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Universal gate sets for quantum computing
have been known and studied for decades, yet
less is understood about universal gate sets for
particle-conserving unitaries, which are opera-
tions of interest in quantum chemistry. In this
work, we show that controlled single-excitation
gates in the form of Givens rotations are uni-
versal for particle-conserving unitaries. Single-
excitation gates describe an arbitrary U(2) ro-
tation on the two-qubit subspace spanned by
the states |01〉, |10〉, while leaving other states
unchanged – a transformation that is analo-
gous to a single-qubit rotation on a dual-rail
qubit. The proof is constructive, so our result
also provides an explicit method for compiling
arbitrary particle-conserving unitaries. Addi-
tionally, we describe a method for using con-
trolled single-excitation gates to prepare an ar-
bitrary state of a fixed number of particles. We
derive analytical gradient formulas for Givens
rotations as well as decompositions into single-
qubit and CNOT gates. Our results offer a uni-
fying framework for quantum computational
chemistry where every algorithm is a unique
recipe built from the same universal ingredi-
ents: Givens rotations.

1 Introduction
Quantum algorithms for quantum chemistry rely on
the ability to prepare states that represent fermionic
wavefunctions [1, 2, 3]. These can correspond to
ground and excited states of molecular Hamiltonians,
which can then be employed to compute properties
of the molecule [4, 5, 6, 7, 8, 9]. In most molecules
and materials, the number of particles is a conserved
quantity and quantum states that do not respect this
condition are unphysical. Valid quantum states thus
occupy only a subspace of the available Hilbert space.
Algorithms that access subspaces of different particle
number are therefore not only wasteful, but can po-
tentially lead to incorrect outcomes. This motivates
the use of gate sets that preserve subspaces of fixed
particle number. We focus on the Jordan-Wigner rep-
resentation [10], which encodes the subspace of states
with k particles in n spin-orbitals into n qubits. This
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space is spanned by the set of all n-qubit states with
Hamming weight k, i.e., states with k ones and n− k
zeros. To ensure that output states remain valid,
quantum circuits for quantum chemistry benefit from
employing gates that preserve Hamming weight and
therefore particle number.

Universal gate sets capable of synthesizing arbitrary
unitary operations have been known for decades [11,
12]. Famously, the set of arbitrary single-qubit ro-
tations and CNOT gates is universal for quantum
computation [13]. Yet less is known about univer-
sal gate sets for particle-conserving unitaries, which
are precisely the operations of interest in quan-
tum chemistry. A notable exception is the work of
Ref. [14], which provides a non-constructive proof
that Gaussian fermionic operations together with a
non-Gaussian gate is universal for particle-conserving
transformations. Additionally, there are several pro-
posals for preparing states of fermionic systems [15,
16, 17], some of which are designed to preserve parti-
cle number and other symmetries [18, 19, 20]. A uni-
versal set of particle-conserving gates, together with a
constructive method for compiling arbitrary unitaries,
would constitute a flexible and composable framework
for designing arbitrary quantum circuits for quantum
chemistry.

Currently, a wide variety of quantum circuit ar-
chitectures have been proposed to prepare states of
many-body fermionic systems, particularly in the con-
text of variational quantum algorithms. These in-
clude chemically-inspired circuits [21, 22], adaptive
circuits [23, 24], hardware-efficient circuits [25, 26],
and other specialized methods [27, 28]. This situa-
tion is not ideal because quantum algorithm develop-
ers are seemingly faced with a choice among different
proposals rather than having access to universal build-
ing blocks to construct any desired operation. There
is therefore a need for a unified conceptual framework
for constructing and designing quantum circuits for
quantum chemistry. This is particularly important for
software implementations that aim to provide users
with maximum flexibility and to be adaptable in in-
corporating future algorithmic innovations.

In this work, we provide such a framework by
giving a constructive proof that controlled single-
excitation gates are universal for particle-conserving
unitaries. A single-excitation gate performs an arbi-
trary U(2) transformation in the subspace |01〉 , |10〉
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while leaving other basis states unchanged:
1 0 0 0
0 a c 0
0 b d 0
0 0 0 1

 , (1)

where U =
(
a c
b d

)
is a general 2× 2 unitary. Single-

excitation gates can be viewed as an extension of
Givens rotations to unitary two-dimensional transfor-
mations. A controlled single-excitation gate, which
applies this Givens rotation depending on the state of
a third qubit, can be described by the unitary

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 a c 0
0 0 0 0 0 b d 0
0 0 0 0 0 0 0 1


