First we 
prove a preliminary lemma. 

Lemma 4.5. Let M and N be countably closed, transitive, proper class models 
of ZFC. Let r5 be inaccessible. Let K < r5 with VK+1 n M = VK+1 n N. Let p 
and p' be ordinals and let x E <W(VJ+p)nM and x' E <W(VJ+p,)nN. Suppose 
that the (K, p)-type of x relative to r5 in M is the same as the (K, P')-type 
of x' relative to r5 in N. Suppose that E witnesses, for some 0: < r5, that 
K is p-rej/ecting in x relative to r5 in M. Then Ult(N ;E) is wel/founded, 
Va n Ult(N ;E) = Vo n M, and the (0:, i; (P'»-type of i; (x') relative to r5 in 
Ult(N ;E) is the same as the (0:, p)-type of x relative to ~ in M. 
Proof. We omit "relative to r5." By Lemma 1.6, Ult(N; E) is wellfounded. 
Since VK+I n N = VK+I n M we have that ViZ(K)+1 n Ult(N; E) = Vi;!(K)+1 n 
Ult(M; E). Since 0: :::; /; (K), it follows that ~,n Ult(N; E) = V" n Ult(M; E) 
=V nM. n 
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Let r = the (a. p)-type of X in M = the (a. i:! (P) )-type of F;( (x) in 
Ult( M ; E). Let r = [f]:. Since f : fh(a) (VK ) --+ VK + I ' it follows that r = 
[f]~ . Furthermore, the values of f are (~. p)-types of x in M for various 
~ ::; K. By assumption, the (~. p)-type of x in M is the same as the (~. p')-
type of x' in N for every ~ ::; K. Hence [f]~ is the (a. i~ (p'))-type of 
i~ (x') in Ult(N; E) . 0 

Lemma 4.6 (One-Step Lemma). Let M and N be countably closed, transitive. 
proper class models of ZFC. Let rJ be Woodin in M and inaccessible in V, let 
K < rJ • let 1] < rJ • let p and p' be ordinals. let ~ < p . let x and y belong to 
<W( V,,+~) n M . let x' E <W(V,,+p') n N, and let rp(v) be a formula of set theory. 
Assume 

(a) VK+I n M = VK+I n N; 
(b) the (K . p)-type of x relative to rJ in M is the same as the (K. p')-type 

of x' relative to rJ in N; 
(c) K is p -rejlecting in x relative to rJ in M; 
(d) V,,+p n M 1= rp(~). 

Then there is an E E V" n M such that M satisfies "E is an extender 
with countably closed support." such that crit(E) = K. and such that U1t(N; E) 
is wellfounded. and there are also K* with 1J < K* < rJ. ~* < i~ (p') with 
i E(X') E <w (V,,+¢"), and y * E <w (V,,+~") n Ult(N ; E), with the properties that 
support(E) 2 VK"+I n M and 

(a *) VK"+I n Ult(N; E) = VK"+I n M ; 
(b *) the (K* . ~*)-type of i~ (X')~ y* relative to rJ in Ult(N; E) is the same 

as the (K* . ~)-type of x~ y relative to rJ in M; 
(c*) K* is ~*-rejlecting in i~(x')~y* relative to rJ in Ult(N;E); 
(d *) V"+it<P') 1= rp[~*]; 
(e *) if y is a finite sequence of ordinals, then y* is definable in V"+if(P') n 

U1t(N; E) from rJ. i~(x'). and elements of VK"+I n Ult(N; E). 

Proof. Once more we omit "relative to rJ ." Let K * be such that 1] < K * < rJ and 
K* is ~-reflecting in x~ y in M. Let E witness that K is p-reflecting in x in 
M for K*+l. By Lemma 4.5 we have (a*) and that the (K*+l ,i~(PI»-typeof 
i~ (x') in Ult(N, E) , which is wellfounded, is the same as the (K* + 1 ,p)-type 
of x in M. 

Let r be the (K* ,~)-type of x~ y in M. V,,+p n M satisfies 

(3u)(3v)(v is an ordinal & u E <w(V,,+v) 

& r = the (K* ,v)-type of x~u relative to rJ 

& K * is v-reflecting in x ~ u relative to rJ & rp( v» . 



108 D. A. MARTIN AND J. R. STEEL 

Therefore (the formal version of) this formula belongs to the (K'* + I . P)-
type of x EM. Hence the formula belongs to the (K'* + I, i; (p'))-type 
of i; (x') in Ult(N ;E). So there are y" and ~ .. such that ~ .. is an ordinal 
and 'l' = the (K'* .~*)-type of i;(X')~Y* in Ult(N;E) and K'* is ~*-reflecting 
in i; (X')~ y* in Ult(N; E) and VO+if(fil) n Ult(N; E) F tp[~*]. This gives 
(b .. ) , (c") , and (d "). If y is a finite sequence of ordinals, then so is y * and 
we may take the lexicographically least y*~(~*). This y* is definable from 
o . 'l'. K'* , and i; (x') in VO+if(fi/) n Ult(N; E). Since 'l' essentially belongs to 
VK .+1 , (e *) holds. 0 

Remark. The hypotheses of the One-Step Lemma actually imply that 0 is 
Woodin in N and so in Ult(N; E). We see this as follows. Since ~ < p, 
P> 0 and so, by hypothesis (b), Vo+fi n M and hence Vo+fi' n N satisfy "0 is 
Woodin." (In the applications we shall always know without this argument that 
o is Woodin in N.) 

5. THE MAIN THEOREM 

Thoroughout this section let 0 be a fixed inaccessible cardinal. When we 
speak of (a. p)-types and of p-reflecting cardinals we shall omit the expression 
"relative to 0." 

We begin by illustrating the use of the One-Step Lemma in building iteration 
trees by proving the following theorem (which will not directly be used later). 

Theorem 5.1. If 0 is Woodin then for every n E OJ there is a countably closed 
alternating chain on V of length n + I . 
Proof. The theorem is trivially true for n = O. Assume then that n > O. Let 
K'o be (n - I)-reflecting in 0. Assume inductively that we have, for some k 
with 0 ~ k < n, a countably closed alternating chain ((Mm I m ~ k). (Em I 
m < k) • (Pm I m < k)) on V and ordinals K'o' K', .... K'k with each Em E Vo' 
with crit(Em) = K'm for m < k, and with K'k ~ Pk-l if k > O. Assume 
inductively also that the (K'k' n - k - I)-type of 0 in Mk is the same as the 
(K'k' n-k-I)-type of 0 in M k':"' l ' (where k':"'j = k- j if k ~ j and k':'" j = 0 
if k ~ j) and that K'k is (n - k - I)-reflecting in 0 in M k . 

If n - k > 1, apply the One-Step Lemma with M = Mk , N = M k':"' l ' 
K' = K'k' 1'/ = K'k' P = p' = n - k - 1, ~ = n - k - 2, tp(v) as "0 + v is the 
greatest ordinal," and x = x' = y = 0. Let E, K''', ~* , and y * be as given 
by the One-Step Lemma. Clearly ~ .. = n - k - 2 and y* = 0. Let Ek = E 
and Pk = K'*. Let Mk+l = Ult(Mk':"' l ;Ek). Let K'k+l = K'*. Our inductive 
assumptions hold for k + 1 . 

