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Abstract— In the recent years, intelligent data-driven fault diagnosis methods on gearboxes have been 

successfully developed and popularly applied in the industries. Currently, most of the machine learning 

techniques require that the training and testing data are from the same distribution. However, this 

assumption is difficult to be met in the real industries, since the gearbox operating conditions usually 

change in practice, which results in significant data distribution gap and diagnostic performance 

deteriorations in applying the learned knowledge on the new conditions. This paper proposes a deep 

learning-based domain adaptation method to address this issue. The raw current signals are directly used 

as the model inputs for diagnostics, which are easy to collect in the real industries and facilitate practical 

applications. The maximum mean discrepancy metric is introduced to the deep neural network, the 

optimization of which guarantees the extraction of generalized machinery health condition features across 

different operating conditions. The experiments on a real-world gearbox condition monitoring dataset 

validate the effectiveness of the proposed method, which offers a promising tool for cross-domain diagnosis 

in the real industries. 
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I. INTRODUCTION 

In the past decades, rotating machines have been 

widely used in a large number of industries, such as 

manufacturing, aero-space industry, automotive etc. 

Gearbox is one of the key components in rotating machines 

for delivering torque and offering speed conversions. 

Effective and timely fault diagnosis of gearbox is of great 

importance in the real industries, which can optimize 

maintenance schedule, enhance operational safety and 

reduce economic costs [1]. Traditionally, many model-

based signal processing methods have been used for the 

fault signal analysis of gearbox [2]. While effective 

diagnosis results have been obtained, the model-based 

approaches generally rely on good expert knowledge, and 

require much human labor on model development. 

Therefore, they are less efficient for applications in the real 

industrial scenarios. Moreover, smart manufacturing 

initiative has established a consistent method for data 

access across different enterprises helping predictive 

manufacturing and fault diagnosis to advance in a rapid 

pace [3,4]. In general, high diagnosis accuracy and fast 

implementation can be achieved [5]. Furthermore, little 

prior expertise on signal processing and dynamics model of 

gearbox is generally required, which largely facilitates the 

industrial applications. In the literature, the popular data-

driven methods include artificial neural networks (ANN), 

random forest (RF), support vector machines (SVM) and 

so forth. Recently, deep learning has been emerging as a 

highly effective algorithm for data processing, which is 

promising to further improve the performance of the 

existing data-driven approaches [6]. Basically, the deep 

learning methods are capable of efficiently capturing the 

underlying relationship between input and output data, 

through multiple linear and non-linear data transformations 

[7].Specifically, with respect to fault diagnosis problems, 

the machinery health states can be well predicted using the 

collected condition monitoring data, despite the high 

dimensions of thesignals [8,9].Authors in [10] proposed 

using convolutional neural network (CNN) for gearbox 

fault diagnosis and achieved a significantly better 

classification accuracy compared to the classical ma-chine 

learning methods. A fault diagnosis method for wind 

turbine gearbox based on stacked auto-encoder and multi-

class SVM was proposed in [11]. A Deep Belief Network 

fault diagnosis method based on manually extracted time 

and frequency domain features was proposed in3for 
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gearbox and bearing applications. These studies emphasize 

the significant improvement in gearbox fault diagnosis 

performance by using deep learning based methods 

compared to the conventional data-driven methodologies. 

It should be pointed out that while promising diagnosis 

performance has been obtained using deep learning, the 

main assumption lies in that the training and testing data 

are supposed to be from the same distribution. That means 

the labeled training data and unlabeled testing data should 

be collected in the similar operating conditions of gearbox. 

However, the working scenarios such as load, rotating 

speeds etc. usually change in different practical industrial 

tasks. That results in significant distribution discrepancy 

between training and testing data, which deteriorates the 

data-driven model generalization performance [12].In 

order to address this problem, transfer learning algorithms 

have been proposed in the recent years [10,13], which aim 

to generalize the data-driven knowledge learned from the 

training condition, denoted as source domain, to the testing 

condition, denoted as target domain. Specifically, the 

domain adaptation (DA) techniques have been popularly 

developed in the fault diagnosis field [14,15], which 

assume the training and testing data share the same label 

space. That is consistent with the machinery health 

condition identification problems [16]. The domain-

invariant features across different conditions are expected 

to be learned with the domain adaptation methods, and 

stronger model generalization ability can be achieved. A 

framework for gearbox domain adaptation was proposed in 

[17] based on deep neural network, where only the source 

domain data and healthy data from the target domain were 

used to accomplish the DA tasks. In [18], a DA approach 

for fault diagnosis of low-speed bearing was proposed. The 

authors used acoustic spectral imaging technique to convert 

time-domain acoustic emission signal to representative 

images for different health conditions. These images were 

used in a DA model for predicting labels of target domain 

dataset. A deep CNN-based DA method for gearbox fault 

diagnosis was proposed in [19] based on vibration signal. 