. (2)

In addition to the universality result, we propose an
explicit algorithm using excitation gates to prepare an
arbitrary state with a fixed number of particles. We
derive analytical gradient formulas for Givens rota-
tions and argue that they are ideal building blocks in
variational quantum circuits for quantum chemistry.
Our results and framework allow the design of quan-
tum algorithms for quantum chemistry from a univer-
sal gate set of operations that respect the symmetries
of fermionic systems and have a transparent physical
interpretation. Although we focus on the specific case
of quantum chemistry, our results apply more gener-
ally to the simulation of many-body fermionic systems
in the Jordan-Wigner representation. As described in
Ref. [29], the framework described in this work has
been implemented in the open-source library Penny-
Lane, providing actual building blocks for building
arbitrary particle-conserving circuits.

The rest of this manuscript is organized as follows.
We introduce the basic concepts of particle-conserving
unitaries and Givens rotations in Sec. 2. We then
show in Sec. 3 that controlled single-excitation gates
are universal for particle-conserving unitaries. In
Sec. 4 we describe a universal method for preparing
states with a fixed number of particles. We discuss
the role of Givens rotations in variational quantum
circuits in Sec. 5 and conclude in Sec. 6.

2 Universal gate set
We introduce basic concepts and notation that are
relevant before presenting the main results. For sim-
plicity and generality, we employ abstract notions of
particles and operations, without establishing an ex-
plicit connection to concepts such as electrons, spin-
orbitals, or fermionic operators.

2.1 Particle-conserving unitaries
Define the qubit ladder operators σ† = (X + iY )/2,
σ = (X − iY )/2, where X,Y are Pauli matrices, and
the total number operator

N =
∑
i

σ†iσi. (3)

For a computational basis state |x〉 it holds that
N |x〉 = w(x) |x〉, where w(x) is the Hamming weight
of the bit string x. We define the Hamming weight to
be equal to the number of particles and refer to eigen-
states of the total number operator as states with a
fixed number of particles. A unitary gate U is deemed
particle-conserving if

[U,N ] = 0. (4)

A particle-conserving unitary maps states with a fixed
number of particles to other states with the same
fixed number of particles. Any product of particle-
conserving unitaries is also particle-conserving, so
any quantum circuit composed of particle-conserving
gates is guaranteed to perform a particle-conserving
transformation.

The space of all states with k particles on n qubits,
denoted asHk, is spanned by the set of computational
basis states with Hamming weight k. In general, any
state of a fixed number of particles can be interpreted
as an excitation from a reference state. Unless stated
otherwise, we use the state |11 · · · 100 · · · 0〉 with all
particles in the first k qubits as the reference state.
This is illustrated in Fig 1. We use the Hamming
distance

∑n
i=1 xi ⊕ yi to denote the number of qubits

where the computational basis states |x〉 and |y〉 dif-
fer. For states with an equal number of particles, the
Hamming distance is an even number. An example
of particle-conserving unitaries are fermionic linear-
optical transformations as explored in Ref. [14], which
together with a non-Gaussian gate form a universal
gate set for particle-conserving unitaries.

Two states |x〉 and |y〉 having an equal number of
particles are said to differ by an excitation of order
` if their Hamming distance is equal to 2`. For ex-
ample, the states |1100〉 and |0101〉 differ by a single
excitation (order 1) from the first to the fourth qubit.
Similarly, the state |0011〉 differs from |1100〉 by a
double excitation (order 2).

Any particle-conserving unitary acting on states
with k particles on n qubits can be represented as
a block-diagonal unitary performing a general U(d)
transformation on the subspace Hk with dimension
d = dim(Hk). For universality, it is therefore suf-
ficient to consider a set of particle-conserving gates
that is universal for the subspace Hk.

2.2 Givens rotations
As discussed above, any two states with a fixed num-
ber of particles differ by an excitation of a given or-
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Figure 1: Jordan-Wigner representation of states with a fixed
number of particles. Each qubit corresponds to an orbital
with a specific spin orientation. The state of the qubit deter-
mines whether that spin-orbital is occupied or not. All basis
states can be obtained from a reference state, in this case
|110000〉, by a specific excitation. For instance, the state
|100100〉 is obtained by exciting a particle from qubit 2 to 4,
while the state |001001〉 is obtained by exciting both particles
to qubits 3 and 4.

der. It is therefore convenient to work with a set of
quantum gates that create superpositions between the
original and the excited state. In the simplest non-
trivial case of a single particle and two qubits, these
correspond to gates that perform arbitrary U(2) rota-
tions between the states |10〉 , |01〉 while leaving other
basis states unchanged. For example, restricting to
the case where the gate has only real parameters, a
two-qubit particle-conserving unitary can be written
as

G(θ) =


1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 , (5)

where we use the ordering |00〉 , |01〉 , |10〉 , |11〉 of two-
qubit computational basis states.

