
On the E�ect of Semantically Enriched Context Models on
Software Modularization

Amir M. Saeidia, Jurriaan Hagea, Ravi Khadkaa, and Slinger Jansena

a Department of Information and Computing Sciences, Utrecht University, The Netherlands

Abstract Many of the existing approaches for program comprehension rely on the linguistic information
found in source code, such as identifier names and comments. Semantic clustering is one such technique for
modularization of the system that relies on the informal semantics of the program, encoded in the vocabulary
used in the source code. Treating the source code as a collection of tokens loses the semantic information
embedded within the identifiers. We try to overcome this problem by introducing context models for source
code identifiers to obtain a semantic kernel, which can be used for both deriving the topics that run through
the system as well as their clustering. In the first model, we abstract an identifier to its type representation
and build on this notion of context to construct a contextual vector representation of the source code. The
second notion of context is defined based on the flow of data between identifiers to represent a module as a
dependency graph where the nodes correspond to identifiers and the edges represent the data dependencies
between identifiers. We have applied our approach to 10 medium-sized Java projects, and show that by intro-
ducing contexts for identifiers, the quality of the modularization of the software systems is improved. Both
of the context models give results that are superior to the plain vector representation of documents. In some
cases, the authoritativeness of decompositions is improved by 66%. Furthermore, a more detailed evaluation
of our approach on JEdit, an open source editor, demonstrates that inferred topics through performing topic
analysis on the contextual representations are more meaningful compared to the plain representation of the
documents. The proposed approach in introducing a context model paves the way for building tools that
support developers in program comprehension tasks such as domain concept location and topic analysis.

ACM CCS 2012
Software and its engineering→ Software notations and tools;
General and reference→ Evaluation;
Computing methodologies→ Lexical semantics; Knowledge representation and reasoning; Cluster analysis;

Keywords software modularization, program comprehension, software mining

The Art, Science, and Engineering of Programming

Submitted April 1, 2017

Published August 7, 2017

doi 10.22152/programming-journal.org/2018/2/2

© Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen
This work is licensed under a “CC BY-NC 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 2, no. 1, 2018, article 2; 39 pages.

https://doi.org/10.22152/programming-journal.org/2018/2/2
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

On the E�ect of Semantically Enriched Context Models on Software Modularization

1 Introduction

Traditional algorithms for lexical clustering of source code rely on the Vector Space
Document (VSD) model, borrowed from the information retrieval field. In this model,
the source code corpus is represented as a “bag of words” (BoW), without considering
the relationships between the words. Using this representation, the similarity between
any two modules is given as the inner product of the high-dimensional vectors indexed
by the set of terms present in each module. This approach fails to include aspects of
the formal semantics of the programming language, and hence is often inadequate to
perform fine-grained source code analysis.
The bag of words model has well-known limitations: 1) co-occurrence is the sole

principle for inducing similarity between documents, and 2) the same weight is
given to different terms in the source code corpus. Although traditional preprocessing
techniques for document vocabulary normalization such as eliminating stop words
and stemming can be applied for preprocessing the source code corpus, its effect
in this domain is still unclear. On the other hand, the naming convention used in
source code employs acronyms, domain-specific abbreviations and coded formats
such as Hungarian coding [13, 21]. As a system evolves, the naming convention tends
to become inconsistent throughout the source code [4].
To overcome the problems with the bag of words approach, many approaches have

been proposed to incorporate the context of a term in document representation. The
n-gram model [6] is one such model that generalizes the BoW model by including all
the ordered sequences of n words in the feature set, so it can capture relations between
several adjacent words. In the n-gram model, the context is defined as a window of
n words, surrounding the target word, whereas in the BoW model, the context of a
word is the entirety of the corpus. Even though the n-gram model considers the word
order in short context, it suffers from data sparsity and high dimensionality.
Developers may embed knowledge about application contextual information in

identifier names. The notion of context of an identifier is different from that of the
words appearing in natural language text, and approaches from information retrieval
field cannot be directly applied to the source code. Informally speaking, an identifier
is a named program element, where it can be a namespace, class, method, variable or
interface, that describes the role it may play in the execution of the program. Formally,
an identifier is a placeholder for the set of values it may take at runtime. It is an
abstraction of a memory location, where values are assigned to and read from. The
data types and data structures of identifiers whether it is of a particular struct in C, a
copybook in Cobol, or more generally a type restricts the set of values it may take at
runtime and is a good approximation of the context of an identifier.
One model for incorporating context in the vector representation of the source

program is to represent each module in terms of the pair of identifiers and its context,
i.e. its type. In this representation, two modules are said to be similar if they have
co-occurring identifiers that appear in the same context. Pairing each identifier with its
type makes it possible to disambiguate polysemous identifiers based on the type they
belong to. However, this representation may suffer from high-dimensionality, although
in practice, the identifiers used in the source code don’t appear in every context.

2:2

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

Another representation involves abstracting an identifier in terms of its context, and
represent a source code unit in terms of its types.
An alternative approach to the contextual vector representation is based on syn-

tactic relations between the input word space. Syntax-based context models were
proposed [12, 23] that go beyond mere co-occurrence of words to capture semantic
relations based on syntactic relationships between words such as subject-verb. An
identifier can be interpreted in combination with other identifiers that may have an
effect on it. The flow of data in a program through assignment and value usages
captures the data dependency relations between identifiers. The data dependency
relations such as the definition-usage dependency relation, induces semantic relations
between identifiers, irrespective of whether they are syntactically adjacent or not. In
this representation, a module is encoded in terms of a dependency graph capturing
data dependencies derived from the syntactic structure of the model.
The equality of a context for induction of similarity between two identifiers is too

strict, and can be relaxed by inferring semantic similarity between the contexts. Using
the ontological structure of the type hierarchy, it is possible to enrich the context
with semantic knowledge extracted from the semantic dependencies. Knowledge-rich
methods are usually based on semantic networks [31] or semantic-tagging of the
corpus [10] to explicitly define the contextual meaning of a term in relation with
other terms. Some researchers have adopted ontologies such as WordNet [15] and
Wikipedia [17] to enrich the representation of documents in the linguistic domain for
cluster analysis. As shown by Sridhara et al. [31], the general similarity measurements
based on WordNet cannot be effectively applied in a software engineering context.
Thus, we will automatically construct a knowledge base per software-system and
measure the similarity in that domain. In this paper, we exploit semantic networks to
represent the semantic knowledge of the system as a graph, capturing the similarity
between the context and identifier names.
Our contributions in this paper are as follows:
We propose two context models for identifiers in the source code, one based on a
vector representation (CV) and the other using the data dependency graph (DG).
Orthogonally, we propose an approach to enrich the contexts and identifiers with
semantic knowledge.
We make a comparison between the context models and establish the best semanti-
cally enriched context model for the clustering of software systems.
We observe the differences in the distribution of identifiers before and after intro-
duction of contexts for source code identifiers.
We first survey related work in section 2 on various techniques for information

extraction from source code and using that information for the clustering of software
systems. In section 3, we give a brief overview of existing context models used in
the information retrieval field and outline our approaches to introduction of context
models for identifiers in the source code. We proceed by defining the underlying
context models in section 4. In section 5, we show the validity of our approach by
performing clustering on semantically enriched contextual representation of the source

2:3

On the E�ect of Semantically Enriched Context Models on Software Modularization

program and make a comparison between the two models using 10 medium-sized
real-world Java programs. We conclude in section 6 and outline future work.

2 Related Work

We classify related work into three categories, based on the research problems we
investigate in this paper. In the first category, we review related work that utilise
knowledge-rich methods to infer semantic similarity between word-pairs in the source
code. In the second category, we survey approaches that rely on extracting lexical
terms based on the context they appear in the source code to perform program
comprehension tasks. Finally, we outline approaches that rely on the vocabulary found
in the source code to modularize a software system.

2.1 Inferring similarity between lexical terms

Falleri et al. [10] propose an approach to automatically construct an ontology from
the software system, by extracting concepts from identifier names in the source
code and organizing the identifiers into a WordNet-like structure. Their approach to
building such structure comprises of techniques such as tokenization of names and
part-of-speech tagging. Tian et al. [33] propose a technique that leverages information
from software information sites to construct a similarity relation between software
terms. The semantic relations for the software term set is estimated based on the
co-occurrence information extracted from StackOverflow. They demonstrate that this
technique is significantly more effective than a WordNet-based similarity measure.
Abebe and Tonella [1] exploit structural and linguistic information in the source code
to extract domain facts and store them in an ontology. The extracted ontology can be
used by developers to support them in program understanding tasks such as domain
concept location. Similar to these techniques, we automatically construct a taxonomy
of words extracted from the public API, computed in a software system-specific fashion.
Mahmoud and Bradshaw [24] investigate the performance of several semantic relat-

edness measurements from the natural language processing field. They observe that
corpus-based methods outperform methods that rely on external semantic knowledge.
To further improve the relatedness measure, they propose an information-theoretic
method called Normalized Software Distance that exploits the distributional cues of
identifiers across the system. Similar to this approach, we employ semantic related-
ness measurements to compute semantic similarity between lexical terms to enrich
identifiers extracted from the corpus of the source code. In addition, graph kernels are
used to calculate semantic similarity between identifiers in the constructed ontology.