In their approach, the raw time-domain vibration signal 

was converted to gray-scale images and used as input to 

the CNN model. The authors firstly trained a CNN model 

on the source dataset and then fine-tuned it using the target 

domain samples. In general, the deep learning-based 

domain adaptation methods have shown great potential in 

bridging the domain gap in different working conditions 

[20,21].In the current literature, the machinery vibration 

data are mostly focused for fault diagnosis [22], since the 

vibration signal is representative of the behavior of 

periodic events in the gearbox and it is expected the 

behavior of the gearbox would change in case of any kind 

of mechanical abnormality. For different kinds of signals, 

the application of the torque measurement has been seldom 

investigated. The authors in [23] discussed torsional 

vibration analysis as a potential approach for fault 

diagnosis in fixed shaft gearboxes. Using torque signal in 

fault diagnosis of planetary gearboxes was discussed in 

[24] and the authors proposed a diagnosis method based on 

the demodulated spectra of amplitude envelope and 

instantaneous frequency. The study by Qiaoet al. [25] on 

wind turbine mechanical components pointed out the 

usefulness of the torque signal in detecting gearbox faults. 

Furthermore, Mohanty et al. [26] stated that the current 

signal of the induction motor driving the gearbox is useful 

for the fault diagnosis investigations, and the motor current 

signature analysis (MCSA) can be largely improved using 

the proposed demodulation method. The effectiveness of 

MCSA in rotating machinery fault diagnosis problems was 

also validated in [27,28]. Therefore, it is feasible and 

promising to explore the current signals for gearbox health 

identification, which are easy to collect in the real 

industries. However, it should be pointed out that the 

existing methods are mostly complicated and require 

sophisticated domain knowledge on gearbox modeling and 

signal processing skills, which are difficult to be 

implemented in different applications. This paper proposes 

a deep learning-based domain adaptation method for the 

gearbox fault diagnosis. An end-to-end diagnostic 

framework is built, which takes the raw collected data as 

input and directly outputs the results. The current signals 

are investigated in this study, which are generally easier to 

collect than the popular vibration data in the real industrial 

scenarios. The maximum mean discrepancy metrics 

introduced to measure and minimize the data distribution 

distance between different domains, and the generalized 

diagnostic features of different machinery health condition 

scan be extracted. Experiments on real-world gearbox 

datasets are implemented for validations, and the proposed 

method is capable of effectively diagnosing gearbox faults 

across different operating scenarios. The remainder of this 

paper starts with the preliminaries in Section II. The 

proposed fault diagnosis method is shown in Section III, 

and experimentally validated and investigated in Section 

IV. We close the paper with conclusions in Section V. 
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II. PRELIMINARIES 

A. Deep Convolutional Neural Network 

In the past years, deep learning also denoted as deep 

neural network has achieved great success in different 

applications. Besides the basic multi-layer perceptron 

(MLP) structure, the convolutional neural network (CNN) 

architecture has been more efficient on feature extraction 

and the high-dimensional machinery data can be well 

processed [7]. Basically, multiple convolutional layers are 

stacked in the CNN structure to model the relationship 

between input and output. Specifically, the one-

dimensional CNN is adopted in this study, which is well 

suited to process the measurement signals of gearboxes. 

Together with convolutional operations, pooling is usually 

implemented after the convolutional layers. The averaging-

pooling and max-pooling operations are popularly adopted, 

which are able to learn the average and maximum values 

from the local data respectively. In this way, the most 

significant features can be extracted and the data 

dimensions can be reduced, which increases the computing 

efficiency of deep learning. By exploiting the 

convolutional and pooling operations, the high-level 

features from raw data can be obtained, and they can be 

used for the final task afterwards, i.e. machinery fault 

diagnosis. Readers are referred to [7,29] for more 

descriptions of CNN.  