This is an example of a Givens rotation: a rota-
tion in a two-dimensional subspace of a larger space.
In this case, the Givens rotation acts as a two-qubit
single-excitation gate, coupling states that differ by a
single excitation. More generally, we can extend the
concept of Givens rotations to U(2) transformations
in two-dimensional subspaces, where a general single-
excitation gate can be written as

G =


1 0 0 0
0 a c 0
0 b d 0
0 0 0 1

 , (6)

where |a|2 + |c|2 = |b|2 + |d|2 = 1 and ab∗ + cd∗ = 0
to ensure unitarity. We can also consider four-qubit
double-excitation gates G(2) which perform a general
U(2) rotation on the subspace spanned by the states
|0011〉 , |1100〉

G(2) |0011〉 = a |0011〉+ b |1100〉 , (7)
G(2) |1100〉 = d |1100〉+ c |0011〉 , (8)

while leaving all remaining four-qubit states un-
changed. Double-excitation gates can also perform

rotations in two-dimensional subspaces defined by
pairs of four-qubit states with Hamming distance four,
namely |1010〉 , |0101〉 and |1001〉 , |0110〉.

We can generalize to excitation gates of order `.
These are unitary Givens rotations acting on the
space of 2` qubits that couple the states |1`0`〉 :=
|1〉⊗` |0〉⊗` and |0`1`〉 := |0〉⊗` |1〉⊗` as

G(`) |0`1`〉 = a |0`1`〉+ b |1`0`〉 , (9)
G(`) |1`0`〉 = d |1`0`〉+ c |0`1`〉 , (10)

while acting as the identity on all other states. Sim-
ilar Givens rotations can be defined for permutations
of the states |1`0`〉 , |0`1`〉, i.e., excitation gates of or-
der ` also include rotations on all pairs of states of
2` qubits with Hamming distance 2`. By construc-
tion, these excitation gates are particle-conserving
since they only couple states with an equal number
of particles.

As explained in more detail in Sec. 3, on their own,
excitation gates as Givens rotations are not universal
for particle-conserving unitaries. We thus consider
controlled excitation gates, which apply an excitation
gate depending on the state of a control qubit. In par-
ticular, we focus on the three-qubit controlled single-
excitation gate

CG =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 a c 0
0 0 0 0 0 b d 0
0 0 0 0 0 0 0 1


. (11)

A particular example of a controlled single-excitation
gate is the controlled SWAP, or Fredkin gate

F =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


. (12)

Controlled gates usually refer to the case where a
gate is applied only if the control qubit is in state |1〉.
Throughout this work, we more generally use the term
controlled gate to include also the case where gates are
applied only if the control qubit is in state |0〉. All
such controlled gates are particle-conserving. Con-
trolled single-excitation gates and double-excitation
gates are illustrated in Fig. 2. It is also useful to note
that Givens rotations can also be used to enforce spin
conservation by coupling only qubits corresponding to
spin-orbitals with the same spin projection. This al-
lows a straightforward method for ensuring that spin-
conservation is also respected in a quantum circuit.
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Figure 2: The three-qubit controlled single-excitation gate,
which is universal for particle-conserving unitaries, and the
four qubit double-excitation gate. The controlled single-
excitation gate on the top denotes a control on state |1〉
while the one below shows a control on state |0〉. The figures
on the right are alternative representations of the excitation
gates, which are useful for drawing circuits when the qubits
are not adjacent. The bottom circuit is a double-excitation
gate.

It is helpful to contrast Givens rotations to
fermionic excitations, which are operators of the form
exp[−iθ(a†iaj − a†jai)] for a single excitation, where

a, a† are fermionic ladder operators. Higher-order
excitations are constructed with higher-order mono-
mials of the ladder operators. Fermionic excitations
are expressed as qubit operators through the Jordan-
Wigner mapping a†i → σ+

i

∏
j<i Zj , where σ± =

(X±iY ). Fermionic excitations also couple subspaces
of equal particle number, but they are more difficult
to analyze, implement, and simulate. The universal-
ity proof of the next section demonstrates that it is
possible to instead employ Givens rotations directly
since, as we will show later in Sec. 4, they can be used
to prepare any desired state.