If n = k+ 1 let Ek witness that K'k is O-reflecting in 0 in Mk with a = K'k ' 
let Pk = K'k' and let Mil = Ult(MFl ;Ek). 0 

The theorem just proved makes no use of the fact that Lemma 4.4 gives 
arbitrarily large reflecting cardinals < 0 , and it similarly makes no real use of 
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the 11 of the One-Step Lemma. To see how we can make use of these ingredients, 
consider the following game ~!: 

I no nl a,,_1 a" 
II KO (EO.PO.KI) (E,,-2.P,,-2.K,,-I) (E,,-I.P,,-d 

The first player to disobey one of the following rules loses a play of ~. If 
all the rules are obeyed then II wins. 

(1) o.k < c5 . 
(2) o.k < "k < c5, "k+1 :s Pk' Pn- I > 0.", Ek E Va' the Ek and the Pk 

generate a countably closed alternating chain on V, and crit(Ek ) = "k . 

Theorem 5.2. If c5 is Woodin, then for every nEw player II has a winning 
strategy for ~! • 

The proof of Theorem 5.2 is just like that of Theorem 5.1, except that we 
take "0 > 0.0 ' in the application of the One-Step Lemma we take 11 = o.k+1 ' 
and in the case n = k + 1 we let Ek witness that "k is O-reflecting in 0 in 
Mk with 0. = a" + 1. 0 

In fact Theorem 5.2 does not require full Woodinness of c5. It suffices that 
c5 be Woodin with respect to functions definable in Va' Indeed this property 
can be shown equivalent with II 's having winning strategies for all the g'n . 

A further ingredient of Lemma 4.4 and of the One-Step Lemma is missing 
from Theorem 5.2 as well as from Theorem 5.1. In the proofs of these theorems 
we took the z of Lemma 4.4 and the x, x' , and y of the One-Step Lemma 
to be the empty sequence. In the construction to come we shall be building 
an alternating chain and-in the two branches of the alternating chain-be 
building branches through the images of a certain tree T. The parameters just 
mentioned will allow us to extend one of these branches when we are given an 
extension of the other. 

Superficially it appears that the One-Step Lemma is useful only for building 
finite alternating chains. The requirement that e < p seems to militate against 
building infinite chains via the lemma. Since we need to build infinite alternat-
ing chains, we must sidestep this problem. There is more than one way to do 
so. Here we proceed as follows. 

For the rest of this section let A < Co < c 1 < c2 be cardinals such that A. > c5 
and 

(i) All ck ' k:s 2, are strong limit cardinals of co finality greater than c5; 
(ii) Co and c1 satisfy the same formulas in Ve2 , allowing parameters from 

VA+1 (i.e., the (A + 1 ,c2)-type of Co is the same as the (A + 1 ,c2 )-type 
of c l ). 

Lemma 5.3. For any A > c5, there exist co' c1 ' and c2 satisfying (i) and (ii) 
with A < Co < c1 < c2 • 

Proo/. Let Z be the class of all strong limit cardinals of cofinality > c5. Let c2 

be the I VA+21+th element of Z. There are only I VM21 possible (..1.+ 1 ,c2)-types, 
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SO there must be Co < CI < c2 with Co and cl E Z and Co and cl having the 
same (A. + 1 , c2)-type. 0 

Our plan is to use the "descending" sequence of ordinals: 

Co + 1 , Co '" C I ' Co + 1 , Co '" C I ' .... 

The key points are (a) If " < 0 is Co -reflecting in some Z E <w ( V,H I)' then 
Vc satisfies "" is co-reflecting in z" and so (ii) gives that V satisfies "" is 

2 ~ 

C I-reflecting in z." (b) For a < 0 and z E <w (V).+ I) , the (a, co)-type of z is 
the same as the (a, cl)-type of z. Condition (i) is for notational convenience. 
It guarantees that co' co' and c2 will be fixed by all the embeddings arising in 
iteration trees whose extenders belong to Y,5 . 

We first consider the problem of embedding normal form for .p[T] , where 
T is a 0+ -homogeneous tree, and of the homogeneity of the corresponding T* . 

For "0 < 0 and T a tree on OJ x A. (the A. we chose above), consider the 
following game JJK: • 

I (mo. '10. ao) (mi. 'II. ("I) 
II (Eo. Po'lb. KI. E I . PI. PI. K2) (E2. P2. '1;. K3. E3. P3. P2. K4) 

The first player to disobey one of the following rules loses a play of JlT . If 
KO 

all rules are obeyed, II wins. 
Rl. The En and Pn generate a countably closed alternating chain on V 

with all En E V,5 . 
As long as Rl is obeyed, let Mo = V and Mn+1 = Ult(Mn':" l ;En)' (.:... was 

defined during the proof of Theorem 5.1.) Also let lm.n' for m ~ nand m = 0 
or n - m even, be the canonical elementary embeddings associated with the 
alternating chain. 

R2. len = crit(En) . 
R3. "2n < an < 0 . 
R4. "2n+2 > "2n+1 > a" . 
R5. Pn+1 < i2n .2n+2(P,,) , where Po = co' 
R6. Let tn = (i2k .2n':"2(l1k) I k < n}. ((mk I k ~ n), t ll+l } E 10.2,,(T). 
R7. Let un = (i2k+I.2n':"I(I1~) I k < n}. ((mk I k ~ n), U,,+I} E io.211+I(T). 
R8. 11: is definable in VC2 n M211+1 from elements of (VK2>1+1+ 1 n M2,,+I) u 

{o , io .211+1 (T) , Co} . 

Remark. A few words about what is happening in the game are perhaps in order. 
I is playing a (x, I) E [T], along with some ordinals a j • II is playing an 
alternating chain, an J' such that (x, I') belongs to the image of [T] in the 
direct limit along the odd branch of the alternating chain, and a sequence of 
ordinals P j which give a descending chain in the direct limit along the even 
branch. The sequence I' is required to belong to a certain subset of the image 
of [T(x)], a subset of size less than o. The role of the a j is to keep the critical 
points of the extenders increasing. 
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Lemma 5.4. IJ <> is Woodin and T is a tree on W x A, then the set oj "0 < <> 

such that II has a winning strategy Jor :§T is unbounded in <>. 
KO 

Proof. By Lemma 4.5, there are unboundedly many " < <> such that " is 
(co + I )-reflecting in (T). Let "0 be any such ". We shall construct a winning 

T strategy r for II for:§ . 
KO 

Assume inductively that we have defined r on all positions of length < 2n . 
Suppose that we are given a position of length 2n which is consistent with 
r and is such that neither player has disobeyed the rules. Let us also assume 
inductively 

(*)// "2//:S P2//-1 if n > 0; 
(**)// the ("2//,13//+ I)-type of (io.2//(T))~i2//~2.2n(t,) in M 2n is the same as 

the ("2//,co +I)-typeof (iO.211~I(T))~ulI in M211~1; 
(* * *)n "2// is (13// + I)-reflecting in (iO,2n(T))~i2n~2.211(tn) in M 2n · 

Note that (**)0 and (* * *)0 hold. (Recall that Po = co,) 
Let I play (m//, 17// ,a//) and assume that this move obeys the rules. Thus 

an < 0 and t//+ I = i2n~2,2n(tIl)~(17n) is such that ((mk I k:S n),tn+l ) E 
iO•2n (T). 