B. Domain Adaptation 

To bridge the gap between different data distributions 

on machine learning, transfer learning techniques have 

been successfully developed and widely used in the 

applications30.Specifically, the domain adaptation method 

in transfer learning has been receiving increasing attention 

in the fault diagnosis studies, since the machinery health 

condition label spaces are usually identical. In general, the 

domain adaptation approaches aim to learn domain-

invariant features from different conditions, that facilitates 

the fault diagnostic knowledge generalize in different cases 

[31].In this paper, the maximum mean discrepancy (MMD) 

metric is adopted, which measures the distance between the 

distributions of source and target domains. The 

optimization of MMD is able to achieve domain fusion in 

the high-level representation sub-space in deep neural 

networks, and thus extract generalized features for 

diagnosis15.The MMD metric is defined as the squared 

distance between the kernel embeddings of data marginal 

distributions in the reproducing kernel Hilbert space 

(RKHS) as 

 

Where Hk denotes the RKHS endowed with the 

characteristic kernel k. Based on the current understanding 

of MMD [32], kernel choice is one of the key factors in 

domain adaptation, since different kernels can embed the 

probability distributions indifferent RKHSs and different 

orders of the statistics are explored. Therefore, multiple 

kernels in MMD are employed in this paper to leverage 

 

Fig.1 Flowchart of the proposed fault diagnosis method 
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different kernels and achieve improved performance. In the 

implementations, Nk RBF kernels are used as [33],  

 

 

Where kσi denotes a Gaussian kernel with bandwidth 

coefficient σi. In this study, three kernels are adopted, and 

the bandwidth parameters are selected as 2, 4 and 8 

 

III. PROPOSED FAULT DIAGNOSIS METHOD 

The proposed method is described in Figure 1 and 

consists of four individual steps. In each step, the key 

functionalities are presented and discussed in detail 

 

Fig. 2: data augmentation with overlap. 

 

A. Data Partitioning 

In the first phase, the raw time-domain sensor data 

collected from a gearbox is partitioned into two sets (a) 

source domain data (labeled data) and (b) target domain 

data (unlabeled data).The target domain data is also further 

partitioned into training and testing sets, where one of the 

unlabeled subset is used in training the CNN model and the 

other subset is used for testing the trained model.  

B. Data Modeling 

There are two major steps for modeling the data prior to 

training the diagnosis model, which are presented as 

follows.1) Data augmentation In order to increase the 

number of training samples, a windowing method has been 

used. As depicted in Figure 2,a window with a fixed 

sample size moves over a time series signal and generates 

multiple samples. For example, a signal with 1000,000 

points can provide the 191 training samples with length 

50,000 when the shift size is 5000 points.2) Fast Fourier 

Transform (FFT)In order to eliminate the impact of the 

supply line frequency, the FFT technique is applied to each 

sample generated fromthe augmentation process. It is 

expected that fault signatures appear as sidebands around 

the supply line frequency (or running frequency) in the 

FFT spectrum [34]. All samples after FFT are directly used 

in the deep learning model for feature learning and fault 

diagnosis.  

C. Deep Learning Model Formulation  

For the network optimization, two terms are generally 

included in the objective, i.e. source-domain classification 

loss and domain discrepancy loss. First, following the 

typical machine learning paradigm, the empirical health 

condition identification errors on the source domain are 

supposed to be minimized, and the cross-entropy loss 

function Ls is adopted in this study, which is defined as, 

 

Where ns denotes the number of the source-domain 

training samples. xsi, jis the jth element of network output 

vector, taking as input the ith labeled source-domain 

sample, and yiis the label of the ith source-domain sample. 

Nc represents the number of the concerned machinery 

health conditions. Besides the basic supervised learning 

part, the source and target domain discrepancy should be 

minimized, and the MMD metric is adopted to measure 

and optimize the domain gap in this study as described in 

Section II-B. Specifically, the MMD loss Ld is defined as, 

 

where PS and PT denote the distributions of the high-

level representations of the source and target-domain data 

respectively in the last fully-connected layer of the 

network. In summary, the losses in Equations (3) and (4) 

can be combined, and the final optimization objective Lopt 

can be expressed as,  

 

the unlabeled testing target-domain data are used for 

fault diagnosis and performance of the proposed method is 

reported. 

 

Fig. 3: The experimental setup of the test rig [35] 
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IV. EXPERIMENTAL STUDYA.  

A. Test Rig 

 A validation study has been conducted on a dataset 

acquired from a gearbox prognostic simulator (GPS) built 

by the Spectra Quest Company35, as is shown Figure 3. 