3 Proof of Universality
In this section, we show that controlled single-
excitation gates are universal for particle-conserving
unitaries. We use standard textbook methods similar
to those used for proving the universality of single-
qubit and CNOT gates [13]. The proof follows these
main steps:

1. For particle-conserving unitaries, we show that
the relevant U(2) transformations are excitation

gates controlled on multiple qubits. Using the
established result that U(d) transformations can
be decomposed into products of U(2) transforma-
tions, it follows that excitation gates controlled
on multiple qubits are universal for particle-
conserving unitaries.

2. We show that any excitation gate controlled on
multiple qubits can be decomposed in terms of
multiply-controlled single-excitation gates.

3. Finally, we show that single excitation gates
controlled on multiple qubits can be de-
composed into three-qubit controlled single-
excitation gates, which are therefore also univer-
sal.

The main insight of this construction is that
single-excitation gates are analogous to single-qubit
gates. Indeed, the subspace |10〉 , |01〉 can be in-
terpreted as a dual-rail encoding of a single qubit.
This allows standard methods to carry over to the
particle-conserving case, with few modifications.
Fredkin gates, which are a specific type of control
single-excitation gate, play a special role: they are
used to extend controlled single-excitation gates
to controlled gates over multiple qubits. Fredkin
gates have been shown to be universal for reversible
computations in dual-rail encodings [30].

3.1 Excitation gates with multiple controls
It is well-established that any U(d) transforma-
tion can be decomposed into a product of U(2)
transformations acting on arbitrary two-dimensional
subspaces [31, 13, 32, 33]. As discussed in the
previous section, any state of a fixed number of
particles can be obtained by applying an excitation
to a reference state. This result holds more generally:
any two states of a fixed number of particles differ by
a specific excitation.

Consider two k-particle states on n qubits |x〉 , |y〉,
with Hamming distance 2`. Without loss of general-
ity, since this can be guaranteed by relabelling, sup-
pose the first k − ` qubits are set to 1 for both states
and the last n−k− ` qubits are set to 0. The remain-
ing 2` qubits are in different states, meaning that they
can be mapped to each other by exciting the particles
from the ` occupied qubits to the ` unoccupied ones.

For example, the states |111000〉 and |110010〉,
which have Hamming distance 2, differ by a single ex-
citation. Similarly, the states |011010〉 and |010101〉
differ by a double excitation. This connection between
states and excitations is illustrated in Fig. 3.

A U(2) rotation in the subspace spanned by the
k-particle states |x〉 , |y〉 is therefore equivalent to a
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1,5

2,5

2,3,4,61,3,4,6

3,4,5,6

1,2,3,4,5,6

Figure 3: Any pair of states with a fixed number of particles
can be related by an excitation. The states |111000〉 and
|011010〉 differ by a single excitation between qubits 1 and
5. The states |011010〉 and |000111〉 differ by a double exci-
tation between qubits 2,3,4,6, while |000111〉 and |111000〉
are connected by a triple excitation acting on all qubits.

unitary performing the transformation

U |x〉 = a |x〉+ b |y〉 , (13)
U |y〉 = d |y〉+ c |x〉 , (14)

while leaving every other basis state unchanged. For
the specific case of states with n = 2` qubits, this is
accomplished by a unitary Givens rotation G(`), as in
Eqs. (9) and (10). When applied to states with n > 2`
qubits, the gate G(`) acts non-trivially on any states
where the 2` qubits in question are set to |x〉 or |y〉,
regardless of the state of the remaining qubits. For
instance, if |z〉 is a basis state of m = n − 2` qubits,
it holds that

G(`) |z〉 |x〉 = a |z〉 |x〉+ b |z〉 |y〉 , (15)

for all z. To address this issue, we can simply apply
G(`) controlled on the state of the remaining n − 2`
qubits. We use the notation C(m)G(`) to denote a G(`)

gate controlled on the state of m qubits. Controlling
on the remaining qubits being in state |z∗〉 and defin-
ing |x′〉 = |z∗〉 |x〉 and |y′〉 = |z∗〉 |y〉, we then have
that

C(m)G(`) |x′〉 = a |x′〉+ b |y′〉 , (16)
C(m)G(`) |y′〉 = d |y′〉+ c |x′〉 , (17)

while leaving all other basis states unchanged. This
is the desired two-dimensional transformation.