The assumptions of the One-Step Lemma hold with M = M 211 , N = M2n~1 ' 

" = "2n' 17 = all' 13 = 13// + 1 , 13' = co+ 1 , ¢ = 1311 ' X = (io .2n(T))~ i211~2 ,2//(t1l) , 
x' = (iO,2//~I(T))~u//, Y = (17,), and rp(v) as "0 + v is the largest ordinal." 
(*)/1 and the fact that RI has been obeyed give (a) of the One-Step Lemma, 
(**)n gives (b), and (***)11 gives (c). (d) is obvious. 

Let E," * ,¢* , and y * be given by the One-Step Lemma. (b * ) of the One-
Step Lemma implies that y * is a sequence of length one. (d * ) implies that 
C =co' 

Let r call for II to play 

(The rest of II's move will be specified later.) 
By (*) II ' (a * ) of the One-Step Lemma, and Lemma 3.1, R 1 is obeyed. (We 

still have an alternating chain.) The definitions of "211+1 and P211' together 
with (b * ) and (c * ) of the One-Step Lemma, give 

"211+1 :S P2n ; 
the ("211+1 ,co)-type of (iO.2n+I(T))~u//+I in 
("2n+1 ,pn)-type of (io ,211(T))~tn+1 in M 211 ; 

M is the same as the 2n+1 

(* * *)~ "211+ I is co-reflecting in (io ,211+ I (T)) ~ u ll+ I in M 211+ I . 
R2 is obeyed, since "2n = ,,* = crit(E) = crit(E211 ). R4 is obeyed, since 

"211+ I = ,,* > 17 = all' By (** ):, and the fact that R6 has been obeyed, 
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and so R 7 is obeyed. (e *) of the One-Step Lemma gives that y* is defin-
able in V,s+co+1 nM2n+1 from 0, (iO.2n+I(T))~i211":"1.2n+l(ulI)' and elements of 
VK211+1+1 n M 211+1. Since earlier moves obeyed R8, i21l":"1.2n+l(ull) is definable 
in VC2 n M 21l+1 from elements of (VK211+1+1 n M 2n+l ) U {o, iO.2n+I(T) ,co}. It 
follows that R8 is obeyed. 

By property (ii) of (co' c1 ,cl) (we have been using property (i) without 
mention), (**): and (***): imply 

(**)~ the (K2n+1 ,cl)-type of (iO.21l+I(T))~UIl+I in M 2n+1 is the same as the 
(K21l+1 ,PIl)-type of (iO.21l(T))~tll+l in M 21l ; 

(***)~ K2n+1 is cl-refiecting in (iO.21l+I(T))~Un+1 in M 21l+1· 
The assumptions of the One-Step Lemma hold with M = M 21l+1 ' N = M 21l , 

K = K2n+l , Y/ = K21l+1, P = c1' p' = PIl ' c; = Co + 1, x = (iO.2n+1 (T))~un+1 ' 
x' = (iO.2n(T))~tll+I' y = 0, and qJ(v) as the trivial formula v = v. (*): 
and the fact that Rl has been obeyed give (a) of the One-Step Lemma, (**t 
gives (b), and (***)" gives (c). (d) is trivial. 

Let E, K·, c;., and y* be given by the One-Step Lemma. (b *) of the 
One-Step Lemma implies that y* = 0. (b *) of the One-Step Lemma implies 
that c;. is a successor ordinal. 

Let "l" call for II to play E21l+1 = E, P2n+1 = K*, PIl+1 + 1 = c;* , and 
K2n+2 = K *. By (*):' (a·) of the One-Step Lemma, and Lemma 3.1, R 1 is 
obeyed. The definitions of K21l+2 and P21l+1 and (b *) and (c·) of the One-
Step Lemma give (*)11+1' (**)11+1' and (***)n+I' R2 is obeyed, since K211+1 = 
K* = crit(E) = crit(E2n+I )· Since Pn+1 < c;* < i211.211+2(p') = i2n .2n+2(PII ) , R5 
is obeyed. Thus all rules are obeyed. 0 

Theorem 5.5. If T is a 0+ -homogeneous tree on w x A. and 0 is Woodin, then 
-,p[T] has embedding normal form. 

Proof. By Lemma 5.4 let KO < 0 be such that II has a winning strategy "l" 

for the game ;gK: . For each (s, t) E T, let (Mk(s, t) I k ~ 2fh(s)) ,(Ek(s, t) I 
k < 2fh(s)) , (Pk(s, t) I k < 2fh(s)) , (uk(s, t) I k ~ fh(s)) , and (Pk(s, t) I 
k ~ fh(s)) result from play consistent with "l" in which I plays mk = s(k) , 
Y/k = (iO.2k(s, t))(t(k)) , and Q k = K2k (already played by II) for k < fh(s). 

Let (Its Is E <w w) witness that T is 0+ -homogeneous. Since each Ek (s , t) E 
V,s, R8 implies that all uk(s, t) are definable in Vc, from elements of V,s U 

{o ,co' T}. Since the Its are 0+ complete, it follows that the Ek(s , t), Pk (s , t) , 
and uk(s, t) are, for each s, constant on a set of measure 1 with respect to 
Its and, consequently, that the Mk(s, t) are also constant. Let Mk(s), Ek(s) , 
Pk(S) , and uk(s) be these constant values, and let Its (Xs) = 1 with these 
constant values attained whenever t E Xs' Note that s 1 ~ S2 implies that 
Mk(sl) = M k(S2) for k ~ 2fh(sl) ' Ek(sl) = Ek(S2) and Pk(SI) = Pk(S2) 
for k < 2£h(sl) ' and Uk(SI) = Uk(S2) for k ~ fh(sl)' Let ik, .k2 (s) , for 
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k2 ~ 2fh(s) , kl ~ k2' and kl = 0 or else k2 - kl even, be the canonical 
elementary embeddings associated with 

«(Mk(s) I k ~ 2fh(s)) , (Ek(s) I k < 2ih(s)) , (Pk(s) I Ie < 2fh(s))). 

Let us show that the system 

«(M2fll (S) Is E <w w) , (i2fll(Sd .2fll(s2) I Sl ~ S2 & Sl ,s2 E <w w)) 

gives embedding normal form for -.p[T]. 
We must check property (c) in the definition of embedding normal form. 

Let x E ww . Let Mk = Mk(x t n), Ek = Ek(x t n), and Pk = Pk(X t n), 
where n is large enough that these are defined. Let Y6' be the alternating chain 
«(Mk IkE w), (Ek I Ie E w), (Pk IkE w}). Recall that Even = {2n I nEw}. 
We must show that 

x E p[T] =? MEven is illfounded; 
x ¢. p[T] =? MEven is well founded . 

