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In an earlier note' the author introduced and discussed the notion of
linear system. It is the purpose of the present note to apply this notion to
the study of convex topological linear spaces.2 LetX be an abstract linear
space. Let X* be the space of all linear functionals defined on X. With
each convex topology t in X we associate the subspace L of X* consisting
of those linear functionals continuous with respect to t. In general, there
will be many t's associated with a single L and we obtain in this way a
natural many-to-one correspondence between convex topological linear
spaces and linear systems. It is our purpose here to correlate the proper-
ties of a convex topological linear space with those of its linear system and
with the strength of its topology relative to that of the other convex
topological linear spaces associated with the same linear system.
Our principal tool is a reformulation of von Neumann's3 observation that

the topology of a convex topological linear space may be described by
means of pseudo-norms. This reformulation, whose proof is a consequence
of Fichtenholz's4 theorem on the relationship between norms and linear
functionals, is as follows. Let L be an arbitrary total5 subspace of X*. Let
3 be any family of pseudo-norm sets which has the following three proper-
ties. (a) For each two members of 3 there is a third member of 3 which
contains them both. (b) If a pseudo-norm set is contained in a member of
3 then it is itself a member of 3. (c) The set theoretic union of all members
of 3 is L. Then there is a unique convex topology in X whose continuous
linear functionals are precisely the members of 3. Conversely, every
convex topology in X associated with L may be obtained in this way. In
other words, there is a natural one-to-one correspondence between the
convex topologies associated with XL and the "ideals of pseudo-norm sets
which span L."
As will be proved in the author's forthcoming paper on linear systems,

every finite dimensional subspace of an X* is a pseudo-norm set and the
linear union of any two pseudo-norm sets is again a pseudo-norm set. Thus
for any L the family of all pseudo-norm sets in L and the family of all finite
dimensional pseudo-norm sets in L are both ideals which span L. As an im-
mediate consequence we have:
THEOREM 1. Let L be an arbitrary total subspace ofX*. Then thefamily

of convex topologies in X associated with L not only is not empty but also con-
tains a weakest member and a strongest member.
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This theorem suggests the following definitions. A relatively weak (rela-
tively strong) convex topological linear space is a convex topological linear
space which has a weaker (stronger) topology than any other such space
with the same linear system. Normed linear spaces in their weak topologies'
are relatively weak convex topological linear spaces and in their norm
topologies are relatively strong convex topological linear spaces. Because
of the latter fact one can regard the notion of relatively strong convex
topological linear space as a natural generalization of that of normed
linear space. Theorem 3 below is of interest in this connection. In general,
of course, a convex topological linear space will be neither relatively weak
nor relatively strong but on the other hand, may be both.
The standard notion of boundedness6 in topological linear spaces coin-

cides in the convex case with the boundedness for linear systems intro-
duced in "IDS." That is, if X is a convex topological linear space and L
is its family of continuous linear functionals then a subset A of X is bounded
if and only ifl.u.b.(X. zA) I (x) < co for each I in L. This has as an im-
mediate consequence the fact that two convex topologies in X generate the
same bounded sets if and only if their families of continuous linear func-
tionals have identical bounded closures. Thus it is clear that not only are
there, in general, many convex topologies with the same continuous linear
functionals but also many convex topologies with different continuous
linear functionals and the same bounded sets. These considerations lead at
once to a proof of the following theorem and hence show that the converse
of a certain theorem of Wehausen7 is not true.
THEOREM 2. Let X be a convex topological linear space. Then every

linear transformation from X to another convex topological linear space which
takes bounded sets into bounded sets is continuous if and only ifX is relatively
strong and has a boundedly closed linear system.