Consider the states |100011〉 and |010011〉. They
differ by an excitation from the first to the second
qubit, and coincide on the remaining four qubits.
A non-controlled single-excitation gate acting on the
first two qubits would also perform a transformation
on other subspaces, for example the one spanned by
|101101〉 and |011100〉. However, controlling on the
last four qubits being in state |0011〉 ensures that the
gate C(4)G acts non-trivially only on the target two-
dimensional subspace. The role of multiple controls
is shown in Fig. 4.

Overall, we conclude that any two-level U(2) gate
on the subspace of k-particle states on n qubits can be

Figure 4: Circuit diagram of a multi-controlled single-
excitation gate. A single-excitation gate G can act non-
trivially on many states. To ensure that the desired rota-
tion happens only between two target states, we can apply
a multi-controlled gate C(4)G that acts as the identity on
non-target states. In this example, the goal is to perform a
rotation in the subspace of states |100001〉, |010001〉. This
can be achieved by applying a single-excitation gate to the
first two qubits, controlled on the state of the last four being
|0001〉. This guarantees that other states, such as |010010〉,
are left unchanged.

implemented in terms of multi-controlled excitation
gates C(m)G(`), where n = 2`+m. Following standard
results, this implies that multi-controlled excitation
gates are universal for particle-conserving operations.

3.2 Single-excitation gates with multiple con-
trols
We now show that multi-controlled excitation gates
can be decomposed in terms of multi-controlled single-
excitation gates C(m)G. The construction follows a
similar approach to Ref. [13]. Suppose we wish to
decompose a U(2) Givens rotation on the subspace
spanned by |x〉 , |y〉, where the states have Hamming
distance 2`. The goal is to employ single-excitation
gates to perform a permutation of all basis states such
that the permuted versions of |x〉 and |y〉 differ by
a single excitation. This can be achieved following
similar principles to the construction of Gray codes. A
controlled single-excitation gate can then be applied,
followed by a reversal of the permutation.

For example, the states |101001〉 and |010110〉,
which differ by a triple excitation, can be linked
through the sequence |101001〉 → |011001〉 →
|010101〉 → |010110〉, where each new state differs
from the previous one by a single excitation. Each of
the states in this sequence can be obtained from the
previous one by applying a SWAP gate

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (18)
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Figure 5: Method for connecting any pair of states by a se-
quence of particle-conserving multi-controlled SWAP gates.
The initial state |x〉 = |101001〉 differs from the target state
|y〉 = |010110〉 by a triple excitation, which can be decom-
posed in terms of single excitations using a sequence of in-
termediary states. A circuit implementing a triple-excitation
rotation can then be decomposed in terms of (i) multi-
controlled SWAP gates performing a permutation of states,
(ii) a multi-controlled single-excitation gate, and (iii) a re-
versal of the permutation. The end result is to create an
arbitrary superposition a |x〉+ b |y〉 of the target states.

controlled on the state of all remaining qubits, i.e.,
by applying a C(m)SWAP gate. The SWAP gate is
a special case of a single-excitation gate. As before,
the control is required to ensure that the resulting
permutation happens non-trivially only on the two-
dimensional target subspace. This procedure is illus-
trated in Fig. 5.

We now describe the method in more detail. With-
out loss of generality, suppose that the states |x〉 and
|y〉 differ on the first 2` qubits. The first step is to
outline an ordered sequence of computational basis
states |g1〉 , |g2〉 , . . . , |g`+1〉 such that all |gi〉 , |gi+1〉
differ by a single excitation, and where |x〉 = |g1〉
and |y〉 = |g`+1〉. To build the circuit implementing
the decomposition, we perform the following steps.

1. Apply a SWAP gate to the qubits where |x〉 =
|g1〉 and |g2〉 differ, controlled on all other qubits.
This has the effect of swapping |g1〉 , |g2〉, while
leaving all other states unchanged.

2. Follow the same procedure to swap |g2〉 , |g3〉,
then |g3〉 , |g4〉, and all other states until the fi-
nal swap between |g`−1〉 , |g`〉. This sequence of
operations has the effect of mapping |x〉 → |g`〉
while |g`+1〉 = |y〉 is left unchanged.

3. Since |g`〉 , |g`+1〉 differ by a single excitation, we
perform a multi-controlled single-excitation gate

that acts only on the subspace spanned by these
states.

4. The circuit is completed by reverting all the
swaps such that the resulting transformation is
a rotation in the subspace spanned by |x〉 and
|y〉, as desired.