2.2 Contextual representation of words in source code

Hill et al. [14] leverage phrasal concepts (PCs) to improve software search. They
introduce a relevance scoring function that integrates information about the position
of query words in the code as well as the semantic role of query words in phrasal

2:4

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

concepts. They show that location of a query term in the method signatures and
method bodies improves the accuracy of the search results. Another technique that
leverages the context of words in comments and code is proposed by Yang and Tan [39,
40] to automatically discover semantically related words in software systems. Their
hypothesis is that if two words or phrases are used in the same context in comment
sentences or identifier names, then they may exhibit syntactic and semantic similarity.
The semantically related words are then used for code searching. The effectiveness
of their approach is demonstrated using seven Java and C code bases. Howard et
al. [16] take a similar approach by extracting action verb pairs from method names
and their associated comments. The assumption they make is that action verbs present
in the method signature and the header comment are semantically related. These two
approaches heavily depend on the quality of naming and the descriptions provided in
the header comments of methods. These approaches are limited to a notion of context
of words from the natural language perspective, and does not concern the context of
the identifier name as a whole within a program.
Another model for suggesting method and class names is proposed by Allamanis et

al. [3] that goes beyond the local context of the named element to suggest functionally
descriptive names. They introduce neural probabilistic language model for source
code that learns which names are semantically similar by embedding them into a
high-dimensional space. They show that names with similar embeddings tend to be
used in similar contexts. In contrast to this work where semantic information about
tokens are learned only from statistical co-occurrences of tokens, we define explicit
context models that capture semantic similarity between the tokens within the source
code.
Zilberstein and Yahav [42] propose an approach for measuring semantic similarity

between code fragments by performing static analysis on code snippets to extract their
type signatures and incorporating their associated natural language descriptions. We
adopt a similar approach by performing syntactic analysis to compute an abstraction of
an identifier in terms of its type, and augment it with its natural language description
to compute the similarity between source code documents.

2.3 Semantic clustering of software systems

Semantic clustering, proposed by Kuhn et al. [19] is a modularization technique
based on Latent Semantic Indexing that partitions the software system based on a
common use of vocabulary, and identifies linguistic topics within the source code. The
observation they make is that the identified topics mainly correspond to application
concepts and architectural components, but fails to reveal the domain semantics.
Corazza et al. [8, 9] introduce a weighing mechanism to distinguish between the
information extracted from different zones in the source code, such as comments
and class names. Santos et al. [28] investigates conceptual metrics and semantic
clustering in the context of six real-world modularization projects. They conclude that
latent topics within the source code become more coherent after restructuring of the
software system. We have adopted semantic clustering to perform modularization on

2:5

On the E�ect of Semantically Enriched Context Models on Software Modularization

semantically enriched contextual representation of software system and evaluate our
approach on 10 Java open source projects.

3 Motivation

The basic premise in contextual approaches in natural language processing (NLP) is
that two words are closely associated if they share the same context. For instance,
two words that are associated with objects that ‘fly’ and ‘lay eggs’ are more closely
related than the ones associated with ‘swimming’, even though we don’t know what
exactly they are. Similar to word similarity, two documents are said to be similar if
they contain the same words in context. The N-gram model is one representation that
tries to incorporate a window of words in the meaning of a target word.
The definition of linguistic context is different from the context of identifiers in

software systems. Identifiers convey information about the values theymay hold during
the execution of the program. Identifiers are user-defined referenceable elements that
are uniquely identified by the compiler, which can take one of the following forms: 1)
class/module names, 2) fields/properties, 3) method/procedure/function names and
their 4) parameters, and 5) local variables. The use of syntactic analysis paves the
way for introducing more sophisticated context models for identifiers than approaches
based on word co-occurrence or co-occurrence within a window of words. Syntactic
analysis of source code allows us to extract contextual information about identifiers
such as dependency relationships between identifiers and their type information.
In the following, we outline two models for incorporating the contexts of identifiers

in the representation of the source programs. We proceed by describing how the
identifiers and the contexts can be enriched with semantic information, extracted
from implicit semantic dependencies as well as the similarity between their lexical
representations.

3.1 Contextual Vector Representation

Traditional models for document similarity are based on a document-term matrix.
In this model, a document vector represents the collection of words occurring in a
document (also known as bag of words). In a bag of words representation of the
document corpus, the mere co-occurrence of words is used to induce the document
similarity. The implicit context of word in this approach is the entirety of the documents
corpus.¹ This context free representation of the source program amounts to the bag of
identifiers (BoI), comprising of the collection of identifiers present in the source code
unit.
The majority of works in NLP on incorporating context in the representation of

document concerns the use of the local context of a word for determining its meaning.
Local context is usually represented as a window of words around the target word,

1 Although there is a global context, we will refer to these approaches as context-free.

2:6

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

regardless of the distance or grammar relations between the words. This representation
can’t be directly applied to programming languages. In contrast to natural languages
where adjacent terms may exhibit semantic relations, in programming languages,
how identifiers are grouped together in the concrete syntax of the program is usually
different from how they are semantically related. To clarify further, let us look at the
following simple example:

1 int a; boolean b;

From the declaration statements above, no semantic relations can be inferred between
identifiers a and b, even though they appear adjacent to each other. One context model
that captures the possible semantic relations between identifiers is to incorporate the
data type of an identifier into the vector representation of the source code unit.

3.2 Syntax-based Context Models

An alternative to the vector-based representation of contexts are the syntax-based
models. In these syntactic models, contexts are defined over words that have a syntactic
relationship with the target words of interest. This makes semantic spacesmore flexible:
different types of contexts can be selected; words do not have to co-occur within
a small, fixed word window; and word order or differences in text structure can
be naturally reflected in the semantic space [25]. The hypothesis is that syntactic
structure is a close reflection of lexical meaning. In general, syntactic models capture
a stricter notion of context, and should capture tighter semantic relations between
words.

In programming languages, the concrete syntax of a program is used by a developer
to specify a desired behaviour through an interaction between program elements. The
syntactic relations between these elements are extracted during the parsing stage of
compilation to build an abstract structure of the program (AST). This structure is then
mapped to a representation that can be “interpreted” by a runtime engine. Hence, the
abstract syntax serves as a bridge between the concrete syntax of a program and its
meaning. Any approach to find relations between identifiers cannot merely depend
on textual or syntactic structure of the program, but has to consider semantics too.
Our approach is based on program dependence graphs which builds on the abstract
syntax to represent the structure of a program and the data flow within it.
Program dependencies are syntactic relationships between program statements,

which are used to obtain an approximation about the flow of information between
program elements. There are two types of program dependencies: control dependen-
cies, which are features of a program’s control structure, and data flow dependencies,
which denote variable definitions and usages in a program. Here in this paper, we
restrict ourselves to flow-insensitive data dependencies, and don’t take into account
control dependencies between different program statements.
To further clarify the data dependencies in a program, let us consider the following

example:

1 a = b + c;

2:7

On the E�ect of Semantically Enriched Context Models on Software Modularization

The memory location identified by the name a is over-written by a value that
depends on the values of the memory locations identified by b and c. Hence, there is
a data dependency from identifiers b and c to identifier a.

3.3 Enrichment of Context Models with Semantic Knowledge

In the aforementioned context models, the contexts or identifiers must be equal to
induce any similarity between the documents that contain them. This restriction
can be relaxed by inferring a semantic similarity between pairs of identifiers or
contexts. For instance, the identifiers ‘developer’ and ‘secretary’ are of two different
types, but both of their types share the same superclass called ‘Employee’. If external
knowledge such as word relatedness is available, it is possible to enrich the document
representation using this semantic information. This information can be provided
through supervision by an expert in the domain, or derived from a knowledge base.
Hu et al. [17] leverage Wikipedia concept and category information to embed semantic
information into the text word vector.
The most obvious approximation of the context of an identifier is its type, or the

data structure it belongs. A data type or a data structure constrains the set of values
an identifier may take during runtime. For instance, consider the identifiers: ‘HashSet’,
‘OrderedSet’ and ‘setName’. Although the term ‘set’ is shared between all the three,
the last one is unrelated to the first two. The first two are subtypes of the ‘Set’ class,
whereas the last one is a setter method. On the other hand, ‘ArrayList’ and ‘HashSet’
are lexically unrelated, but both are subclasses of the Collection class.
The measure of semantic similarity between contexts and identifiers should be

sensitive to:
Conceptual similarity, measuring similarity between the concepts, i.e. types, and
using it to measure the closeness between identifier names based on whether they
belong to the same concept/structure.
Lexical similarity, measuring similarity of identifier names based on their lexical
representation.
The idea behind conceptual similarity is based on the observation that two identifiers

are more similar if they have a similar context, that is they belong to a similar type.
Before we can compute the similarity between two identifiers, we need to establish
what it takes for two types to be similar. In our first approach, we will employ semantic
relatedness measurement metrics from the information retrieval field that computes
similarity between senses of words. The second approach computes the similarity
between senses of words by propagating the information in the semantic network.
Conceptual similarity is not the sole determinant in inducing semantic similarity

between identifiers. Two identifiers could be of compatible types, but have no semantic
relationships. For instance, identifiers ‘PersonName’ and ‘CarModel’ are of type String,
but have different senses. Another approximation for the context information is the
lexical similarity between two identifiers. For more information about computing the
lexical similarity between identifier names, please refer to appendix B.

