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Heavy quark diffusion in an overoccupied gluon plasma
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We extract the heavy quark diffusion coefficient ^ and the resulting momentum broadening 〈?2〉 of
a heavy quark embedded in a far-from-equilibrium gluon plasma using classical-statistical lattice
simulations. We find several features in the time dependence of the momentum broadening: a
short initial rapid growth of 〈?2〉, followed by linear growth with time due to Langevin-type
dynamics and damped oscillations around this growth at the plasmon frequency. We show that
these novel oscillations are not easily explained using perturbative techniques but result from an
excess of gluons at low momenta. These oscillation are therefore a gauge invariant confirmation
of the infrared enhancement we had previously observed in gauge-fixed correlation functions. We
argue that the kinetic theory description of such systems becomes less reliable in the presence of
this IR enhancement.
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Figure 1: An example of hierarchy of scales generated in a classical field simulation in the self-similar
regime. Fig. originally from [8].

1. Introduction

In the early stages of an ultrarelativistic heavy-ion collision gluon fields with nonperturbatively
large phase-space occupation numbers at the characteristic momentum scale &B are generated [1].
This overoccupied system of gluons becomes effectively classical and can therefore be studied
using real time lattice simulations. In this work we study the heavy quark momentum diffusion
coefficient during the initial glasma stage in a non-expanding system. Our aim is to understand
how important the initial nonequilibrium evolution is for the heavy quark momentum diffusion
coefficient ^. Recently nonequilibrium transport coefficients in overoccupied systems have been
studied in e.g. [2–6].

We are working in the limit of large quark mass. This permits us to tremendously simplify
the extraction procedure using the heavy quark as a test particle. In this approach we need to only
measure the forces that the medium would exert on the quark. Hence, computationally more costly
fermion simulations can be replaced by cheaper pure glue simulations.

Classical gluodynamical systems, along with scalar field theory, are known to exhibit non-
thermal fixed points and self-similar scaling [7]. Effectively this means that at late times the
dynamics of the system are greatly simplified and many properties follow simple power laws. This
leads into emergence of similar hierarchy of scales as in thermal field theory in the Hard Thermal
Loop framework. Therefore, this framework can predict certain features of the gluodynamical
systems far from equilibrium. This dynamically generated hierarchy of scales is illustrated in Fig. 1
[8].

This paper presents a compact summary of our work on this topic. For a more detailed and
comprehensive overview we refer the reader to [9]. All figures shown in this paper are from [9],
except Fig. 1, which is from [8].
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Figure 2: The plot on the LHS shows the unequal time electric field correlation function in the time domain,
and the RHS plot shows the correlation function in the frequency domain. The large initial correlation in the
time domain corresponds to the broad peak in the frequency domain with l � l?; . The oscillations in the
time domain with the frequency l?; correspond to the kink at l?; in the frequency domain.

2. Heavy quark in a color field

On the classical level a heavy quark embedded in the glasma obeys the classical equation of
motion

¤?8 (C) = F8 (C) . (1)

The chromoelectric force F8 has no preferred direction 〈 ¤?〉 = 0 but a nonzero variance

〈 ¤?8 (C) ¤?8 (C ′)〉 =
62

#2
Tr〈�8 (C)*0(C, C ′)�8 (C ′)*0(C ′, C)〉 =

62

2#2
〈��〉(C, C ′). (2)

In (2) the temporal links are eliminated by choosing temporal gauge, as is commonly done in real
time lattice simulations. The unequal time force-force correlation function is shown in both time
and frequency domains in Fig. 2. The correlator has two distinct features: initial rapidly decaying
large correlation, and the following considerably weaker oscillatory correlation. In the frequency
domain the sharp rise in the correlation at l = l?; arises from the quasiparticle (QP) contribution,
and the intercept with the y-axis ≈ ^ is given by the Landau damping of longitudinal gluon fields.
This effect will be discussed in more detail in Sec. 3.