It follows from Theorem 2 and a slight extension of a theorem of We-
hausen8 that every metrizable convex topological linear space is relatively
strong and has a boundedly closed linear system. The question as to which
boundedly closed linear systems are such that their associated relatively
strong convex topological linear spaces are metrizable is answered at once
by the Birkhoff-Kakutani' group metrizability criterion and we have:
THEOREM 3. Let X be a convex topological linear space and let Xr, be its

linear system. Then X is metrizable if and only if it is relatively strong and
L is the union of an ascending sequence of pseudo-norm sets. (Such an L is
automatically boundedly closed.)
Thus given a linear space X there is a natural one-to-one correspondence

between the metrizable convex topologies inX and the ascending sequences
of pseudo-norm sets with total unions. It follows from a theorem in the
theory of linear systems that such a union is a norm set if and only if all
members past a certain one are identical. Thus the metrizable but non-
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normable convex topologies correspond to the strictly ascending sequences.
Using simple theorems about pseudo-norm sets it is possible to construct
many examples of such sequences.
As a consequence of Theorem 3 one may prove:
THEOREM 4. A relatively weak convex topological linear space is normable

ifand only ifit isfinite dimensional and is metrizable ifand only if it is isomor-
phic to a subspace ofthe space (s) ofBanach. 10
A topological linear space X, being a topological group, has a natural

uniform structure.11 Hence one may speak of its totally bounded sub-
sets, its Cauchy directed systems, and of whether or not it is complete.
It turns out that completeness in this sense is relatively rare and various
authors have introduced several weaker notions which we shall now formu-
late. X is C4 complete if it is complete as a uniform structure with respect
to the convergence of directed systems. X is Cs complete if every closed
and bounded subset is C4 complete. X is C2 complete if every closed and
totally bounded subset is C4 complete. X is C1 complete if it is complete
as a uniform structure with respect to the convergence of sequences. X
is T2 complete if every closed and totally bounded subset is bicompact.
X is T, complete if every closed and totally bounded subset is compact.
It is more or less obvious that for i = 2, 3 or 4, Ct completeness implies
Ci-1 completeness and that T2 completeness implies T1 completeness. It
follows from the generalization to uniform structures of a well-known
theorem on metric spaces12 that C2 completeness and T2 completeness are
equivalent. Finally von Neumanns has shown that T, completeness im-
plies C1 completeness. Thus the five possibly distinct notions of complete-
ness among those described above may be arranged in order-so that each is
weaker than or equivalent to its predecessor.
The principal theorems relating the completeness of convex topological

linear spaces to their relative strength and to the properties of their linear
systems are as follows.
THEOREM 5. If i = 1, 2 or 3 and X is a Ct complete convex topological

linear space then X is Ci complete in every relatively stronger convex topology.
THEOREM 6. IfX is a C1 complete convex topological linear space then the

linear system ofX is a complete linear system.
THEOREM 7. If XL is a complete linear system whose conjugate system is

boundedly closed then every convex topological linear space associated with XL
is C8 complete.

It is not known whether or not the converse of Theorem 7 is true. How-
ever, the following partial converse may be proved.

THEOREM 8. If XL is a regular linear system whose associated relatively
weak convex topological linear space is Cs complete and if XL is relatively
bounded then the conjugate ofXL is boundedly closed.
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It is interesting to note that the truth of the strict converse of Theorem 7
would imply that every linear system of the form X*2x is boundedly closed
and hence answer the measure theory question of Ulam mentioned in
"IDS."

It is an obvious consequence of the definition that the linear system of a
normed linear space is relatively bounded. Furthermore, it is readily veri-
fied that a normed linear space is reflexive if and only if its linear system is
complete and has a boundedly closed conjugate. Finally, for relatively
weak convex topological linear spaces, bounded subsets and totally bounded
subsets are identical'3 so that Cs completeness and T2 completeness are
equivalent. Thus Theorems 7 and 8 have the following known corollary.
THEOREM 9. For a normed linear space X the following are equivalent:

(a) X is reflexive. (b) X is C3 complete in its weak topology. (c) X is T2
complete in its weak topology.
Wehausenl4 has pointed out that a T1 complete topological linear space

need not be of the second category. The first statement of the following
combined with Theorem 7 shows that this may be extended to C3 com-
pleteness and furnishes a wide class of examples including Wehausen's.
THEOREM 10. If a convex topological linear space is of the second category

then it is relatively strong and its linear system is uniform.
One may also prove:
THEOREM 11. IfX is a convex topological linear space of the second cate-

gory whose linear system is almost relatively bounded then X is normable.
1 Mackey, G. W., "On Infinite Dimensional Linear Spaces," these PROCEEDINGS,

29,216 (1943). In the sequel we shall refer to this paper as "IDS" and shall use the defi-
nitions and notations introduced ip it without comment or explanation.