2:8

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

4 Methodology

In this section, we describe our approach to building various context models for the
representation of the vocabulary found in the corpus of source code. Before outlining
the context models, we briefly describe the process for enrichment of identifiers and
contexts with semantic knowledge.

4.1 Semantic Enrichment Process

The semantic enrichment process is depicted in figure 1. In the first step, we construct
a knowledge base (KB) for representing the semantic dependencies of identifiers
and their associated contexts (identifier-concept mappings). We scan through the
source code to identify semantic dependencies, i.e. the packages imported in each
class. Using the established imported libraries, we automatically extract referenceable
identifiers exposed in a public API to construct the semantic network. This extrac-
tion is performed through shallow parsing of the source code to only retrieve the
relevant public members both in internal and external sources. Since we focus on
unsupervised extraction of information from the semantic dependencies, we have
no notion of synonymy and antonymy. However, this information can be provided
through supervision by a developer or an architect who is familiar with the source
code naming. For more information about how to automatically construct a semantic
network from the software system, please refer to appendix A.
Once the knowledge base is constructed, we employ two techniques to compute the

similarity between concepts, one based on employing semantic relatedness measures
from NLP, and the other using the diffusion kernel to compute the similarity between
nodes in the semantic network. Once the concept similarity is computed, it is possible
to use the identifier-concept mappings to disambiguate the meaning of identifiers.
Each identifier may have different meanings (or senses), depending on the type it may
take. For instance, the identifier ‘tree’ may represent a plant or a data structure, or
something unrelated to its textual meaning, based on the type it belongs to. Like word
sense disambiguation in NLP, we perform identifier sense disambiguation to measure
the similarity scores between identifiers. In appendix A, we thoroughly describe the
aforementioned techniques for enriching different context models with conceptual
similarity.
Depending on how the context is modelled, various representations can then be

enriched with semantic information, which can be used to perform cluster analysis for
tasks such as software modularization. The semantic similarity measures only account
for the exposed members of the API. Hence, any program element referenced within
the body of the method which is scoped locally to that method cannot be annotated
with the semantic information.

4.2 Contextual Vector Representation

As stated earlier, the plain BoW representation of the documents is a vector space
model where the entirety of the corpus is the context for each word. The bag of

2:9

On the E�ect of Semantically Enriched Context Models on Software Modularization

Figure 1 Semantic Enrichment Process

features (BoF) is the generalization of the BoW, representing the frequency of features
per document unit. The bag-of-features model is defined as follows:

φ(d) = c(t f (f1), t f (f2), . . . , t f (fn))

where t f (fi) denotes the frequency of feature fi in document d. The features can be
the identifiers, identifier-context pairs, or just contexts. When the features are plain
words, the BoF is equivalent to the BoW representation.
A problem with the BoW representation is the existence of polysemy in identifier

names, leading to imprecision in the similarity relations between documents. We
propose two variants of the vector-based context model that take the type of identifiers
into account. The first variant is to augment each identifier with the context it appears
within the source code, giving rise to the context-identifier vector representation of
the corpus. The possible space for this representation is the cartesian product of the
identifiers and contexts (i.e. types). This contextual representation is a sparse matrix,
since in practice, not every identifier takes every possible type. Another contextual
vector representation is the abstraction of identifiers in terms of their context, i.e. the
data types. In this representation, each source code unit is mapped into a space where
each feature is a data type and the feature’s value is the frequency of occurrence of
that type in the source code unit.
To further clarify the various contextual vector representation of the source code,

let us consider the following example.

2:10

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

Table 1 From left to right: 1) Bag of identifiers in class ‘Employee’, 2) Bag of pairs of
identifer-types in class ‘Employee’, and 3) Bag of types in class ‘Employee’

Employee
name 2
salary 4
hireDay 1
year 1
month 1
day 1
temp 4

byPercent 1
bonus 1

Employee
(name,String) 2
(salary,double) 4
(hireDay,Date) 1

(year,int) 1
(month,int) 1
(day,int) 1

(temp,Date) 2
(byPercent,double) 1
(bonus,double) 1
(temp,double) 2

Employee
String 2
double 8
int 3
Date 3

Listing 1 An example in Java
1 public class Employee {
2 public String name;
3 public double salary;
4 public Date hireDay;
5
6 public Employee(String name, double salary, int year, int month, int day) {
7 this.name = name;
8 this.salary = salary;
9 Date temp = new Date(year, month, day);
10 this.hireDay = temp;
11 }
12
13 public double raiseSalary(double byPercent, double bonus) {
14 double temp = salary * byPercent / 100;
15 salary += temp + bonus;
16 }
17 }

Table 1 gives various contextual vector representations of the source code corpus
used in this paper, starting from the context-free representation (i.e. bag of identifiers),
to bag of identifier-contexts, as well as bag of contexts representation. The identifier
‘temp’ as used in the code snippet above, takes two forms, one as an instance of ‘Date’
in the constructor, and the other as a ‘double’ in the body of the method ‘raiseSalary’.
The identifier-context representation of the class, as shown in table 1 can distinguish
between these two identifiers by incorporating contextual information, the information
which is lost in the plain bag of identifiers representation.

In appendix C, we demonstrate how to enrich the vector representation φ(d) with
semantic knowledge to build a semantic kernel. The semantic kernel leaves composite
identifier names unbroken, it captures the semantic closeness of synonymous identifier
names, and performs word sense disambiguation for polysemous identifiers.

4.3 Dependency-based Construction of Context Model

The dependency-based context model is based on computing the similarity between
twomodules based on howmuch their corresponding data dependency graph is similar.

2:11

On the E�ect of Semantically Enriched Context Models on Software Modularization

module M ::= funi(
−→v)

functions fun(−→v) ::= −→s
statements S ::= e

| v := e
| ret e

expressions e ::= id
| e.id

idenitifiers Id ::= v
| call f(e)

Figure 2 The context-free grammar used to construct the data dependency graph

It employs the data dependency graph to represent the semantic dependencies, and
therefore considers the data flow between program identifiers (as an abstraction of
the semantics). The data dependency graph makes an explicit representation of the
definition-use relationships implicitly present in a source program.
The grammar shown in figure 2 describes a simple language, which we use here

to demonstrate how a data dependency graph can be constructed from different
constructs present in the program.
Suppose M is the set of modules with a vocabulary set D = {id1, id2, . . . , idn}, where

idi represents the i th unique identifier present in M. The data dependency graph G for
the module m is denoted as a directed graph G =< V, E >. Similar to a PDG and the
AST, each identifier idi in the vocabulary set is mapped to a vertex in the graph. E is
the collection of edges between the vertices in the graph, where each edge e = (vi , v j)
indicates that there is a data dependency from vi to v j, that is the value stored in v j

may affect the value computed from vi, at some point in the program. The meaning of
an identifier id is sought in the context of 1) the identifiers which their values reach
the identifier id, or 2) the identifiers that may be affected by the value of the identifier
id.
Functions are usually called using prefix notation where the function name is

followed by its arguments. However, for some function calls such as arithmetic and
logical operators, they appear in infix notation. We transform these operators into
prefix notation, where the operator is replaced with a nameless function call.² Each
variable and function call is attributed to a vertex in the data dependency graph.
Data definition edge represents the assignments of values to variables. The defi-

nition edges are similar to the value dependence edges, except that they show that
a computed value is stored into a variable. The return statement assigns the value
stored/computed in an identifier to the container function. In function calls, the
arguments (actual parameters) are passed into the function, so there are edges from
the arguments to the function (formal) parameters. We assume that the arguments

2We are only interested in the flow of data between variables, and the type of the operation
for in-built operators can be erased.