3.3 Controlled single-excitation gates are uni-
versal

Given a gate controlled on a single qubit, there exist
well-established methods to extend the control to ad-
ditional qubits [13]. Suppose we want to control the
operation on the state of m qubits |z1z2 · · · zm〉. The
strategy relies on employing m − 1 auxiliary qubits
and Toffoli gates (controlled-CNOT gates), as shown
in Fig. 6.

Toffoli gates are not particle-conserving, but they
can be decomposed in terms of particle-conserving
Fredkin gates by replacing the auxiliary qubits with
dual-rail qubits |0̃〉 := |01〉, |1̃〉 := |10〉. In this case a
Toffoli gate is equivalent to a controlled-controlled-
SWAP gate, since swapping |01〉 and |10〉 applies
a NOT gate to the dual-rail qubit. As shown in
Ref. [30], the controlled-controlled-SWAP gate can
then be decomposed into three Fredkin (controlled-
SWAP) gates with the help of an auxiliary qubit, as
shown in Fig. 7.

Overall, we have shown that single-excitation gates
controlled on multiple qubits, which were previously
shown to be universal, can be decomposed into
controlled single-excitation gates, which are there-
fore also universal. This concludes the proof that
controlled single-excitation gates are universal for
particle-conserving unitaries.

4 State preparation

Universal gate sets for particle-conserving unitaries
can also be used to prepare arbitrary states of a fixed
number of particles. Here we discuss how controlled
single-excitation gates can be used for this purpose.
We follow the strategy of Ref. [34].

Consider a system of k particles on n qubits, span-
ning a space of dimension d =

(
n
k

)
. Any such state can

be written as |ψ〉 =
∑
x cx |x〉, where the sum is over

all n-bit strings x of Hamming weight k. As shown be-
fore, an arbitrary U(2) rotation in the subspace of any
pair of states |x〉 , |y〉 can be performed by a suitable
decomposition into controlled single-excitation gates.

Consider a lexicographical labelling of all bit strings
of Hamming weight k as |x1〉 , |x2〉 , . . . , |xd〉. For in-
stance, in the case of n = 3 and k = 2 we have
|x1〉 = |011〉, |x2〉 = |101〉, and |x3〉 = |110〉. An
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Figure 6: A multi-controlled single-excitation gate can be
decomposed in terms of a controlled single-excitation gate
using a cascade of Toffoli gates. The Toffoli gates can be
decomposed in terms of the particle-conserving controlled-
controlled-SWAP gate using additional dual-rail qubits.

arbitrary state can then be written as

|ψ〉 =
d∑
i=1

ci |xi〉 . (19)

We describe a method to prepare any such state start-
ing from the reference state |x1〉.

First, apply the multi-controlled excitation opera-
tion in the subspace |x1〉 , |x2〉 that performs the map-
ping

|x1〉 → α1 |x1〉+ c2 |x2〉 , (20)
where α1 =

√
1− |c2|2. Then, apply the multi-

controlled excitation operation in the subspace
|x1〉 , |x3〉. This performs the mapping

α1 |x1〉+ c2 |x2〉 → α1α2 |x1〉+ c2 |x2〉+ α1c
′
3 |x3〉 ,

(21)
where we set c′3 = c3/α1 and α2 =

√
1− |c′3|2. This

ensures that the coefficient in front of |x3〉 is precisely
the desired one, c3. This process can be repeated for
each of the remaining states |x4〉 , . . . |xd〉. The result
is to prepare the state

|ψ〉 = α |x1〉+
d∑
i=2

ci |xi〉 , (22)

where α =
∏d−1
i=1 αi. This state is normalized, which

from Eq. (19) implies that |α|2 = |c1|2. To ensure

Figure 7: A controlled-controlled-SWAP gate can be de-
composed in terms of three Fredkin gates using an auxiliary
qubit [30].

that in fact α = c1 = |c1|eiθ, it suffices to choose
α1, α2, . . . , αd−2 to be positive real numbers, as we
have done, and set αd−1 = |αd−1|eiθ to prepare the

desired state. Note that for a unitary U =
(
a c
b d

)
,

a can be guaranteed to be real for any c by choosing

d = −
√

1− |c|2

b∗ =
c
√

1− |c|2
a

.

In practice, it is possible to simplify this general
strategy when applied to particular cases. Since the
gates act only on a specific superposition of basis
states, controls only need to be applied on qubits
where the states in the superposition differ. This is
useful if the target state has support only on a specific
subspace. For example, the first excitation gate per-
forming the mapping |x1〉 → α1 |x1〉+c2 |x2〉 does not
need to be controlled. Furthermore, excitation gates
can be chosen to act on different reference states in
order to create new superpositions.