2 By a topological linear space we mean a real linear space which is at the same time
a T1 space in the sense of Alexandroff and Hopf (Topologie I, J. Springer, Berlin, 1935)
and in which the topology is related to the algebra in such a manner that the operations
of addition and multiplication by reals are continuous in both variables together. By a
convex topological linear space we mean a topological linear space in which every point
has a complete system of neighborhoods each of which is a convex set. These notions
have been introduced in slightly different ways by various authors. See Wehausen, J.
V., "Transformations in Linear Topological Spaces," Duke Math. Jour., 4, 157 (1938),
for a discussion. Also see Whitney, H., "Tensor Products of Abelian Groups," Ibid., 5,
518 (1939), footnote 22, for a discussion of a popular misconception.

' von Neumann, J., "On Complete Topological Spaces," Trans. Amer. Math. Soc.,
37, 1 (1935).

' Fichtenholz, G., "Sur les fonctionelles lin6aires, continues au sens g6neralis6,"
Rec. Math. (Mat. Sbornik), N. S., 4, 192 (1938).

c Wehausen has shown that the family of continuous linear functionals on a convex
topological linear space X is always total; that is, for each non-zero member of X there
is a continuous linear functional which does not take it into zero, loc. cit., Theorem 8.

6 See Hyers, D., "A Note on Linear Topological S&pces." Bull. Amer. Math. Soc.,
44, 76 (1938), for statements of the two standard definitions of boundedness and a proof
of their equivalence.
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7 Loc. cit., Theorem 2.
8 Loc. cit., Theorem 3'.
9Birkhoff, G., "A Note on Topological Groups," Comp. Math., 3, 427 (1936);

Kakutani, S., "Ueber die Metrization der topologische Gruppen," Proc. Im. Ac. Jap.,
12, 82 (1936).

10 Banach, S., The'orie des operations lingaires Warsaw, 1932, p. 10. By an isomor-
phism between two topological linear spaces we mean an algebraic isomorphism which is
at the same time a homeomorphism.

11 For a discussion of the notion of uniform structure see Weil, A., Sur ks espaces 6
structure uniforme et sur la topologie genb'ale, Hermann, Paris 1937.

12 The theorem that a totally bounded metric space is complete if and only if it is
compact. The generalization is essentially contained in G. Birkhoff's proof that Co
completeness implies T2 completeness. Birkhoff, G., "Moore-Smith Convergence in Gen-
eral Topology," Ann. Math., 38,39 (1937).

13 Various authors have proved this fact in special cases and the general case offers
no new difficulties.

14 Loc. cit., Theorem 15.
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PART I. EXTENSION OF J. C. ADAMS' TABLE ABOVE LOG, 7

In the summer of the year 1938 the author began the computation of the
Napierian logarithms of 11, 13, 17, 19, 23, 29 and 31 with the object of ex-
tending J. C. Adams' basic 273-place table' which gives the logarithms of
the four prime numbers falling between 1 and 11. In the following spring
these calculations were interrupted intentionally in order to carry out a
prerequisite investigation2 of the perfection of the published records of
Adams' constants. It was not until the early summer of the present year
that the opportunity arose for effectuating the conviction that, aside from
whatever intrinsic importance may attach to the project, the earlier spo-
radic work had progressed so far and had involved so much labor that it
deserved to be revived, definitively checked and made accessible to other
arithmeticians.
The calculations were usually performed with the aid of the formula

In (a/p) = 2EI(a ',)2m1(a + ,3Y2m+l(2m - 1)-1}. The composite
1

numbers a and , were chosen to satisfy the simplifying condition a- = 1
and to contain as factors only the small prime numbers under consideration
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