2:12

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

Figure 3 The data dependency graph of the Java example program, composed of abstract
nodes designating the identifier names and abstract links designating different
types of data flow.

are passed by value, hence the flow is uni-directional. Between the components of an
expression in an access path, there are bidirectional edges between target variables.
Consider the example ‘employee.setVehicle(newCar);’ . The receiver object may be
affected (a conservative approximation) by the side-effects arising from calling the
method ‘setVehicle’. On the other hand, the ‘setVehicle’ may use values stored in the
receiver object ‘employee’. In our analysis, we do not distinguish between instance
and class members. Another shortcoming of our analysis is that we do not take into ac-
count name aliases, although the aliasing operation maps to a single data dependency
edge.
For example, let us have another look at the code snippet in listing 1. The ‘raiseSalary’

method in Class ‘Employee’ calculates the new salary based on the amount of ‘raise’
and end of year ‘bonus’, and assigns the new calculated amount to the field ‘salary’.
Figure 3 depicts the data dependency graph constructed for the above code snippet.
Graph kernels [35] provide a natural way to compute the similarity between graphs.

The random walk graph kernel is one such technique that has been used for classi-
fication and measuring similarities between graphs. Given two graphs, the random
walk kernel computes the number of common walks between two graphs. Two walks
are common between the graphs if the lengths of the walks are equal, and the label
sequences are the same. For more information about graph kernels, please refer to
appendix E.
The random walk kernel is parameterized over a positive semi-definite function

that computes the similarity between the labels in the graph, i.e. the identifier names.
We can restrict the label similarity to return 1 when the labels are identical, and
0 otherwise. However, this notion of similarity is too strict and doesn’t capture the
similarity induced from conceptual and lexical similarity between the identifier names.
For instance, the two identifier names, ‘salary’ and ‘raiseSalary’ are not identical, but
are conceptually and lexically similar. We use the semantic kernel produced from
the semantic enrichment process to adjust the label similarity based on both the
conceptual and lexical similarity of identifier names, hence making this context model
semantics-aware.

5 Empirical Evaluation

In this section, we present the empirical evaluation to assess the effectiveness of
our proposed context models for semantic clustering of software systems. We have
conducted experiments on 10 medium-sized open source Java projects [27], as given

2:13

On the E�ect of Semantically Enriched Context Models on Software Modularization

Table 2 The benchmark for empirical evaluation of lexical clustering of various semantic
space models

System Description Version #Classes KLOC
Apache Ant building library 1.9.3 691 31.07
Apache Hadoop distributed computing library 0.20.2 707 102.53
Apache Log4j logging library 1.2.17 218 10.54
Eclipse JDT Core Java Development Tools 3.8 1, 276 162.59
JDOM XML library 2.0.5 140 21.93
JEdit text editor 5.1.0 536 112.58
JFreeChart chart library 1.2.0 655 100.05
JHotDraw GUI framework 7.0.6 284 12.01
JUnit unit testing 4.12 167 6.09
Weka machine learning library 3.6.11 1, 346 203.51

in table 2, using different encodings of the semantically enriched context models
and the results show that our approach is more effective in semantic clustering than
previous approaches.

5.1 Methods and Evaluation Measures

Lexical-based clustering (semantic clustering) is employed as a basis to evaluate the
performance of the methods to enrich the source code terms. Software clustering is
the process of decomposing software systems into more cohesive and maintainable
subsystems. Semantic clustering groups source code modules into clusters based on
common usage of vocabulary.
The quality of the produced clusters is evaluated against an authoritative decompo-

sition. We have adopted the approach employed in works [8, 9, 37] to use the package
structure as the authoritative decomposition of the system. In contrast to some of the
aforementioned approaches, we have decided not to flatten the package structure
and preserve its taxonomy. In a package structure, each package is a well-defined unit
which encapsulates its subpackages. Hence, flattening the package structure loses the
scope of packages, and is not a good ground truth for evaluating the clustering. For
instance, a ‘util’ subpackage in ‘model’ subdirectory is more closely associated with its
sibling subpackages than subpackages in ‘GUI’ subdirectory. Furthermore, to ensure
integrity across the clusters, we eliminate packages that have 4 or fewer modules and
break the packages with more than 40 classes into smaller packages.
Hierarchical clustering is a clustering technique that enables us to produce a hierar-

chy of clusters. The advantage of using hierarchical clustering for modularization of
system modules is that:

It does not assume a particular value for the number of clusters, as needed by
partitioning algorithms such as k-means.
The generated tree closely resembles the package structure of the software system.
The tree can be cut into several groups by specifying the desired number of clusters.

2:14

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

Hierarchical clustering algorithms (linkage algorithms), unlike partitioning algo-
rithms such as k-means, are deterministic, and produce the same decomposition
every time.
Since hierarchical clustering algorithms work on distance matrices, we compute

the corresponding distance matrix from the similarity matrix by subtracting it from 1,
i.e. D = 1− S.
To evaluate the (dis)similarity between the produced hierarchical clustering and

the authoritative hierarchical decomposition, we have opted for the following scores.
Any (dis)similarity score between the trees should be sensitive to the taxonomic
structure of the trees.

5.1.1 Tree Edit Distance
Tree edit distance (TED) measures the minimal number of edit operations required to
transform one tree to another. The edit operations on labelled trees include renaming
of a node, removal of a node and connecting its children to its parent, and addition of
a new node. We have implemented the tree edit distance algorithm described in [41]
and apply it to the trees corresponding to the produced clustering and the package
structure. The only constraint we impose in our implementation of the metric is that
renaming of leaf nodes (i.e. modules) is not allowed, while renames of non-tip nodes
(i.e. subdirectories) incur no costs. All ther other operations have a single unit cost.

5.1.2 Path Di�erence Metric
The path difference metric (PD) is a distance metric proposed by Steel and Penny [32]
that measures the topological dissimilarity of two trees, while ignoring the lengths
of branches. In this metric, for each possible pair of leaves in each tree, the length
of shortest paths (the number of nodes traversed from one node to the other) are
computed. The sum of the differences in these shortest path lengths is the distance
between the two trees. In the variant proposed by Steel and Penny [32], the terms
in the difference are raised to the power of two. The lower value for PD indicates a
higher quality decomposition.

5.1.3 Complete Linkage Algorithm
We have conducted a set of experiments using different hierarchical clustering algo-
rithms to find a linkage algorithm which gives the most authoritative solutions. The
trials show that the complete linkage algorithm yields results that are superior to
other linkage algorithms. The complete link aggressively forces clusters to be as dis-
similar as possible. The result of complete link is also consistent with our objective of
decomposing the system to subsystems that are cohesive without negatively affecting
coupling.

2:15

On the E�ect of Semantically Enriched Context Models on Software Modularization

5.2 Experimental Settings and Results

In this evaluation,³ we first establish the best choice for contextual vector represen-
tation of the source code, by making a comparison between the aforementioned
models. Once the best model is identified, we evaluate our two semantically enriched
context models for the source code representation, by comparing it against the plain
bag-of-identifier representation.
In appendix D, we have conducted the set of experiments to find the best technique

for semantic enrichment of context and identifiers using conceptual and lexical similar-
ity. The results demonstrate that the normalized longest common substring (LCS) is a
good choice for computing the similarity between identifier names. LCS measures the
length of the longest consecutive set of characters shared between the two identifier
names. On the other hand, diffusion of similarity over the semantic network (SN)
yields results that are superior to semantic relatedness measures for computing simi-
larity between contexts and identifiers. In contrast to semantic relatedness measures,
the diffusion kernel doesn’t distinguish between different kinds of relationships in
the SN, and induces less similarity through nodes with high (in/out)degree such as
common utility and helper functions.

5.2.1 Evaluation of Context Vector Representation
We first make a quantitative comparison between different contextual vector repre-
sentations to find the best method in this context model.
We compare the performance of the following three methods:
EBoI: The bag of identifiers enriched with the semantic matrix from element-wise
product of diffusion-based conceptual similarity and normalized LCS kernel with
the idf weighing schema.
EBoIT: The bag of identifier-types enriched with the semantic matrix from the Kro-
necker product⁴ of diffusion-based conceptual similarity and normalized common
substring kernel with the idf weighing schema.
EBoT: The bag of types enriched with the semantic matrix from diffusion-based
conceptual similarity over type structure with the idf weighing schema.
Table 3 gives the results of our contextual vector model against the enriched BoI

representation of the source code corpus. In 7 out of 10 cases, the bag of identifier-
types (BoIT) give results that are superior to the other representations, however, the
bag of types (BoT) scores lower than even the enriched BoI. This demonstrates the
significance of the information that identifier names contain, that should be exploited
in any lexical-based program analysis. This finding shows that the full context of an
identifier is best expressed in terms of the pair of identifier name and its type.