2.1 Momentum broadening

The force-force correlation function given by (2) also predicts the momentum broadening of a
heavy quark embedded in the glasma. Integrating the unequal time correlation function over time
we obtain the average momentum broadening between C and C + ΔC

〈?2(C,ΔC)〉 = 62

2#2

∫ C+ΔC

C

dC ′
∫ C+ΔC

C

dC ′′ 〈��〉(C ′, C ′′) . (3)

A numerical extraction is shown in Fig. 3. We observe that the broadening has 3 distinct features.
At the timescale given by the hard scale Λ, ΔC ≈ 2c/Λ, the broad peak in Fig. 2 dominates
the integration, resulting in a sharp rise in momentum broadening. This is followed by a stage
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Figure 3: Momentum broadening extracted from a numerical simulation in dimensionless time scaled to the
units of the plasma frequency l?; .

characterized by approximately linear growth in ΔC in the region 1/Λ � ΔC � C. This is consistent
with a Langevin description. On top of the linear growthwe observe damped oscillationswith period
ΔC ≈ 2c/l?;. These oscillations arise from transverse quasiparticle excitations. The oscillations
will be discussed in more detail in Sec. 3.

2.2 Momentum broadening & heavy quark diffusion

In order to connect momentum broadening to the diffusion coefficient ^, we define ^(C,ΔC) as

3^ (C,ΔC) = d
dΔC
〈?2 (C,ΔC)〉 (4)

As in thermal equilibrium, the diffusion coefficient ^(C) is defined at ΔC →∞ limit

62

2#2
〈��〉(C, l = 0) = 3 ^∞(C) . (5)

On the lattice ^(C,ΔC) is given by

^ (C,ΔC) ≈ 62

3#2

∫ C+ΔC

C

dC ′
∫

d3G

+
〈�08 (C, x)�08 (C ′, x)〉, (6)

To identify ^(C,ΔC) = ^(C) we want to have C � ΔC � 1/W?;, where 1/W?; is the largest inverse
lifetime of QP excitations. This quantity has been measured in real time lattice simulations for far
from equilibrium gluon plasma in [10].

2.2.1 Understanding the ΔC dependence in ^(C,ΔC)

Our numerical evaluation of ^(C,ΔC) is shown in Fig. 4. We observe that ^(C,ΔC) oscillates in
ΔC with the frequency l?;, which in the self-similar regime scales as

l2
?; =

4
3
#2

∫
d3?

(2c)3
62 5 (C, ?)
l(?) ∼ C−2/7. (7)
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Figure 4: LHS: Lattice extraction of ^(C,ΔC). The inset shows the x- and y-axis without any rescaling.
RHS: Here we show the frequency extracted from ^(C,ΔC) in ΔC using damped oscillator fit, and the plasmon
frequency extracted using (7). We observe that they agree to 10% level.

In Fig. 4 the x-axis is scaled by l?; and the y-axis is scaled by the infinity value ^(C,ΔC → ∞)
corresponding to the diffusion coefficient. We observe that the curves fall very nicely on top
of each other, indicating that l?; is the right scaling variable for the frequency. The inset in
Fig. 4 shows ^(C,ΔC) without the rescaling. The diffusion coefficient is extracted by performing a
damped oscillator fit to the signal. Furthermore, right hand panel of Fig. 4 also shows the extracted
oscillation frequency of ^(C,ΔC) in ΔC (which is also obtained from the fit) and is in agreement with
the frequency extracted from (7).

3. Spectral Reconstruction (SR) method

To relate our measurements to the distribution of gluons as measured from equal-time electric
field correlators, we have constructed a parametrization thatwe refer to as the spectral reconstruction.
In order to understand the oscillations in ^(C,ΔC) we start from (6) and write ^(C,ΔC) as

3^ (C,ΔC) = 62

#2

∫ ∞

−∞

dl
2c

sin(lΔC)
l

∫
d3?

(2c)3
〈��〉(C, l, ?). (8)

The Fourier transform of the �� correlation function 〈��〉(C, l, ?) can be expressed in terms of
spectral (d) and statistical (〈��〉(C, C, ?)) correlation functions using the generalized fluctuation-
dissipation relation [10]

〈��〉) ,! (C, l, ?) =
¤d(C, l, ?)
¤d(C, C, ?) 〈��〉) ,! (C, C, ?). (9)

¤d(l, ?) = 2Im�HTL
' (l, ?), (10)

The retarded propagator �HTL
'
(l, ?) can be evaluated in perturbation theory in a straightforward

manner. It consists of quasiparticle contributions which only contribute for l ≥ l?; and Landau
damping contributions for l ≤ l?; in both transverse and longitudinal directions. The explicit
expressions used here can be found in [9].