Two confronted electrical motors are used in the test rig; 

one motor is used for drive and the other one for 

resistance/load. Both motors are three-phase induction 

motors with 10 Hp and two pair of poles. A current sensor 

(HTA 100) was installed on the drive motor and was used 

in our analysis for fault diagnosis. The datawas recorded 

using a computer with a National Instruments acquisition 

card (NI 4472 series) at a sampling rate of 50ks/sec. The 

monitored gearbox is composed of four spur gears(Figure 

4). The first gear, as it comes from the motor that drives 

the test bench, has 32 teeth. It is the one substituted by 

gears in different health states, leaving the rest unchanged. 

It is followed by a gear with 80 teeth. In the same axle, a 

gear with 48 teeth is found, connected to a gear with 64 

teeth, resulting in a global transmission relationship of 

3.33. 

In this study, the torque load applied to the gearbox was 

gradually increased by 40%, 80%, and 100%. In each load, 

the operational speed was kept constant at 1500 rpm and 

each run was repeated 15 times to reduce the impact of 

randomness and uncertainties. Table I summarizes the 

experimental studies and a comparison between raw motor 

current measurements and the corresponding FFT spectra 

for different loads and in healthy condition is given in 

Figure 5. Accordingly, by increasing the load condition, 

amplitude of raw current signal and FFT spectrum increase 

significantly. Figure 6 shows the five health conditions 

examined in this paper and the impact of FFT analysis in 

distinguishing different faults at 0% load is given in Figure 

7. As shown, raw motor current measurements do not show 

significant differences between different health conditions, 

however, they are clearly distinguishable from the FFT 

spectrum. The proposed method is tested for six transfer 

tasks, i.e 

A summary of data segmentation for different tasks is 

given in Table II. Nsource and Ntarget represent the 

number of samples from each class of source and target 

domain datasets respectively. All experiments are 

performed on a PC with 16-GB RAM, Core i5 CPU, and 

NVIDIA GeForce TX 2080 Ti. The programming is done 

in Tensorflow and GPU computing is used to reduce the 

model training time. 

 

 

Fig. 4: Illustration of the gear disposition inside the 

experimental gearbox.  

 

 

Fig. 5: Comparison between healthy data at different 

load conditions. 

 

B. Model Architecture Design 

As shown in Figure 8, the first step is to design a CNN 

architecture and tune the network parameters. In this study, 

a stack of four convolutional and pooling layers and a max-

pooling layer are used for model training. The impact of 

filter size (Fs) and filter number (Nf) on the cross domain 

diagnosis performance and for task T1−2is shown in 

Figure 9. Generally, a larger value for Nf and Fs leads to a 

higher diagnosis accuracy, but this improvement by larger 

values is relatively limited. Moreover, by increasing Nf 

and Fs, the training time increases significantly. Therefore, 

Nf=Fs= 20was selected for the final model. Batch size 

(Nb) is another tuning parameter that may significantly 

affect the diagnosis accuracy. For our dataset, selection of 

low batch size leads to the worst diagnosis results and a too 

large batch size would create a big cumulative descent in 

updating the parameters especially when MMD loss is 

integrated in the model and therefore the prediction 
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accuracy drops for too large batch sizes. Therefore, it is 

important to choose a reasonable tradeoff value for Nb. 

Consequently, Nb= 64 was selected for the final diagnosis 

model. The confusion matrix corresponding to the final 

diagnosis results in task T1−2 is illustrated in Figure 10. It 

is observed that only two classes ‘eccentricity’ and 

‘missing tooth’ are slightly misclassified and all other 

classes are precisely classified. 

Table I: Experimental details. 

 

 

C. Results and comparison  

In this section, different implementations are used to 

evaluate the performance of the proposed method and 

comparison with the latest related works is also presented. 

1) Effects of training sample size  

Performance of the final model in different tasks, i.e.T1−2, 

T1−3, T1−4, T4−3, T4−2and T4−1and for different source 

domain sample size, N source, is illustrated in Figure11. In 

this study the number of target samples, N target, is kept 

constant at 300. With increasing N source, the testing 

accuracy increases and prediction uncertainty (measured 

by the standard deviation) reduces significantly. The 

proposed CNN-based domain adaptation method provides 

acceptable testing accuracy even with small training source 

samples, N source. As presented in Figure 11, the achieved 

testing accuracy in some tasks like T1−2and T4−3is higher 

than other tasks. This observation is due to the nature of 

data and the similarity between the distribution of source 

and target domain. For instance, the load variation from 

experiment #1 to experiment #2 is 40% which is smaller 

than that between experiment#1 and experiment #4 (i.e. 