Assume first that x E p[ T]. By Lemma 1.1, there is an I : w -+ A. such that 
('Vk)(J t k E Xxtk )' For each k E w, let Pk = Pk(x t k, I t k). R5 implies 
that 

Pk+1 < i2k .2k+2(Pk) , 
where the im .// are the canonical elementary embeddings associated with Y6'. 
Thus (i2k .Even(Pk ) IkE w} is an infinite descending sequence of ordinals of 
M Even ' 

Assume now that x ¢. p[T]. Let Uk = uk(x t k). By R7, uk+1 E 
iO•2k+ I (T(x)). Since x ¢. p[T], T(x) is wellfounded. Let 

Yk = rankio.2k+dT(x))(uk+I)· 

Since i2k+I.2k+3(Uk+I) S uk+2' we have that i2k+I.2k+3(Yk) > Yk+1 . For each k 
let c;2k+1 = Yk' The c;//' nEw-Even, satisfy the hypotheses of Lemma 3.2. 
Hence MEven is wellfounded. 0 

Theorem 5.6. II T is a t5+ -homogeneous tree on w x A., T* is defined from T 
as in §2, and t5 is Woodin, then ('Va < t5)(T* is a-homogeneous ). 
Prool. Let (J1.s I s E <w w) witness that T is t5+ -homogeneous. Let a < KO < t5 
so that // has a winning strategy r for :9'::. Let Mk(s) , Ek(s) , PK(s) , and 
PK(s, t) be defined as in the proof of Theorem 5.5. Let im .//(s) be the canonical 
elementary embedding associated with 

«(Mk(s) I k ~ 2fh(s)} , (Ek(s) I k < 2ih(s)} , (Pk(S) I k < 2fh(s)}) , 

for m ~ n ~ 2ih(s) and either m = 0 or else n - m is even. 
For s E <ww and k < fh(s) define I: : ~tk -+ ON by 

I;(t) = Pk(s tk,t). 
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Let ek(s) = [/:DJI"~ . Define measures Vs for s E <wOJ by 

vs(X) = 1 ¢:} ((i2k .2fh(s)(s))(ek(s)) I k < lh(s)} E (iO.Uh(s)(s»(X). 

R4 implies that K2k+2 > K2k+ I > ak = K2k . Hence the critical points of the 
Ek(s) are ~ KO ' and the Vs are all Ko-complete and so are a-complete. If 
Sl ~ s2' then 

VS1 (X) = 1 ¢:} ((i2k .2fh(S!l(sl))(ek(sl)) I k < lh(sl)) E (iO.2th(s!l(SI))(X) 

¢:} ((i2k .2fh(s!l (s2))(ek (S2)) I k < lh(sl)) E (iO.2th(S!l(S2))(X) 

¢:} (i2k .2fh(S2) (s2))(ek (S2)) I k < lh(sl)) E (iO.2th(S2)(S2))(X) 
¢:} VS2 ({z I z t lh(sl) E X}) = 1. 

Furthermore, if x ¢. p[T], then the proof of Theorem 5.5 shows that MEven(x) , 
the direct limit of «(M2k (X t k) IkE OJ), (i2111 .2,,(X t n + 1) I m ~ n E OJ)), is 
wellfounded. By Lemma 1.2.(b), it follows that 

x E p[T*] ~ x ¢. p[T] ~ Ult(V; (v.d" In E OJ)) is well founded. 

The theorem will be proved if we show that, for all S E <wOJ , vs(Ts*) = 1. 
Fix then S E <w OJ. We must show that 

Vs({z I (Vk)(k + 1 < lh(s) ~ z(k + 1) < jk .k+1 (z(k)))}) = 1 , 
where jlll.1l ,m ~ n, are the canonical elementary embeddings of Ult( V ;Jlstm) 
into Ult( V; Jls r,,)' By the definition of vs ' this is equivalent to 

(Vk)(k + I < lh(s) ~ (i2h2 .2Ph(s)(ehl )) < (iO.2Ih(s)Uk .hl))(i2k .2th(s) (ek))) , 

where we abbreviate e,,(s) bye" and im.ll (s) by im.". Fix then k with 
k + 1 < lh(s). We must show that 

i2h2 .2fh(s) (ek+ I) < Uo .2fh(s)Uk .hl »(i2k .2tll(s) (ek))· 

By the elementarity of i2k+Z .2111(s) , this is equivalent to 

ek+1 < UO.2k+2Uk,k+I))(izk,Zh2(ek))· 

Since Jlstk and Jlsthl are 6+ -complete, Lemma 3.3 gives that (io,2h2 Uk ,hI)) 
tON = jk ,hI rON. What we must show is thus finally reduced to 

ek+1 < jk ,k+1 (i2k ,2h2(ek))· 
On the other hand, R5 implies that Phi (s, t) < iZk .2k+2(Pk(S, t)) for all 

t E Ts' and so Pk+1 (s t k + I ,1) < i2k ,2h2(Pk(S t k ,t t k)) for all t E Tsrk+1 . 
By the definition of 1:+1 and I: ' 

1:+I(t) < i2k,2k+2U:(t t k)) 

for all t E ~rhl' Thus [/:+IDJI">+I < jk .hl ([i2k .2k+2 0 ItDJI"k)' Since 
[i2k .2k+2 ol:DJI,rk = Uo ,k (i2k .2k+2) )([/tDJI"k) , we get 

[1:+1 DJI<lki 1 < jk ,hi (Uo .k(i2k ,2h2))([/:DJI,,))' 
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By the definitions of ek and ek+1 ' this means that 

ek+1 < jk,k+I(UO,k(i2k,2k+2))(ek)), 
Applying Lemma 3.3 again, we get 

ek+1 < jk ,k+1 (i2k ,2k+2(ek)) , 
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Since this is exactly what we are trying to show, the proof is complete. 0 

Our remaining task is to extend the results obtained thus far in this section 
for the operation T t-> T* to corresponding results for the operation T t-> T . 
For this we need to build iteration trees which have, instead of a single infinite 
branch in addition to Even, branches by for each Y E ww. To do this we have 
to amalgamate a tree of alternating chain constructions of the sort already done. 
For this we require a modification of the game :9'~ . For this in turn we need a 
slight generalization of the notion of an alternating chain. 

A pseudoalternating chain on V of length 2n + 1 is a system «(Mk I k :::; 
2n) . (Ek I k < 2n) . (Pk I k < 2n) • (M2k I k < n) • (12k I k < n}) such that 

(1) for all k :::; 2n, Mk is a transitive proper class model of ZFC; Mo = V; 
for all K < n, M2k is a transitive proper class model of ZFC; 

(2) (Pk I k < 2n) is a nondecreasing sequence of ordinals; 
(3) for all k < n, VP2~+1 n M2k = VP~A+I n M 2k+1 ; for all k < n 

M2k+1 = VP2A~I+1 n M 2k+2; and, for all k with k + 1 < n, 

M2k+2 = VP1~+I+1 n M2k+2; 
(4) for all k < n, M2k satisfies" E2k is an extender"; and, for all k < n , 

M2k+1 satisfies" E2k+1 is an extender"; 
(5) for all k < n, support(E2k ) 2 VI'~~+I n Mzk; and, for all k < n, 

support(E2k+1) ;2 VP2k~I+1 n M2k+1 ; 
(6) for all k < n, crit(E2k ) :::; P2k':"'1 and M 2k+1 = Ult(M2k ':"' l ;E2k ); and, 

for all k < n, crit(E2k+l) :::; P2k and M 2k +2 = Ult(M2k ;E2k+1); 
(7) for all k < n, 12k : M2k ---- M2k is an elementary embedding (which 

may be the identity, in which case M2k = M2k ); 
(8) for all k with 0 < k < n, crit(l2k) > P2k-l. (If 12k is the identity 

then we declare crit(l2k) = 00, with 00 > any ordinal number.) 