We will utilize our nonperturbative extraction of the quasiparticle dispersion l(?) and the
quasiparticle damping rate W(?) in our numerical framework, since they slightly differ from the
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Figure 5: The extracted statistical correlation function and its thermal counterpart which has been matched
to the numerical extraction in the large ? region. This is a gauge dependent quantity, and the extraction
is done in temporal gauge (�0 = 0 ∀C). At readout times we also impose the Coulomb gauge condition
∇ · G(C) = 0.

equilibrium counterparts [10]. The statistical correlation function far-from equilibrium is con-
siderably enhanced compared to its hard thermal loop theory counterpart in the infrared. The
thermal expectation in HTL theory is 〈��〉) ≈ )∗, corresponding to the quasiparticle spectrum
5 (?) ≈ )∗√

<2 + ?2
. Far-from equilibrium we observe 〈��〉) � )∗ in the infrared. The extracted

correlation function is shown in Fig. 5. Since the two are considerably different we will use
parametrizations of both in our numerical framework. HTL perturbation theory does not predict
the behavior of this correlation function for large ?. Thus we regulate the thermal behavior by
matching the thermal curve to the numerical curve in the large ? region in order to make sure that
the differences in the both approaches arise entirely from the differences in the IR region.

By making use of the fluctuation-dissipation relation, and the HTL retarded propagator dis-
cussed above, we can estimate the large C behavior of (8). At the ΔC → ∞ limit only longitudinal
Landau damping contributes. Using the thermal IR assumption (with a step function cutoff at
? = Λ) we get

^SR∞,!! (C) ≈
#2
2 − 1

12c#2
<2
� (C)62)∗(C) log

(
Λ(C)
<� (C)

)
∼ (&C)−5/7 log(&C). (11)

This will be our expectation for the time dependence of ^(C).

3.1 Understanding the oscillations in ^(C,ΔC)

Our numerical evaluation of ^(C,ΔC) is compared to the SR parametrization in Fig. 6. The
black curve corresponds to the unequal time correlation functions given by (6). For the spectral
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Figure 6: Numerical extraction of ^(&C = 1500,ΔC) in ΔC. The SR framework is discussed in Sec. 3 and the
lattice extraction is given by (6).

reconstruction framework discussed in Sec. 3 we have two curves. One of them uses the thermal
infrared assumption for the equal time electric field correlation function, and the other one uses the
numerically extracted correlator. We also see a curve labeled as "KT" which is obtained by deriving
a kinetic theory estimate for ^ and using the quasiparticle distribution extracted from a real time
lattice simulation as an input. We will not discuss the details of this method in this proceeding and
refer the reader to [9] for the details of the procedure. For a more comprehensive description of
kinetic theory extraction we refer the reader to [11].

We observe that the oscillations in ^(C,ΔC) which are observed when the diffusion coefficient is
extracted using (6) are only reproduced when the infrared enhancement of the equal time correlation
function is taken into account in the spectral reconstruction method. Furthermore, the spectral
reconstruction framework can be broken down into transverse and longitudinal quasiparticle and
Landau damping contributions. The frequency of the oscillations in the IR enhanced spectral
reconstruction curve arises from the transverse quasiparticle modes, and the offset from the x-axis
arises from the longitudinal Landau damping. Since ^(C,ΔC) is gauge invariant, we take this as a
confirmation of the IR enhancement, which we already observed in the case of gauge fixed equal
time correlation functions in Fig. 5.

3.2 Time evolution of ^(C)

Finally, we want to study the time-evolution of the heavy quark momentum diffusion coefficient
^(C). The numerical results are shown in Fig. 7. We use the functional form of (11) as a fit and
observe that both methods nicely follow the expected behavior.
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Figure 7: The extracted diffusion coefficient ^ as a function of time C. Open symbols correspond to thermal
infrared assumption and the closed symbols are using the numerically extracted equal time electric field
correlation function. Data are shown by points and fits are shown by dashed lines.

4. Conclusions

In this work we have the extracted heavy quark momentum diffusion coefficient ^, and observed
that its time-evolution is consistent with ^ ∼ C−5/7 log(C), which was predicted by HTL and self-
similarity. We have also studied equal time electric field correlators, and found out that the
nonequilibrium correlation function is enhanced in the infrared compared to the thermal case. This
turns out to result into interesting oscillations in 〈?2〉(ΔC) and ^(ΔC) with frequency l?;. Thus
we conclude that heavy quarks, quarkonia and jets may be sensitive to the infrared dynamics of
nonequilibrium QGP.

Our future plans involve extracting transport coefficients during the hydrodynamization process.
More specifically our current aim is to extract ^ using effective kinetic theory during the bottom-up
thermalization scenario.
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