100%). Therefore, the transfer of learned features from 

experiment #1 to experiment #2 is easier. In addition, 

achieving the high accuracies in different tasks from low to 

high operational loads and vice versa indicates that the 

proposed method performs well bidirectional between 

different domains. The achieved results for different tasks 

also clearly illustrate the effectiveness of the motor current 

measurement signal for cross-domain fault diagnosis. As 

presented, by increasing the number of training samples, 

the diagnosis performance improves as well which follows 

the same pattern as the classical fault diagnosis methods. 

 

 

Fig. 6: Different health conditions examined in this paper.  

 

2) Classification Results and Comparison 

Performance of the proposed transfer learning 

methodology is compared with two groups of fault 

diagnosis tools as summarized below:  

Group A- Supervised classification methods such as: 

1) LDA [36]- Linear Discriminant Analysis is a supervised 

algorithm that uses a linear transformation matrix to 

project features from parametric space to feature space. 

2) SVM [37]- Support Vector Machines are supervised ma-

chine learning algorithms that can be employed for both 

regression and classification problems. SVMs are designed 

based on Structural Risk Minimization criteria in the 

statistical learning theory. SVMs work on a simple idea: to 

identify a hyper-plane which separates the training data 

into two distinct classes. 

3) CNN Without Domain Adaptation (No-DA) - A deep 

learning method that automatically extracts features from 

the raw signal measurement. A typical classification is 

obtained by only considering the classification loss in 

Equation (5). This trained model is directly used for testing 

on the target dataset.  
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Fig. 7: Different health conditions indicated in raw time 

domain and frequency spectrum. 

 

 

 

Fig. 8: The proposed deep neural network architecture 

 

Group B- Transfer learning methods including: 

1) TCA [38]- Transfer Component Analysis is used to find 

a feature subspace in the domain adaptation field. In the 

subspace created by transfer components, the source and 

target data distribution are similar. When the subspace is 

created, a SVM classifier is trained with the labeled source 

domain dataset and acquire the accuracy of the target 

domain. 

2) JDA [39]- Joint Distribution Adaptation is a 

modification of TCA. It is able to simultaneously adapt the 

conditional and marginal distributions during the 

dimensionality reduction process. 

3) GFK [40]- Geodesic Flow Kernel is an unsupervised do-

main adaptation technique wherein the source and target 

domain data are projected into a linear subspace while the 

shortest line path connects the two original domains. 

4) BDA [41]- Balanced Distribution Adaptation aims to 

automatically balance the significance of marginal and 

conditional distribution discrepancies and therefore it can 

effectively adjust for a specific transfer task. 

5) T-S [42-] This method suggests performing adaptation 

by learning a target-specific network from the source-

specific network.  

Table II: Data segmentation for transfer tasks. 

 

 

In Group A, three classification methods are used to 

learner presentative features from the training source data 

in a supervised process and then the trained classifier is 

used on the target domain data for testing and the achieved 

results are reported. Hand-crafted time and frequency 

domain features such as standard deviation, mean, peak to 

peak, kurtosis, frequency amplitude and energy etc. are 

used as an input to LDA and SVM methods. For No-DA, 

raw frequency- 

 

Fig. 9: Impact of filter size and filter number on the testing 

accuracy for task T1-2. 

 

domain data is utilized. Because these methods inherently 

do not consider domain variation between the source and 

target datasets, therefore a low classification performance 

is highly expected. In Group B, the extracted time and 

frequency features are used for domain adaption tasks and 

the achieved results are compared with the proposed 

method. Analyses are conducted on 300 samples obtained 

from the source and target dataset and the obtained 
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diagnosis results on the testing (target domain) data are 

visualized in Figure 12. In contrast with other methods, the 

proposed approach provides the highest accuracies in all 

six transfer tasks, and basically, the accuracies are higher 

than 91%, which illustrates the effectiveness of the 

proposed transfer learning approach. The average 

performance improvement for the proposed method is 

57.46%, 55.68%, 39.3%, 36.62%, 35.87%, 34.5%, 

26.67%,2.75% compared with LDA, SVM, GFK, JDA, 

TCA, BDA, No-DA, and T-S. The second-best 

performance is obtained from T-S and No-DA is ranked in 

the third place. Overall, domain adaptation methods 

discussed in Group B outperform the classical diagnosis 

methods in group A but they are not as promising as the 

proposed method. 

 

Fig. 10: The confusion matrix for the classification results 

in task T1-2. 