Remark. A pseudoalternating chain on V of length 2n + 1 is just an alternating 
chain on V of length 2n + 1 with the extra "links" M2k ~ M2k interposed: 

. /io . 
V = Mo ~ Mo .!i.. M2 ~ M2 ----

.,If},. 
lEO 
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when n > O. If all the 12k are identities, then we have, in essence, an ordinary 
alternating chain. Note that condition (8) guarantees that the last clause of (3) 
holds. 

Let us say that a pseudoalternating chain on V of length 2n + 1 is count-
ably closed if each M2k satisfies "support (E2k ) is countably closed," each 
M2k+1 satisfies "support(E2k+l ) is countably closed", and each M2k is count-
ably closed. 

We have the following analogue of Lemma 3.1. 

Lemma 5.7. Let «(Mk I k ~ 2n) ,(Ek I k < 2n). (Pk I k < 2n), (M2k I k < n) , 
(12k I k < n)) be a countably closed pseudoaiternating chain on V. Let M 
be a countably closed proper class model of ZFC and let I : M211 -+ M be an 
elementary embedding such that crit( I) > P211-1 if n > O. Let P be an ordinal 
with P ~ P211-1 if n > O. Let E E M be such that M satisfies "E is an 
extender with countably closed support" and such that support(E) :2 Vp+1 n M. 
Assume that crit(E) ~ P211-1 if n > 0 and that crit(E) ~ max(p, crit(l)) if 
n = O. Let p* be an ordinal ~ p. Let E* E Ult(M211':"1 ;E) be such that 
Ult(M211 ':" 1 ; E) satisfies" E* is an extender with countably closed support" and 
such that support(E*) :2 Vpo+1 n Ult(M211 ':" 1 ;E). Assume that crit(E*) ~ p. 

There is a unique countably closed pseudoalternating chain «(M~ I k ~ 2n + 
2) ,(E~ I k < 2n + 2) ,(p~ I k < 2n + 2) ,(M~k I k ~ n) ,(l;k I k ~ n)) on V 
of length 2n + 3 with M~ = Mk for all k ~ 2n, E~ = Ek and p~ = Pk for 

-, - ~I ~ -, - "=/ ":' 
all k < 2n, M2k = M2k and 12k = 12k for all k < n, M211 = M, 1211 = I, 
E' , , * d' * 211 = E, P211 = P, E211+1 = E ,an P211+1 = P . 

The proof of Lemma 5.7 is like that of Lemma 3.1. The only new point 
is that the fact that crit(l) > P211-1 ' which guarantees (8), implies also that 
VP2"_I+1 n M211 = Vp2"_I+1 n M as required by the last clause of (3). 

For trees T on (w x w) x A. and ordinals KO < ~ , we consider the following 
-T game :§K : 

() 

I (mo. Po. t/o. eto. Mo. io) (1111. PI. III. HI. M2. 12) 
II (Eo. pO.I/h. KI. E I • PI. PI. K2) (E2. P2. 1/;. K3. E3. P3. P2. K4) 

The first player to disobey one of the following rules loses a play of ~: . If 
all rules are obeyed, II wins. 

Rl. The En' PII ' ' 211 , and M2n 
nating chain on V with all Ell E V,5 
('Vk ~ 2)(1211(Ck) = ck). 

generate a countably closed pseudoalter-
and with crit(lo) > KO ' 12n(~) = ~ , and 

As long as Rl is obeyed define Mn and im.1I : Mm -+ Mil in the obvious way. 
Note that Rl-unlike Rl of :§T -is a constraint on the moves of I as well as 

KO . 
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of II. In particular, I violates RI if he does not choose 1211 : M211 -> M211 as 
an :Ieme~tary_emb:dding or !ails to have crit(l211+2) > P211+1 . 

R2, R3, R4, R5, and R8 are word-for-word repetitions of R2, R3, R4, 
R5, and R8 respectively. R6 and R7 are the natural variants of R6 and R7 
res~ectively: 

R6. Let t1l = (i2k .211~2(1'h) I k < n} . 

(((mk I k S n}, (Pk I k S n}) ,t1l+1) E io.21l (T). 

R7. Let ull = (i2k+1 .21l~1 (11~) I k < n). 

(((mk I k S n}, (Pk I k S n)) ,ull+l ) E io.21l+I (T). 

Here, or rather in the following Lemma 5.8, we are passing beyond the bounds 
of Kelley-Morse set theory, since a strategy for II has to be of a higher type 
than a proper class. In the application of Lemma 5.8, each 1211 : M211 -> M211 
will be I p.q : Mp -> Mq for some iteration tree !T E V,s with models Mk and 
canonical embeddings I . The careful reader will then want to think of RI p.q 
as strengthened to demand that 1211 and M211 are of this sort, so that I 's moves 
may be thought of as sets. 

Lemma 5.S. If t5 is Woodin and T is a tree on (w x w) x A, then the set of 
KO < t5 such that II has a winning strategy for jK: is unbounded in t5. 
Proof. As in the proof of Lemma 5.2, we let KO < t5 be (co + I)-reflecting in 
(T} , and we construct a winning strategy r for II for j~ . 

The construction of r is almost the same as the construction in the proof 
of Lemma 5.4. Assume inductively that we have defined r on all positions of 
lengths < 2n and that we are given a position of length 2n which is consistent 
with r and is such that neither player has disobeyed the rules. Assume induc-
tively (*)11' (**)11' and (***) II-word for word repetitions of the corresponding 
assertions in the proof of Lemma 5.4. As before, Po = co' 

Let I play (m", P1I ,a1l ,M21l ,1211 ) and assume that this move obeys all rel-
evant rules. Thus all < t5 and t'HI = i21l~2.21l(t1l)~(111l) is such that 

(((mk I k S n) ,(Pk I k S n)} ,tll+l) E io.21l (T)· 

Furthermore M21l is a countably closed proper class model of ZFC, 1211 : M21l -> 

M211 is elementary, crit(l21l) > P21l-1 if n > 0, crit(l21l) > KO if n = 0, 
'21l(c5) = t5 , and, for all k S 2, 121l (ck ) = ck . 

Thus (((mk I k S n), (Pk I k S n)), '2k(t,,+I)) E 12,,(io.2,,(T)). Furthermore 
we have, since crit(12,,) > P21l-1 if n > 0 and crit(i2,,) > KO if n = 0, that 
K2" < crit(121l)' This gives us the following. 