Consider the six-qubit state

c1 |110000〉+ c2 |001100〉+ c3 |000011〉+ c4 |100100〉 ,
(23)

which corresponds to a superposition of the four ba-
sis states that contribute most significantly to the
ground-state energy of the H+

3 molecule in a minimal
basis set. The state can be prepared as follows.

Starting from |110000〉, apply a double-excitation
gate to the first four qubits to prepare the state
a1 |110000〉 + c2 |001100〉. This does not need to
be controlled on any qubit. Then apply a double-
excitation gate to qubits 3,4,5,6 to prepare the state
a1 |110000〉 + c2 |001100〉 + c3 |000011〉, where we’re
using |001100〉 as the reference. This again does not
need to be controlled. To obtain the desired state,
apply a single-excitation gate to qubits 2 and 4, con-
trolled on the first qubit being in state |1〉, which pre-
vents mixing with the state |001100〉. This construc-
tion is shown in Fig. 8.

5 Variational quantum circuits
We discuss implications of our results for variational
quantum circuits. Our universality result suggests the
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Figure 8: A quantum circuit for preparing the state
c1 |110000〉 + c2 |001100〉 + c3 |000011〉 + c4 |101000〉 for
arbitrary values of the coefficients c1, c2, c3, c4. Double-
excitation gates are applied to the first four qubits and then
to the last four qubits. Finally, a controlled single-excitation
gate is applied to qubits 2 and 4, controlled on the state of
the first qubit.

use of controlled single-excitation gates as building
blocks for variational quantum circuits. For example,
the state preparation algorithm described above can
be employed as a template where the rotation angles
for each gate are free parameters of the model. In this
context, multiple controls are not necessary; instead,
by employing uncontrolled excitation gates it is pos-
sible to reach a larger subspace of states using fewer
gates, but generally this makes it more challenging
to prepare specific target states. In the example of
Fig. 8, dropping the control on the last single excita-
tion gate leads to a state with a non-zero coefficient
on the additional basis state |011000〉. Examples of
variational circuits designed using Givens rotations as
building blocks are shown in Fig. 9. Below we describe
two specific strategies for building quantum circuits
for quantum chemistry applications, and derive ana-
lytical gradient formulas for Givens rotations.

5.1 All singles and doubles

In the context of quantum computing, the unitary
coupled-cluster singles and doubles (UCCSD) ansatz
is often expressed in terms of fermionic operators,
which are then mapped to complicated qubit gates.
In similar spirit to the qubit-coupled-cluster approach
of Ref. [27], we can instead consider a circuit where
single and double excitations are respectively imple-
mented using Givens rotations G and G(2). A quan-
tum circuit can then be defined consisting of all pos-
sible single and double excitation gates that act non-
trivially on the reference state without flipping the
spin of the excited particles. The resulting circuit is
analogous to a Trotterized implementation of UCCSD
to first level, but where all gates are Givens rotations.
This is illustrated in Fig. 10.

Figure 9: Example circuit architectures constructed from
Givens rotations as fundamental building blocks. Since these
operations are particle-conserving, it is possible to compose
them arbitrarily to create various types of particle-conserving
circuits. Excitation gates without controls are used to access
larger subspaces with fewer gates, whose parameters may
then be optimized for specific purposes.

5.2 Adaptive circuits
Adaptive strategies such as those presented in
Refs. [23, 24] can be implemented by selecting Givens
rotations instead of fermionic excitations in the con-
structions. The main idea is that instead of designing
circuits that work well for all molecules, we can in-
stead build specific circuits that are custom-built for
each molecule. Hence, what is general is the method
for building custom circuits, not the circuits them-
selves.

A simple yet powerful strategy is to build a circuit
consisting of all double and single excitation gates,
randomly initialize all parameters, and compute the
gradient for each gate. The final circuit is constructed
by keeping only those gates such that the norm of
their gradient exceeds a fixed threshold. This is shown
in Fig. 10.