3 The implementation of the approaches used in this paper can be found as part of the
GeLaToLab project at: https://github.com/amirms/GeLaToLab

4 Given two real matrices A∈ Rn×m and B ∈ Rp×q, the Kronecker product A⊗ B ∈ Rnp×mq is a
block matrix defined as the product of each element in A with all the elements in B.

2:16

https://github.com/amirms/GeLaToLab

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

Table 3 The comparison of plain bag of identifiers with enriched variants of bag of identi-
fiers, bag of identifier-types, and bag of types

System
EBoI EBoIT EBoT

PD TED PD TED PD TED
Apache Ant 7457 1961 8738 2049 13006 2049

Apache Hadoop 2466 711 2369 682 2887 733
Apache Log4j 1365 457 1112 432 1731 483

Eclipse JDT Core 14344 2374 11057 2235 18382 2628
JDOM 765 265 640 247 784 265
JEdit 4461 1194 5305 1232 5814 1224

JFreeChart 5652 1380 5618 1352 6531 1450
JHotDraw 1958 653 1946 651 2304 661

JUnit 563 252 697 288 784 296
Weka 8471 2038 7362 1992 9925 2165

5.2.2 Comparison of Context Models
Based on the previous results, we have configured our enrichment approaches for both
the string kernel and the choice of conceptual similarity measurement. We compare
the performance of the following three methods:

BoI (baseline): The plain bag of identifiers (BoF) with the idf weighing schema.
SSK1: The bag of features enriched with the semantic matrix from element-wise
product of diffusion-based conceptual similarity and normalized common substring
kernel with the idf weighing schema.
SSK2: The semantic kernel computed from performing randomwalk kernel between
the data dependency graphs of modules with element-wise product of diffusion-
based conceptual similarity and normalized common substring kernel for similarity
between the labels of the graph.
Table 4 gives the comparative results of our context models against the plain BoF

representation of the source code corpus. Both of the contextual representations give
results that are superior to the plain vector representation of documents. In some
cases, the result is improved by 66% in PD. Interestingly, the semantically enriched
bag of identifier-context pairs outperforms the dependency-based context model. This
could be due to the fact that dependency graphs must be considered in terms of the
whole progam, comprising of inter-module call dependencies.

5.3 JEdit Case Study

To demonstrate the usefulness of semantically enriched context models for both
software modularization and program comprehension, we perform semantic clustering
on JEdit using the choices we established in the previous section. We show how by
taking a knowledge-rich method, one may obtain more meaningful results. Several
software engineering activities involve computing the similarity between source code

2:17

On the E�ect of Semantically Enriched Context Models on Software Modularization

Table 4 The comparison of plain bag of identifiers with semantically enriched CV and DG
context models

System
BoI SSK1 SSK2

PD TED PD TED PD TED
Apache Ant 21218 2287 8738

(−58.82%)
2049
(−10.41%)

7287
(−65.66%)

2014
(−11.94%)

Apache
Hadoop

4452 743 2369
(−46.80%)

682
(−8.21%)

2282
(−48.74%)

715
(−3.77%)

Apache
Log4j

2263 487 1112
(−50.86%)

432
(−11.29%)

1083
(−52.13%)

425
(−12.73%)

Eclipse JDT
Core

31327 2748 11057
(−64.71%)

2235
(−18.67%)

13753
(−56.10%)

2492
(−9.32%)

JDOM 878 273 640
(−27.11%)

247
(−9.52%)

664
(−24.41%)

257
(−5.86%)

JEdit 9148 1286 5305
(−42.01%)

1232
(−4.20%)

6601
(−27.84%)

1233
(−4.12%)

JFreeChart 12444 1464 5618
(−54.85%)

1352
(−7.65%)

7109
(−42.87%)

1414
(−3.42%)

JHotDraw 3002 665 1946
(−35.16%)

651
(−2.11%)

2454
(−18.26%)

654
(−1.65%)

JUnit 1098 300 697
(−36.53%)

288
(−4.00%)

984
(−10.39%)

304
(+1.33%)

Weka 18023 2304 7362
(−59.15%)

1992
(−13.54%)

9262
(−48.61%)

2010
(−12.76%)

identifiers (terms), such as code abbreviation expansion, code search, and topic
identification for program comprehension. Knowing terms relatedness allows for
discovering prevalent themes that run through the source code, as well as finding
relevant documents or terms based on a user’s search query.
In this section, we perform a textual analysis on the JEdit project using the contextual

representations. The JEdit editor consists of 536 classes spread through 29 packages.
The vocabulary consists of 5935 distinct identifier names. In the first application,
we demonstrate how identifier similarity can be employed to derive topics that run
throughout the source code, followed by performing a context analysis to show the
types that are prevalent in each package in the source program.

5.4 Topic Analysis

Similar to document clustering, clusters of terms are those that frequently co-occur
in documents. Term clusters (from now on, referred to as topics) can be potentially
used for the identification and representation of topics prevalent throughout the
source code. To compute the proximity between identifiers, we use the semantically
enriched bag of identifier-context representation. The new perspective is to consider

2:18

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

the collection of identifier-context pairs per document as identifier versus document-
context pairs, and count the number of times that an identifier occurs in terms of the
occurrence of a type in a document. We use the normalized euclidean distance to
compute pairwise distances between the identifier names from the enriched bag of
document-context pairs. Alternatively, it is possible to compute term-term similarity
from the dependency-based context model. In this approach, the dependency graphs of
all modules are merged to construct a whole-program dependency graph, comprising
of all the identifiers occurring throughout the source program combined with their
data dependency relations. Diffusion kernel can be employed to compute the similarity
between the nodes (identifiers) in the dependency graph.
The produced distance matrix from the contextual vector representation is used

to produce topics and is compared against the topics produced using the plain Bag-
of-Identifiers representation (BoI). The clustering algorithm used here to compute
the term clusters is a ‘complete’ hierarchical algorithm. Although we have opted for
an agglomerative algorithm to group together terms, both the choice of partitioning
algorithm as well as the method used can be debated, but this is out of the scope of
this paper. The produced dendrogram is then cut into an priori known number of
topics, to find groups of similar terms.
After the examination of the documentation and running the application, we have

identified 7 topics within the software system. We have also verified the identifier
names and topics by scanning through the relevant parts of the source code. The
following topics are in close alignment with those identified by Kuhn et al. [19], in
which they apply their approach on JEdit to identify topics that run through the
system. Some of the well-encapsulated topics include:

Core domain concepts such as management of file system and user interactions.
User interface including UI components and their layout.
Text Area with functionalities for improving the programming experience including
bracket matching, auto-indentation and commands for commenting out code.
Plugins for extension and adding features to the editor.
Search and Replace using both literal and regular expressions.
Regular expressions to specify inexact search and replace.
BeanShell scripting language for tasks such as writing macros.
To make a comparison between the topics discovered from a plain representation of

BoI and those from the enriched contextual representation with semantic knowledge,
we have identified 6 identifier names that capture different conceptual information
about each topic. The selected names for each topic comprise of concepts associated
with each topic. Table 5 lists the set of labels for each topic. All the labels are identifier
names that appear in the source code corpus and as such do not always correspond to
topical terms, such as a text-editor or regular-expression. It is the collection of names
grouped together in a cluster that can be used to analyze and interpret the topic
associated with that cluster.
figure 4 depicts the side-by-side clusters (topics) of the identifier names for JEdit and

its labels, both for the plain BoF and the enriched contextual vector representation.
We first make a quantitative comparison against the established ground truth by

2:19

On the E�ect of Semantically Enriched Context Models on Software Modularization

Table 5 The labels for each topic of JEdit

Topic Labels
BeanShell BSHINIT, isJavaBaseAssignable, Interpreter, invoke, resolve-

JavaMethod, isWrapperType
Search & Replace doBackwardSearch, doForwardSearch, searchField, hyper-

Search, replace, replaceSelection
Regular Expressions escapeRule, startRegexp, endRegexp, pattern, terminateChar,

matchType
Text Area caretLine, autoIndent, findMatchingBracket, getLineCount,

caret, getSelectedText
Core settingsDirectory, queueAWTRunner, createVFSSession, in-

vokeAction, buffer, handleMessage
Plugins activatePlugin, author, description, version, pluginSet, get-

PluginJAR
UI processKeyEvent, toolbar, menubar, needFullRepaint, focused-

Component, addDockableWindow

evaluating the quality of produced clusters against the reference topic using the TED
and PD scores. The topics discovered from the plain representation has 103 unit TED
and 237 PD difference with the reference topic decomposition, whereas the enriched
variant gives 91 unit TED and 212 PD difference. This demonstrates that by enriching
the vector representation of document with semantic information, it is possible to
obtain more meaningful results for topic identification in the source code.
Examining the tanglegram shown in figure 4 demonstrates that the produced topics

for the enriched contextual variant tends to be more coherent, and align better with
those of the reference topic decomposition. On the other hand, the topics discovered
using the plain representation tends to be more heterogeneous. In the case of regular
expressions, both decompositions seem to exhibit similar grouping.