(**)~ The (K21l , 12" (P,,) + I)-type of (l21l(io.2,,(T))~1211(i2"~2 .2,,(t,,)) in M21l 
is the same as the (K 21l , Co + I )-type of (io .21l~ I (T))~ ullin M21l~ I . 
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(***)~ 1(2n IS (l211(PII ) + I)-reflecting in (1211(iO.211(T))}~1211(i21l':"'2.21l(t1l)) in 

M2n · 
The assumptions of the One-Step Lemma hold with M = M 21l , N = M 21l ':"' 1 ' 

• I • 
I( = 1(211' 11 = all' P = i211 (PIl ) + I, P = Co + I, ~ = i211 (PII ) , X = 
(l211(iO.211(T)))~1211(i211':"'2.2Il(tIl))' x' = (iO.21l_I(T)}~ull' Y = (1111 ) , and tp(v) 
as " 0 + v is the largest ordinal." (*)11 and the fact that R I has been obeyed 
give (a), (**)~ gives (b), and (***)~ gives (c). (d) is obyious. 

Let E, x· , e* ,and y. be given by the One-Step Lemma. y* is a sequence 
of length one and e* = Co . 

Let r call for II to play 

* P211 = I( , ') * * (11n = y, and 1(211+1 = I( . 

As in the proof of Lemma 5.4, Rl is obeyed. As in that proof we get the 
following. 

(*);, 1(211+1:5 P211' 
(**)AI The (1(211+1 'Co)-type of (iO.211+I(T)}~UII+1 in M211+1 is the same as the 

(1(211+1 ,1211(PII ))-type of (l211(iO.211(T))}~1211(tll+l) in M2n · 
(***)~ 1(211+1 is co-reflecting in (iO.211+I(T)}~ulI+1 in M 2n+l · 
As in the proof of Lemma 5.4, R2, R4, R 7, and R8 are obeyed. 

As in the proof of Lemma 5.4, we get the following. 

(**)~" The (1(211+1 ,cl)-type of (iO.211+I(T)}~ulI+1 in M211+1 is the same as the 
(1(211+1 ,l2n(PII))-type of (l2n(io.2n(T))}~l211(t1l+1) in M211 · 

(***)~" 1(211+1 is ci-reflectingin (io,2n+I(T)}~ulI+1 in M 2n+l · 
The assumptions of the One-Step Lemma hold with M = M211+ I' N = 

- I , 
M 211 , I( = 1(211+1' 11 = 1(211+1' P = CI ' P = 1211 (PII ) , ~ = Co + I, x = 
(iO•211+1 (T)}~ulI+1 ' x' = (l2n(iO.211(T))}~l211(t1l+1)' y = 0, and tp(v) the trivial 
formula v = v . 

Let E, I( * , ~* , and y * be given by the One-Step Lemma. y * = 0. ,* is 
a successor ordinal. 

Let r call for II to play E211+1 = E, P211+1 = 1(*, PII+ I + I = ~* , and 
1(211+2 = 1(* . As in the proof of Lemma 5.4, RI, R2, and R5 are obeyed and 
(*)n+I' (**),,+1' and (***)'1+1 hold. 0 

Let -<: be the following partial ordering. 
(i) 0 -<: n for all n > O. 

(ii) 2m -<: 2n <=> m < n. 
(iii) 2m + 1 -<: 2n + I <=> '111+1 S '11+1 ,where ('k IkE co) is the enumeration 

of <wco in §2. 
(iv) m -<: n only if (i), (ii), or (iii) require m -<: n. 

Note that (co, -<:) is a tree. 
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Lemma 5.9. Let T be a tree on (w x w) x A., let Ko < A., let 'l" be a winning 

strategy for II for !iK: ' and let (l1(s ,r) Is E <ww & r E <ww & ih(s) = ih(r)) 
witness that T is J+ -homogeneous, 

There are (B; I s E <w w), (X(s ,r) I s E <w w & r E <w W & ih(s) = ih(r)) , and 

(P(s,r,l) Is E <ww & r E <ww & ih(s) = ih(r) & t E X(s,r}) such that 

B; = (~t 2ih(s) + 1, (Mk(s) I k ~ 2ih(s)) , 

(Ek(s) I k < 2ih(s)) , (h(s) I k < 2ih(s))) 

is a countably closed iteration tree on V of length 2eh (s) + 1, B;, ' extends B;2 
if Sl extends S2' l1(s ,r} (X(s ,r}) = 1, p(s ,r ,I} is a position of length 20(r) = 

2 max{ih(rq) I rq ~ r &q ~ ih(r)} in !iK: with all rules obeyed, and the 
following conditions are met, 

(a) If (s ,r ,t) extends (s' ,r' , t') , then p(s ,r ,I} extends p(s' ,r' ,I'} , Moreover 
if O(r) ~ k and r t k = r' t k and t t k = t' t k (and t E X(s ,r) and 

t' E X(s ,r'} ) then the first 2k moves of p(s ,r ,I} are the same as those of 
p(s ,r' ,I'} , 

(b) mk(s, r, t) = s(k), Pk(S, r, t) = r(k), '1k(S, r, t) = (io,2k(s, r, t))(t(k)). 
(Where mk(s, r ,t), etc., are the appropriate moves in p(s ,r ,I}' ) 

(c) If r l ~ r, then ao(s, r, t) = KO' If rk+1 ~ rand 0 < k < ih(r), then 
ath(rk+d-I (s ,r , t) = P2k-1 (s) , 

(d) If rk+1 ~ rand k < eh(r) , then M21h(rk+d-2(S, r. t) = M2k(s) , 

121h(rk+d-2(s, r. t) = 10,2k(s) if ih(rk+l) = 1, and 121h(rk+d-2(s, r, t) = 
12k'+2,2k(s) if k' < k is maximal such that rk'+1 ~ rk+1 ' (Here 1m ,n(s), 
m ~ n ~ 2ih(s) , are the canonical elementary embeddings associated 
with B; ,) 

(e) p(s ,r ,I} is consistent with 'l". 

(f) If rk+1 ~ rand k < ih(r), then 

E21h(rk+d-2(s ,r, t) = E2k(s) ; 

P2lh(rk+d-2(s, r, t) = P2k(S) ; 

M 21h(rk+d-1 (s , r , t) = M 2k+1 (s) ; 

E21h(rk+d-1 (s ,r , t) = E2k+1 (s) ; 

P21h(rk+d-1 (s ,r , t) = P2k+1 (s) ; 

M 21h(rk+I)(s, r. t) = M2k+2(S) , 

Proof. Fix k E w. Assume that we have defined all our objects for all sand 
r whose lengths are ~ k and that all our conditions are satisfied. (In the case 
k = 0 this can be done trivially.) 
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Now fix s with fh(s) = k + 1. Let MII(s) = MII(s t k) for n ~ 2k; let 
£II(S) = £II(S t k) and PII(s) = PII(s t k) for n < 2k (i.e., let ~ extend ~rk ' 
as required). 

Let us pause to calculate lower bounds for crit(l211.211+2(s)) for n < k. By 
definition this is crit(£21l+1 (s)). By (f) and the fact that £211+1 (s) = 

£211+I(S t k), £211+I(S) = EUh(rtl+d-l(s t k,r,t) for rll+1 ~ rand t E 

X(stk.r)' Fix such rand t. crit(l211.211+2(s)) = crit(EUh(rtl+d_l(s t k,r,t)) = 

KUh(r,/+,J-1 (s t k , r , t). R4 gives that 

KUh(rtl+,J-I (s t k , r , t) > ll'h(I'tI+,J-I (s t k , r , t) . 