 

The performance of different diagnosis methods for the 

low number of training samples e.g. Nsource= 60 and 

Ntarget= 300, is illustrated in Figure 13. As expected, 

using low number of labeled data for training deteriorates 

the testing diagnosis accuracy for all evaluated methods. 

This observation is consistent with the previous studies 

conducted on deep learning methods that larger training 

data leads to a better diagnosis performance and transfer 

learning based diagnosis methods also follow this pattern. 

Moreover, comparing the results obtained from methods in 

Group A (without domain adaptation) with the diagnosis 

results obtained from methods in Group B and the 

proposed method, shows the significant impact of cross-

domain adaptation on fault diagnosis performance. T-S 

which provides an alternative way for domain adaptation, 

shows good performance with large training sample size. 

However, with a low sample size, its performance 

deteriorates significantly because this method minimizes 

the distribution discrepancy between the target dataset and 

the learned representations from the source training 

network. The achieved results illustrate the effectiveness of 

motor current signal for cross-domain fault diagnosis. 

 

 

Fig. 11: Performance of the proposed method at different 

tasks and for different training sample size. 

 

3) Visualization of the learned features  

In order to illustrate the effectiveness of our approach, T-

distributed Stochastic Neighbor Embedding (t-SNE) 

technique is adapted in visualizing the high-level feature 

representation by mapping them from the original feature 

space into a 2-Dspace map. The visualization is performed 

on task T1−2for the proposed method and also for CNN 

without domain adaptation (No-DA method).  
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Fig. 12: The achieved testing accuracy for different 

comparative methods and in all six transfer tasks. 

 

 

Fig. 13: Fault diagnosis results with the low number of 

source domain samples in all six transfer tasks. 

 

Figure 14 illustrates the virtualization of learned features in 

the fully connected layer of the source domain classifier 

without domain adaptation. As observed, without domain 

adaptation, samples from each identical class in the source 

or target data cluster together. However, for some labels 

there is a notable distribution discrepancy between the 

source and target domain samples. Since the feature space 

is divided into several regions associated with different 

labels, it is expected to obtain a low diagnosis performance 

in the target domain data. Therefore, it is necessary to 

bridge the distribution discrepancy between the source and 

target data to improve classification results on the target 

data. By using domain adaptation, as is shown in Figure 

14, the source and target domain features are projected into 

the same region as the model is trained. Accordingly, the 

distribution discrepancy has reduced significantly between 

the source and target domains and samples from different 

conditions are separated clearly. These two requirements a) 

minimal distribution discrepancy between two domains 

and b) clear differentiation between different health 

conditions in both domains would guarantee achieving an 

accurate cross-domain fault diagnosis. As illustrated, the 

cross-domain invariant features obtained by the proposed 

method are clustered well where features from different 

classes are separated clearly and only a small amount of 

overlapping is observed between classes ‘Eccentricity’ 

and‘ Missing tooth’ faults in the source and target domains. 

 

Fig. 14: Extracted features in the fully connected layer are 

visualized for task T1-2 at Nsource = 300. Both the 

scenarios before and after domain adaptation are 

presented. 

 

V. CONCLUSION  

In this paper, a deep learning-based domain adaptation 

fault diagnostic method for gearboxes is proposed. An end-

to-end diagnostic model is established, which takes the raw 

motor current data as inputs, and directly outputs the 

predicted health conditions. The maximum mean 

discrepancy metric is used to bridge the distribution gap 

between different gearbox operating conditions. 

Experiments on a real-world gearbox condition monitoring 

dataset are carried out for validations, and promising cross-

domain fault diagnosis performance is achieved by the 

proposed domain adaptation method. This study offers a 

new perspective on enhancing fault diagnosis model 

generalization ability in different operating scenarios of 

gearboxes. The high data requirement of vibration signals 

https://dx.doi.org/10.22161/ijaers.77.1
http://www.ijaers.com/


International Journal of Advanced Engineering Research and Science (IJAERS)                                   [Vol-7, Issue-7, Jul- 2020] 

https://dx.doi.org/10.22161/ijaers.77.1                                                                                     ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                              Page | 10  

by most existing methods is also alleviated, and effective 

diagnostic performance can be obtained using only the 

easily-collected current data. However, it should be pointed 

out that the main limitation of this study lies in the 

assumption of the target-domain data during training. 

Further research works will be carried out on developing 

robust fault diagnosis models for different scenarios 

without the availability of the target-domain data in 

advance. 
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