5.5 Context Analysis

In another application of contextual representation, we investigate the relations
between the software system and the prevalent contexts throughout the source
program. We will use the module-type representation of the source program to
identify how the types are used in each package, and use that information to group
together the types as well as the source modules. We have grouped together the
package structure of JEdit system into 10 packages (while merging packages deep
in hierarchy and eliminating packages with fewer than 5 classes). We have used the
normalized euclidean distance to compute the distances between the types as well as
modules. Since each class is a referenceable type that can be used from within the
program, the types consist of references to classes that are part of the source program.
Figure 5 illustrates the heatmap corresponding to the relations between the modules

confined in the packages and the types used in the source program. The color red

2:20

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

Figure 4 The topics of JEdit and their labels

indicates a lack of relation, whereas light green indicates strong similarity. As shown,
the utility types such as the ones imported from ‘java.util’ are commonly used through-
out the program. The gui package of jEdit uses types from libraries ‘javax.swing’ and
‘java.awt’. Another observation is that each package mainly depends on the types
internally encapsulated within that subdirectory, indicating that the packages are
well-defined. This observation further supports our argument for using the package
structure as the authoritative decomposition.

2:21

On the E�ect of Semantically Enriched Context Models on Software Modularization

Figure 5 The types used in JEdit

5.6 Discussions

Although enriching identifiers with semantic information helps to better understand
a program, a more rigorous approach needs to be employed to fully exploit the
underlying formal semantic framework. We need to distinguish between different
zones in the source code, while treating identifier names as lexical objects with specific
formal semantics, while comments can be treated as short texts in natural language.
The identifier names used for empirical evaluation are crude, however, a prepro-

cessing step can be introduced for normalizing the names. As part of preprocessing,
one can eliminate identifier names that are common words in a specific language,
or terms that denote some common utility library (eg. bufferReader). Lawrie and
Binkley [20] suggest an expansion algorithm to normalize the source code vocabulary.
Another approach that can be accommodated in this process is that of Corazza et
al. [7], called LINSEN. They propose to use an approximate string matching technique,
and several general and domain specific dictionaries, to split identifiers and expand
abbreviations.
Although a good naming convention and well-chosen identifier names help with

understanding latent topics within source code, our approach is almost independent
of the naming convention. By enriching the identifier names with formal semantic

2:22

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

knowledge, it is possible to avoid problems with poor naming quality of identifiers. In
case where names are cryptic abbreviations (as is the case with many legacy systems),
this approach opens up new possibilities to understanding the topics and decode the
names in the context of their co-clustered names.

5.7 Threats to Validity

The generalizability of our findings in this paper is limited by the restricted set of
projects comprising of 10 open source Java projects. We believe our techniques should
be evaluated on more and larger systems to evaluate the effectiveness of our approach.
A major threat to the validity of this research is constructing the gold standard. In

this paper, we have opted for the package structure of the software system to build
the authoritative decomposition. This approach is in line with previous works [5, 34],
where they have also used the package structure for evaluation of their approaches.
To ensure the quality of the ground truth, we have selected projects which are well-
engineered or have gone through a re-structuring from the previous version. The
results obtained by comparing the approaches with the authoritative decomposition
is in alignment with our hypotheses, which further supports the quality of the ground
truth. Furthermore, we have eliminated small packages with fewer than 4 classes,
and manually split larger packages with more than 40 classes into smaller packages.
Eliminating small and large packages ensure that the oracle decomposition itself
doesn’t exhibit an extreme distribution, and is uniformly grouped.

6 Conclusion and Future Work

In general, our results demonstrate the benefits of both introducing contexts for identi-
fiers as well as enriching them with semantic knowledge. As demonstrated, in all cases,
the semantically enriched context models give more authoritative decompositions
when performing cluster analysis. Furthermore, as shown in the JEdit case study, the
topics discovered are superior in quality. Our approach to evaluation of our technique
is fully unsupervised, but it is possible to introduce supervision for filtering types, and
selecting sensible identifier names to reduce noisy features when performing program
comprehension analyses.
In the dependency-based context model, we restricted ourselves to flow-insensitive

data dependencies. Making the data dependencies flow sensitive may further improve
the results for this context model. Furthermore, in this representation, the context
can be further refined by annotating each identifier with its type information. Our
approach in enriching the data dependency graph of each module with semantic
information about identifiers paves the way to perform semantically enriched fine-
grained program analyses such as program slicing. Another thesaurus-based method
for computing similarity is the gloss-based method. In general, members of the Public
API are accompanied with documentation, which can be considered as a description
of the member (i.e. gloss). We would like to integrate this source of knowledge to
further improve semantic relatedness between source code identifiers.

2:23

On the E�ect of Semantically Enriched Context Models on Software Modularization

References

[1] Surafel Lemma Abebe and Paolo Tonella. “Extraction of domain concepts
from the source code”. In: Science of Computer Programming 98, Part 4 (2015),
pages 680–706. issn: 0167-6423. doi: 10.1016/j.scico.2014.09.012.

[2] Eneko Agirre and German Rigau. “Word Sense Disambiguation Using Concep-
tual Density”. In: Proceedings of the 16th Conference on Computational Linguistics
- Volume 1. COLING ’96. Copenhagen, Denmark: Association for Computational
Linguistics, 1996, pages 16–22. doi: 10.3115/992628.992635.

[3] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. “Sug-
gesting Accurate Method and Class Names”. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2015. Bergamo,
Italy: ACM, 2015, pages 38–49. isbn: 978-1-4503-3675-8. doi: 10.1145/2786805.
2786849.

[4] Nicolas Anquetil and Timothy Lethbridge. “Assessing the Relevance of Identifier
Names in a Legacy Software System”. In: Proceedings of the 1998 Conference of
the Centre for Advanced Studies on Collaborative Research. CASCON ’98. Toronto,
Ontario, Canada: IBM Press, 1998, pages 213–222. url: http://dl.acm.org/
citation.cfm?id=783160.783164.

[5] Fabian Beck and Stephan Diehl. “Evaluating the Impact of Software Evolution
on Software Clustering”. In: Proceedings of the 2010 17th Working Conference on
Reverse Engineering. WCRE ’10. Washington, DC, USA: IEEE Computer Society,
2010, pages 99–108. isbn: 978-0-7695-4123-5. doi: 10.1109/WCRE.2010.19.

[6] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra,
and Jenifer C. Lai. “Class-based N-gram Models of Natural Language”. In:
Comput. Linguist. 18.4 (Dec. 1992), pages 467–479. issn: 0891-2017. url:
http://dl.acm.org/citation.cfm?id=176313.176316.

[7] Anna Corazza, Sergio Di Martino, and Valerio Maggio. “LINSEN: An Efficient
Approach to Split Identifiers and Expand Abbreviations”. In: Proceedings of
the 2012 IEEE International Conference on Software Maintenance (ICSM). ICSM
’12. Washington, DC, USA: IEEE Computer Society, 2012, pages 233–242. isbn:
978-1-4673-2313-0. doi: 10.1109/ICSM.2012.6405277.

[8] Anna Corazza, Sergio Di Martino, and Giuseppe Scanniello. “A Probabilistic
Based Approach Towards Software System Clustering”. In: Proceedings of the
2010 14th European Conference on Software Maintenance and Reengineering.
CSMR ’10. Washington, DC, USA: IEEE Computer Society, 2010, pages 88–96.
isbn: 978-0-7695-4321-5. doi: 10.1109/CSMR.2010.36.

[9] Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe Scanniello.
“Investigating the Use of Lexical Information for Software System Clustering”.
In: Proceedings of the 2011 15th European Conference on Software Maintenance
and Reengineering. CSMR ’11. Washington, DC, USA: IEEE Computer Society,
2011, pages 35–44. isbn: 978-0-7695-4343-7. doi: 10.1109/CSMR.2011.8.

2:24

http://dx.doi.org/10.1016/j.scico.2014.09.012
http://dx.doi.org/10.3115/992628.992635
http://dx.doi.org/10.1145/2786805.2786849
http://dx.doi.org/10.1145/2786805.2786849
http://dl.acm.org/citation.cfm?id=783160.783164
http://dl.acm.org/citation.cfm?id=783160.783164
http://dx.doi.org/10.1109/WCRE.2010.19
http://dl.acm.org/citation.cfm?id=176313.176316
http://dx.doi.org/10.1109/ICSM.2012.6405277
http://dx.doi.org/10.1109/CSMR.2010.36
http://dx.doi.org/10.1109/CSMR.2011.8

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

[10] Jean-Rémy Falleri, Marianne Huchard, Mathieu Lafourcade, Clémentine Nebut,
Violaine Prince, and Michel Dao. “Automatic Extraction of a WordNet-Like
Identifier Network from Software”. In: ICPC’10: 18th IEEE International Con-
ference on Program Comprehension. Edited by Keith Gallagher Giuliano An-
toniol. Braga, Portugal: IEEE Computer Society, June 2010, pages 4–13. doi:
10.1109/ICPC.2010.12.