Hence crit(l211 .211+2(S)) > ll'h(rtl+,J-I (s t k ,r , t) . Thus the case n = 0 gives 

crit(lo .2(S)) > llO(S t k ,r ,t) = KO ' 

and, for n > 0 
crit(l211.211+2(S)) > P211-1 (s). 

(In both cases we have used (c).) 
Now fix r' with fh(r) = fh(s) = k + 1 . 
If rhl rz. r then O(r) = O(r t k), and so we let X(s .r) = X(srk .rtk) and let 

P(s.r./) = P(stk.rrk.ltk) for t E X(s.r)· 
Assume then that rhl ~ r. X(s .r) will project to a subset of X(srk .rrk) (i.e., 

X(s.r) ~ {t Itt k E XOk .dk)}' We shall actually define P(s.r./) for all t such 
that t t k E X(srk .rrk) . 

For t E X(s rk .r rk) , let mth(rk+d-I (s , r , t), Pth(r4+d-1 (s , r , t), 17th(rk+d-1 (s , r , t) , 
ll'h(rk+d-I (s ,r ,t), MUh(rk+d-2(S, r ,t), and lUh(rk+d-2(s, r, t) be given by (b), 
(c), and (d). 

Since t E T(s .r) , this move obeys R6. It is easy to see that it obeys all 
the requirements of Rl except perhaps those that crit(l21l+2) > P211+1 and that 
crit( 10 ) > KO . 

Assume first that fh(rk+l ) = 1. We must show that crit(lo(s,r,t)) > KO' 
If k> 0 then crit(lo(s, r, t)) = crit(l0.2k(s)) = inf{crit<l211.211+2(s)) I n < k} > 
inf{P211_I(s) 10< n < k} ~ po(s) ~ Ko' If k = 0 then '0 is the identity map, 
so crit(lo) = 00 > KO . 

Now assume that fh(rk+l ) > 1. We must show that crit(luhh.d_2(s, r, t)) 

> PUh(rk+d-3(s,r,t). Now lUh(rk+d_2(s,r,t) = 12k'+2.2k(S) , where k' < k is 
maximal such that rk'+1 C rhl . So 

crit(luh(rk+d-2(s, r, t)) = inf{crit(l211.211+2(s)) I k' <n < k} 

> inf{P211_I(s) I k' < n < k} 

~ P2k'+1 (s) 
= PUh(rk' +il- I (s , r ,t) = PUh(rk+1 )-3 (S , r , t) 

as required. (Note inf0 = 00.) 
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For I E X(s tk .r tk) , we complete the definition of p(s.r .1) by letting II move 
as dictated by T, and hence by (e). Note that condition (a) continues to be 
satisfied. 

Since f.1(s .r) is 6+ -complete, there is a set X(s .r) projecting into X(s tk .r tk) 

with f.1(s .r) (X(s .r) = 1 and there are E, p, M, E', p', and M' such that, 
for all I E X(s .r) , 

and 

E21h(r!+il-2(S .' • I) = E. 

P21h(rk+d-2(s., • I) = p. 

M 21h(r!+il-1 (s .' , I) = M • , 
E21h(rk+il-1 (s • , • I) = E . , 
PUh(rk+il-1 (s • , • I) = P • 

In accordance with (f), set E2k (S) = E, P2k(s) = p, M2k+1 (s) = M, E2k+1 (s) = , - ,~ , 
E , P2k+1 (s) = P , and M 2k+2(S) = M . 

It remains only to verify that (-<t 2k + 3. (Mk,(s) I k' ~ 2k + 2). (Ek'(s) I 
k' < 2k + 2) . (Pk' (s) I k' < 2k + 2) is an iteration tree, and our induction step 
will be complete. 

With, as above (, 2 'k+1 and fh(,) = fh(s) , let t E X(s .r)' Most of the 
properties of iteration trees are easily verified. Some examples: 

EUh(rk+il-2(s .' • t) E M21h(r!+d-2(S • , • t) • 

so E2k (S) E M 2k (s). If fh('k+I) > 1 then 

MUh(rk+d-1 (s.,. I) = Ult(MUh(rk+il-3(s.,. I) ;E21h(rk+d-2(s.,. I». 

so 
~ ~ ~ 

M2k+1 (s) = Ult(M2k'+1 (s); E2k (S» • 

where k' < k is maximal such that 'k'+1 ~ 'k+I' 2k' + 1 is the -< immediate 
predecessor of 2k + 1, so M2k+1 (s) = Ult(~2k). (s); E2k (S» as required. We 
omit the other verifications, except for that of P2k_I(S) ~ P2k(s) for k> O. 
We have that P2k(S) = PUh(rk+d-2(s.,. t). By property (6) of pseudo alternating 
chains, 

P2fh(rk+d-2(s.,. t) ~ crit(EUh(r!+il_1 (s.,. t» = KUh(rk+d-l(s.,. t). 

By R4, 

By (c), 
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Theorem 5.10. If T is a J+ -homogeneous tree on (w x w) x A and J is Woodin, 
then {x I (V'y)(x, y) ¢ p[T]} has embedding normal form. 
Proof. Let (J1.(s ,r) I s E <ww & r E <ww & lh(s) = lh(r») witness that T is 
J+ -homogeneous. By Lemma 5.8 let KO < J be such that II has a winning 

-T strategy T for ~KO • Let 

(~ Is E <w w) , (X(s ,r) Is E <w w & r E <w w & lh(s) = lh(r») , 

and 
(p(s ,0) Is E <w w & r E <w w & lh(s) = lh(r) & t E X(s ,r») 

be given by Lemma 5.9. 
Note that the J+ completeness of J1.(s ,r) guarantees that there is a set of t of 

J1.(s ,r) measure 1 on which uk(s, r, t) is constant. Without loss of generality, 
we may assume that X(s ,r) is a subset of this set. Let then u(s, r) = u(s ,r , t) 
for all t E X(s ,r) • 

Let us show that the system 
~ <w ~ <w <w 

«M2fh(S) Is E w) , (i2fh (SI) ,2fh(S2) I Sl ~ s2 & Sl E w & S2 E w) 

gives embedding normal form for {x I (V'y)(x ,y) ¢ p[T]}. 
Let x E W w, in order to check property (c) in the definition of embedding 

normal form. Let Mk = Mk(x t k), Ek = Ek(x t k+1), and Pk = Pk(X t k+1) 
for k E w. The infinite branches of the iteration tree 

!T = (-< , (Mk IkE w) , (Ek IkE w) , (Pk IkE w) 

are Even = {2n I nEw} and, for each y E ww , by = {O}u{2n+ 1 I rn+1 ~ y}. 
We must show that 

(3y)(x, y) E p[TJ) => MEven is illfounded; 
(V'y)(x, y) ¢ p[TJ) => MEven is wellfounded. 