5.3 Analytical gradients
We derive analytic gradient formulas for Givens rota-
tions. If H̃ is the generator of a unitary Ũ(θ) = eiH̃θ,
then the generator of the unitary U(θ) = 1⊕Ũ(θ) is
H = 0 ⊕ H̃, where 0 denotes the zero operator. As
shown in [35], generators of this form can be decom-
posed as

H = 1
2(H+ +H−), (24)

H± = (±1)⊕ H̃. (25)

We can then write

U(θ) = eiθG+/2eiθG−/2, (26)
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Figure 10: Strategies for building quantum circuits for quan-
tum chemistry. The first strategy consists of selecting all
single and double excitation gates that do not flip the spin of
the particles. In an adaptive strategy, after initializing gate
parameters, we compute the gradient for each gate and keep
only those that are above a given threshold.

and define the gates

U±(θ) = eiθG± . (27)

The operators H± satisfy

H2
± = 1, (28)

[H+, H−] = 0. (29)

As shown in [36], any unitary U(θ) with generator
that is self-inverse satisfies the parameter-shift rule

∂C(θ)
∂θ

= C(θ + s)− C(θ − s)
2 sin(s) , (30)

for any cost function that can be written as C(θ) =
〈ψ|U†(θ)KU(θ)|ψ〉, where K is an observable.

This parameter-shift rule applies to the gates
U±(θ), which means that derivatives of U(θ) can be
obtained by writing U(θ) = U+(θ/2)U−(θ/2) and
computing derivatives of the gates U±(θ). This tech-
nique can be employed for any Givens rotation whose
generator H̃ is self-inverse. For example, in the
case of the Givens rotation of Eq. (5), we can write
G(θ) = G+(θ/2)G−(θ/2) where the unitaries

G±(θ) =


e±iθ 0 0 0

0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 e±iθ

 , (31)

satisfy the parameter-shift rule.

6 Conclusion
We have shown that controlled single-excitation gates
are universal for particle-conserving unitaries. These
three-qubit gates are Givens rotations performing
a transformation in a two-dimensional subspace of
states |01〉 , |10〉, controlled on the state of a third
qubit. The states |01〉 , |10〉 can be interpreted as
a dual-rail encoding of a single qubit, thus making
controlled single-excitation gates analogous to con-
trolled single-qubit gates. This provides a unified
approach for combining techniques from quantum
computing into a form that is directly applicable to
quantum chemistry: instead of single-qubit gates and
controlled two-qubit gates, we can focus on single-
excitation Givens rotations and controlled Givens ro-
tations. This connection could potentially open av-
enues for more efficient compilation strategies that
employ Givens rotations as the universal gate set
while employing standard techniques applicable for
general circuits.

The proof of universality relies on the ability to con-
trol excitation gates on multiple qubits. This leads to
decompositions employing auxiliary qubits and con-
trolled single-excitation gates. These constructions
are helpful proof techniques, but may not be the op-
timal approaches to compiling circuits. Instead, quan-
tum circuits can be designed using Givens rotations
directly. The fact that controlled Givens rotations
are universal and can be freely composed, while sat-
isfying the main symmetries of fermionic systems, al-
lows for a versatile approach to quantum algorithm
design. For example, Givens rotations can also be
used to directly enforce spin conservation by coupling
only spin-orbitals with equal spin projection. More
generally, they can be composed to perform arbitrary
transformations on any desired subspace of the fixed-
particle-number manifold. For all such circuits, we
can obtain analytical gradient rules that can be used
to optimize circuits when desired. Overall, our results
indicate that Givens rotations are better abstractions
than fermionic excitation gates.

For quantum chemistry applications, it is likely that
custom algorithms will be needed to tackle specific
problems and molecules. Instead of preparing a menu
of quantum circuits and algorithms for each instance,
we aim to provide scientists with a set of universal
ingredients that can be employed to craft tailored so-
lutions. Our results serve as a unifying framework for
quantum computational chemistry where every algo-
rithm is a unique recipe built from the same universal
ingredients: Givens rotations.

A Decompositions of excitation oper-
ators
While controlled single excitation operators comprise
a universal gate set, hardware constraints often re-
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Figure 11: Decomposition of a double excitation gate into single-qubit rotations and CNOTs. All gates denoted by ± θ
8 are

Pauli Y rotations. Adapted from [20].

Figure 12: Decomposition of a single excitation gate into
single-qubit rotations and CNOTs. The gates denoted by
± θ

2 are Pauli Y rotations. The middle four gates constitute
a controlled Y rotation.

quire a decomposition of these operators over the gate
set of single-qubit rotations and CNOTs. Fig. 12
presents such a decomposition for a single-excitation
gate. It is straightforward to extend this to a con-
trolled version by applying a control to each individ-
ual gate. This would produce Toffolis and controlled-
Y rotations, both of which can be further decomposed
over the gate set. Fig. 11 presents a decomposition for
the four-qubit double-excitation gate. This decompo-
sition was adapted from that of Ref. [20].
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