[11] François Fouss, Kevin Francoisse, Luh Yen, Alain Pirotte, and Marco Saerens.
“An Experimental Investigation of Kernels on Graphs for Collaborative Recom-
mendation and Semisupervised Classification”. In: Neural Networks 31 (July
2012), pages 53–72. issn: 0893-6080. doi: 10.1016/j.neunet.2012.03.001.

[12] Gregory Grefenstette. Explorations in Automatic Thesaurus Discovery. Norwell,
MA, USA: Kluwer Academic Publishers, 1994. isbn: 0-7923-9468-2.

[13] Emily Hill, Zachary P. Fry, Haley Boyd, Giriprasad Sridhara, Yana Novikova, Lori
Pollock, and Vijay K. Shanker. “AMAP: Automatically Mining Abbreviation Ex-
pansions in Programs to Enhance Software Maintenance Tools”. In: Proceedings
of the 2008 International Working Conference on Mining Software Repositories.
MSR ’08. Leipzig, Germany: ACM, 2008, pages 79–88. isbn: 978-1-60558-024-1.
doi: 10.1145/1370750.1370771.

[14] Emily Hill, Lori Pollock, and Vijay K. Shanker. “Improving Source Code Search
with Natural Language Phrasal Representations of Method Signatures”. In:
Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering. ASE ’11. Washington, DC, USA: IEEE Computer Society,
2011, pages 524–527. isbn: 978-1-4577-1638-6. doi: 10.1109/ASE.2011.6100115.

[15] Andreas Hotho, Steffen Staab, and Gerd Stumme. “Ontologies Improve Text
Document Clustering”. In: Proceedings of the Third IEEE International Conference
on Data Mining. ICDM ’03. Washington, DC, USA: IEEE Computer Society, 2003,
pages 541–544. isbn: 0-7695-1978-4. doi: 10.1109/ICDM.2003.1250972.

[16] Matthew J. Howard, Samir Gupta, Lori Pollock, and Vijay K. Shanker. “Automat-
ically Mining Software-based, Semantically-similar Words from Comment-code
Mappings”. In: Proceedings of the 10th Working Conference on Mining Software
Repositories. MSR ’13. San Francisco, CA, USA: IEEE Press, 2013, pages 377–386.
isbn: 978-1-4673-2936-1. doi: 10.1109/MSR.2013.6624052.

[17] Xiaohua Hu, Xiaodan Zhang, Caimei Lu, E. K. Park, and Xiaohua Zhou. “Exploit-
ing Wikipedia As External Knowledge for Document Clustering”. In: Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’09. Paris, France: ACM, 2009, pages 389–396. isbn: 978-1-
60558-495-9. doi: 10.1145/1557019.1557066.

[18] Risi Imre Kondor and John D. Lafferty. “Diffusion Kernels on Graphs and
Other Discrete Input Spaces”. In: Proceedings of the Nineteenth International
Conference on Machine Learning. ICML ’02. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2002, pages 315–322. isbn: 1-55860-873-7. url:
http://dl.acm.org/citation.cfm?id=645531.655996.

2:25

http://dx.doi.org/10.1109/ICPC.2010.12
http://dx.doi.org/10.1016/j.neunet.2012.03.001
http://dx.doi.org/10.1145/1370750.1370771
http://dx.doi.org/10.1109/ASE.2011.6100115
http://dx.doi.org/10.1109/ICDM.2003.1250972
http://dx.doi.org/10.1109/MSR.2013.6624052
http://dx.doi.org/10.1145/1557019.1557066
http://dl.acm.org/citation.cfm?id=645531.655996

On the E�ect of Semantically Enriched Context Models on Software Modularization

[19] Adrian Kuhn, Stéphane Ducasse, and Tudor Gîrba. “Semantic Clustering: Identi-
fying Topics in Source Code”. In: Inf. Softw. Technol. 49.3 (Mar. 2007), pages 230–
243. issn: 0950-5849. doi: 10.1016/j.infsof.2006.10.017.

[20] Dawn Lawrie and Dave Binkley. “Expanding Identifiers to Normalize Source
Code Vocabulary”. In: Proceedings of the 2011 27th IEEE International Conference
on Software Maintenance. ICSM ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pages 113–122. isbn: 978-1-4577-0663-9. doi: 10.1109/ICSM.2011.
6080778.

[21] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. “Effective
identifier names for comprehension and memory”. In: Innovations in Systems
and Software Engineering 3.4 (Dec. 2007), pages 303–318. issn: 1614-5054.
doi: 10.1007/s11334-007-0031-2.

[22] Claudia Leacock and Martin Chodorow. “Combining Local Context and Word-
Net Similarity for Word Sense Identification”. In: WordNet: A Lexical Reference
System and its Application. Edited by C. Fellbaum. MIT Press, 1998. Chapter 11,
pages 265–283.

[23] Dekang Lin. “Automatic Retrieval and Clustering of Similar Words”. In: Proceed-
ings of the 17th International Conference on Computational Linguistics - Volume
2. COLING ’98. Montreal, Quebec, Canada: Association for Computational
Linguistics, 1998, pages 768–774. doi: 10.3115/980432.980696.

[24] Anas Mahmoud and Gary Bradshaw. “Estimating Semantic Relatedness in
Source Code”. In: ACM Trans. Softw. Eng. Methodol. 25.1 (Dec. 2015), 10:1–
10:35. issn: 1049-331X. doi: 10.1145/2824251.

[25] Sebastian Padó and Mirella Lapata. “Dependency-Based Construction of Se-
mantic Space Models”. In: Comput. Linguist. 33.2 (June 2007), pages 161–199.
issn: 0891-2017. doi: 10.1162/coli.2007.33.2.161.

[26] Roy Rada and Ellen Bicknell. “Ranking Documents with a Thesaurus”. In:
Journal of the American Society for Information Science 40.5 (1989), page 304.
url: https://www.learntechlib.org/p/142738.

[27] Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen. On the Effect
of Semantically Enriched Context Models on Software Modularization [Data set].
July 2017. doi: 10.5281/zenodo.836858.

[28] Gustavo Santos, Marco T. Valente, and Nicolas Anquetil. “Remodularization
analysis using semantic clustering”. In: 2014 Software Evolution Week - IEEE
Conference on Software Maintenance, Reengineering, and Reverse Engineering,
CSMR-WCRE. Antwerp, Belgium: IEEE, Feb. 2014, pages 224–233. doi: 10.1109/
CSMR-WCRE.2014.6747174.

[29] Bernhard Schölkopf and Alexander J. Smola. Learning with kernels : support
vector machines, regularization, optimization, and beyond. Cambridge, MA, USA:
The MIT Press, Dec. 2001. isbn: 0-262-19475-9.

2:26

http://dx.doi.org/10.1016/j.infsof.2006.10.017
http://dx.doi.org/10.1109/ICSM.2011.6080778
http://dx.doi.org/10.1109/ICSM.2011.6080778
http://dx.doi.org/10.1007/s11334-007-0031-2
http://dx.doi.org/10.3115/980432.980696
http://dx.doi.org/10.1145/2824251
http://dx.doi.org/10.1162/coli.2007.33.2.161
https://www.learntechlib.org/p/142738
http://dx.doi.org/10.5281/zenodo.836858
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747174
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747174

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

[30] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
New York, NY, USA: Cambridge University Press, July 2004. isbn: 0-521-81397-2.
url: http://eprints.soton.ac.uk/259580/.

[31] Giriprasad Sridhara, Emily Hill, Lori Pollock, and Vijay K. Shanker. “Identifying
Word Relations in Software: A Comparative Study of Semantic Similarity Tools”.
In: Proceedings of the 2008 The 16th IEEE International Conference on Program
Comprehension. ICPC ’08. Washington, DC, USA: IEEE Computer Society, 2008,
pages 123–132. isbn: 978-0-7695-3176-2. doi: 10.1109/ICPC.2008.18.

[32] Mike A. Steel and David Penny. “Distributions of Tree Comparison Metrics -
Some New Results”. In: Systematic Biology 42.2 (June 1993), pages 126–141.
issn: 1076-836X. doi: 10.1093/sysbio/42.2.126.

[33] Yuan Tian, David Lo, and Julia Lawall. “Automated construction of a software-
specific word similarity database”. In: 2014 Software Evolution Week - IEEE
Conference on Software Maintenance, Reengineering, and Reverse Engineering,
CSMR-WCRE. Antwerp, Belgium: IEEE, Feb. 2014, pages 44–53. doi: 10.1109/
CSMR-WCRE.2014.6747213.