Assume first that (3y)«x, y) E p[TJ). Fix y such that (x, y) E p[T]. By 
Lemma 2.1, there is an f : w --+ A such that (V'k)(f t k E X(xtk ,)'tk»' For 
each k, let q(k) be such that rq(k)+1 = y t k + 1. Let 

Pk+1 = Pk+I(X t q(k) + 1, y t q(k) + 1 ,f t q(k) + 1). 

R5 implies that 
P k +2 < 12q(k)+2,2q(k+I)+2(Pk+I) 

where the I ,m -< n, are the canonical elementary embeddings associated m,t! 

with !T. Thus (l2q(k)+2,Even(Pk+I) IkE w) is an infinite descending sequence 
of ordinals of MEven ' 

Assume now that (V'y)(x, y) ¢ p[T]. R7 gives that, for each k E w, 

«x t lh(rk+ I ) , rk+ l ) ,uPh(rk+tl(x t k + 1 ,r») E (iO,2fh(rk+tl-1 (x t k + 1 ,r, t»)(T) 
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for all r 2 rk+1 with fh(r) = k + 1 and all t E X(xtk+l.r) . Since 

io .2fh(rk+d-1 (x t k + 1 . r • t) = 10.2k+1 

for all such rand t (by (d) and (f), it follows that 

((x t fh(rk+l ) .rk+I). ufh(rk+d(x t k + 1 ,r») E 10.2k+I(T) 

for all r 2 rk+1 with fh(r) = k + 1 . 
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Since (\iy)«x.y) f!. p[T]), the tree T(x) of all (r.t) such that ((x t 
fh(r) . r) • t) E T is wellfounded. Let 

Yk+1 = ranklo~k+,(T(X))«(rk+1 • ufh(rk+d(x t k + 1. r»)) 

for r 2 rk+1 and fh(r) = k + 1. Since 

i2fh(re + ,,-I .2fh(rk+d-1 (x t k + 1 . r • t) = 12k,+ I .2k+1 

for rk'+1 ~ rk+1 ~ r, fh(r) = k + 1 , and t E X(xtk+1 .r) , we have that 

12k'+1 .2k+1 (Uk'+1 (x t k + 1 . r» ~ Uk+1 (x t k + 1 • r) 

for rk'+1 ~ rk+1 ~ rand lh(r) = k + 1. Thus 12k'+1 .2k+1 (Yk'+I) > Yk+1 . If we 
let e2k+ I = h+ I ' then the ell' nEw-Even, satisfy the hypotheses of Lemma 
3.2, and therefore MEven is wellfounded. 0 

Theorem 5.11 (Main Theorem). If T is a J+ -homogeneous tree on (wx w)xZ, 
J is Woodin. and T is defined from T as in §2, then (\ia < J) (T is a-
homogeneous). 
Proof. We may assume Z = A., since A. was an arbitrary cardinal > J and 
replacing Z by a set of ordinals gives a tree isomorphic to the original T. 
Let (tt(s.r) I s E <ww & r E <ww & lh(s) = fh(r») witness that T is J+-
homogeneous. Let a < KO < J be such that II has a winning strategy for fi'K: . 
Let Mk(s), Ek(s), Pk(S), and 1m .II(S) be as in the proof of Theorem 5.10. 

For k < fh(s), rk ~ r, and t E X(s .r) , consider the ordinal Plh(rd(s. r. t). 
By the second part of condition (a), this ordinal depends only on sand t t 
lh(rk) for t E X(s .r)' For s E <ww and k ~ fh(s), we may thus define 

f: : Z; -- ON with tt(s t/h(rd h) (z;) = 1 by 

f:(t) = P1h(rd(s. r. t') 

for all t E Z; , all r 2 rk with fh(r) = lh(s) , and all t' 2 t with t' E X(s .r) . 

Let ek(s) = [f:B/I<d'h"k"k) . Define measures Vs for s E <ww by 

vs(X) = 1 <=> (12k .2Ih(s)(s»(ek(s» I k < lh(s») E (ZO.21h(S)(S»(X). 

Since the critical points of all Ek(s') are;::: KO the Vs are all Ko-complete 
and so a-complete. If Sl ~ S2 then vs,(X) = 1 <=> VS2 ({z I z t fh(sl) ~ X}) = 
1, exactly as in the proof of Theorem 5.6. Furthermore, if x E p[T] then 
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(Yy)(x ,y) ¢. p[T]) and so the proof of Theorem 5.6 gives that the model 
MEven(x) which is the direct limit of 

«(M2k (X f k) IkE w}, (l2m.21/(x f n + 1) I m ~ nEw)) 

is wellfounded. By Lemma 1.2(b) it follows that 

x E p[T] => Ult(V; (vxrl/ In E w)) is well founded. 

The theorem will be proved if we can show that, for all S E<w W, vsCTs) = 1. 
Fix then S E <w w. We must show that 

vs( {z I (Yk)(Yk')(rk ~ rk, & k' < I!h(s)) => z(k') < jk .k,(z(k)))}) = 1 , 

where jk.k' is the canonical elementary embedding of Ult(V;Jl(srlh(rd.r,}) 
into Ult( V; Jl(s rlh(rk') .rk'})' By the definition of vs ' this is equivalent to 

(Yk)(Yk')(rk ~ rk, & k' < I!h(s)) => 

12k, .2fh(s) (ek,) < OO.2fh(s)Uk .k,)(12k .2th(s)(ek)) , 

where we abbreviate el/(s) by el/ and Im.l/(s) by Im.I/' 
Fix then k and k' with rk ~ rk, and k' < I!h(s). We must show 

that 12k, .2fh(s) (ek,) < 0 0 .2ih(s) Uk .k')( 12k .2fh(s) (ek))· By the elementarity of 
i2k, .2fh(s)' this is equivalent to 

ek, < (10 .2k,Uk .k,))02k .2k,(ek)) . 

Since Jl(s rfh(rd .rd and Jl(s rlh(rk') .rk'} are J+ -complete, Lemma 3.3 applies. 
Thus 10 .2k' Uk .k') f ON = j k .k' t ON. What we must show is thus finally 
reduced to 

ek, < jk .k,(l2k .2k,(ek)) . 

On the other hand, R5 gives that 

Plh(re) (s , r , [*) < (iUh(rd .2lh(re /s , r , [* ))(Pfh(rd(s , r , [*)) 

for all r 2 rk+1 with I!h(r) = I!h(s) and all [* E X(s .r}' (d) and (f) thus give 
that 

Pfh(re/s , r, [*) < 12k .2k'(Pfh (rd(s, r, [*)) 

for all such rand [* . By the definition of It and It" 
I:,(t') < 12k .2k,(J:(t)) 

, k' k , for all [ E Zs and all t E Zs with [~[ . Thus 

[/:,Dp<d'hlfel.fe) < jk .k,([/2k .2k' 0 I:Dp<dll"fkl.fk»)· 

Hence 
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By the definitions of ek and ek " this means that 

ek, < jk ,k,(UO.k(i2k ,2k,))(ek))· 

Applying Lemma 3.3 again, we get 

ek, < jk.k,(i2k,2k,(ek ))· 

Since this is just what we are trying to show, the proof is complete. 0 
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