[34] Vassilios Tzerpos and R. C. Holt. “MoJo: a distance metric for software cluster-
ings”. In: Proceedings of the Sixth Working Conference on Reverse Engineering.
WCRE ’99. Washington, DC, USA: IEEE Computer Society, Oct. 1999, pages 187–
193. isbn: 0-7695-0303-9. doi: 10.1109/WCRE.1999.806959.

[35] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M.
Borgwardt. “Graph Kernels”. In: J. Mach. Learn. Res. 11 (Aug. 2010), pages 1201–
1242. issn: 1532-4435. url: http://dl.acm.org/citation.cfm?id=1756006.1859891.

[36] Pu Wang and Carlotta Domeniconi. “Building Semantic Kernels for Text Clas-
sification Using Wikipedia”. In: Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. KDD ’08. Las
Vegas, Nevada, USA: ACM, 2008, pages 713–721. isbn: 978-1-60558-193-4. doi:
10.1145/1401890.1401976.

[37] Jingwei Wu, Ahmed E. Hassan, and Richard C. Holt. “Comparison of Clustering
Algorithms in the Context of Software Evolution”. In: Proceedings of the 21st
IEEE International Conference on Software Maintenance. ICSM ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pages 525–535. isbn: 0-7695-2368-4.
doi: 10.1109/ICSM.2005.31.

[38] Zhibiao Wu and Martha Palmer. “Verbs Semantics and Lexical Selection”.
In: Proceedings of the 32Nd Annual Meeting on Association for Computational
Linguistics. ACL ’94. Las Cruces, New Mexico: Association for Computational
Linguistics, 1994, pages 133–138. doi: 10.3115/981732.981751.

[39] Jinqiu Yang and Lin Tan. “Inferring Semantically Related Words from Software
Context”. In: Proceedings of the 9th IEEE Working Conference on Mining Software
Repositories. MSR ’12. Zurich, Switzerland: IEEE Press, 2012, pages 161–170.
isbn: 978-1-4673-1761-0. doi: 10.1109/MSR.2012.6224276.

2:27

http://eprints.soton.ac.uk/259580/
http://dx.doi.org/10.1109/ICPC.2008.18
http://dx.doi.org/10.1093/sysbio/42.2.126
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747213
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747213
http://dx.doi.org/10.1109/WCRE.1999.806959
http://dl.acm.org/citation.cfm?id=1756006.1859891
http://dx.doi.org/10.1145/1401890.1401976
http://dx.doi.org/10.1109/ICSM.2005.31
http://dx.doi.org/10.3115/981732.981751
http://dx.doi.org/10.1109/MSR.2012.6224276

On the E�ect of Semantically Enriched Context Models on Software Modularization

[40] Jinqiu Yang and Lin Tan. “SWordNet: Inferring Semantically Related Words
from Software Context”. In: Empirical Software Engineering 19.6 (Dec. 2014),
pages 1856–1886. issn: 1382-3256. doi: 10.1007/s10664-013-9264-x.

[41] Kaizhong Zhang and Dennis Shasha. “Simple Fast Algorithms for the Editing
Distance Between Trees and Related Problems”. In: SIAM Journal on Computing
18.6 (Dec. 1989), pages 1245–1262. issn: 0097-5397. doi: 10.1137/0218082.

[42] Meital Zilberstein and Eran Yahav. “Leveraging a Corpus of Natural Language
Descriptions for Program Similarity”. In: Proceedings of the 2016 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software. Onward! 2016. Amsterdam, Netherlands: ACM, 2016, pages 197–
211. isbn: 978-1-4503-4076-2. doi: 10.1145/2986012.2986013.

A Conceptual Similarity

A.1 Knowledge Representation

Before detailing our approach to enrich the identifiers in the source code, we first
need to give some insights into approaches in representing semantic information
about words in natural languages. One such approach is based on WordNet, which
closely resembles our approach to knowledge representation. WordNet is a network
of words with each playing a different role in the structure. In WordNet, words are
grouped into blocks of what is known as a synset (a synonymous set). A synset is a
set of semantically synonymous words denoting the same concept. Each word may
take a different sense,⁵ depending on the context in which it is used, and hence, it
may belong to more than one synset. For example, in the sentences ‘A tree is tall’
and ‘A tree is an ADT’, the concept plant is intended by the usage of ‘tree’ in the first
sentence, whereas ‘tree’ in the second sentence is a data structure.
The synsets are interconnected with different relational links, such as hypernymy,

meronymy, and synonymy. Some of the types of relationships that can be found in a
WordNet ontology are as follows:

Synonymy: denotes an equivalence relation between two terms or concepts. Couch
and sofa are two synonymous terms.
Polysemy: A term that has different meanings depending on the context it is used.
A tree has a different meaning in computer science and botany.
Hyper/Hyponymy: denotes a hierarchical relation between two terms. For instance,
a dog (hyponym) is a type of an animal (hypernym).
Holo/Meronymy: A composite relationship between a whole and a part. For exam-
ple, a city (meronym) is part of a country (holonym).

5We will use the term ‘sense’ to denote the meaning/purpose of the identifier

2:28

http://dx.doi.org/10.1007/s10664-013-9264-x
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.1145/2986012.2986013

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

Instance-of relation: designates the relation between a general concept and an indi-
vidual instance of that concept. For example, Java is an instance of a programming
language.

Hyper/hyponymy and holo/meronymy are hierarchical relations, whereas the
Instance-of relation is an associative relation. Synonymy and polysemy are symmetric
relations.

A.2 Semantic Network

As stated before, the semantic relationships between terms and concepts form a
hierarchical structure which can be represented in terms of a semantic network. A
semantic network like WordNet is a scheme for representing semantic relations within
a lexicon. The network is represented using a weighted directed graph with labelled
nodes representing the words in the lexicon that appear in the corpus of the source
code, and links denoting different types of relationships between them. The weights
of each edge denotes the frequency of a relationship, extracted from the background
information.
We will represent the semantic information about the software system in terms of a

semantic network, where nodes are indexed by unique features (i.e. identifier names)
in the source code, and edges represent the association strength between different
nodes. A type is defined by the set of its instances, forming a synonymous group.
For example, ‘tree1’ and ‘tree2’ both being instances of type ‘Tree’, are semantically
synonymous. The instance-of (ISA) relationship is used to link instances to types
(concepts). The is-a-type-of (ITO) denotes a hyponymy relationship between concepts.
Each concept may contain properties or attributes that all its derivations will inherit.
The fact that an animal has skin and color, implies that birds also have those properties.
The meronymy relationship from the parts to its whole is represented using a is-part-of
(IPO) link. The ISA and ITO relationship are transitive. For instance, a canary is a
type of a bird, but bird is a kind of an animal, hence, a canary is an animal too.
To further clarify how the knowledge about the exposed members of a class would

be represented in terms of a semantic network, let us consider the extended version
of the example, given in listing 1.

Listing 2 An example in Java
18
19 public abstract class Vehicle {
20 public int gear;
21 public int speed;
22
23 public Vehicle (int startSpeed, int startGear) { ... }
24
25 public void setGear(int newValue) { ... }
26
27 public void applyBrake(int decrement) { ... }
28
29 public void setSpeed(int speed) { ... }
30 }
31
32 public class Car extends Vehicle{
33 public Car(int startSpeed, int startGear) { ... }
34 }

2:29

On the E�ect of Semantically Enriched Context Models on Software Modularization

Figure 6 The semantic network of the Java example program, composed of abstract nodes
designating the identifier names and abstract links designating different types of
relationship between the nodes.

35
36 public class Employee{
37 public String name;
38 public Car car;
39
40 public Employee(String name, Car car) { ... }
41
42 public void raiseSalary(double byPercent, double bonus) { ... }
43 }

Figure 6 depicts the semantic network for the example program. There are two
distinct kinds of nodes: terms denote identifier names, whereas concepts correspond to
types. For each concept, a synset exists comprising of the type itself and its instances.
For example, the identifier names, gear, speed, setGear, applyBrake, and setSpeed form
a synset group. Here, the primitive type ‘int’ and standard library type ‘String’ are
omitted. Notice that even though there are no direct links between the term car and
concept Vehicle, traversal of the ITO link from Car to Vehicle induces a relationship
between them.
Throughout the rest of this section, we restrict ourselves to object-oriented languages

with a static type system (here, Java) and use the program’s type information to
compute an approximation of the semantics of the identifier. However, some of our
techniques, as will be elaborated later can be used in the context of other programming
paradigms.

2:30

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

Figure 7 Notations for inheritance structure

A.3 Semantic Relatedness Measurements

Before we can give different semantic relatedness measurements, we briefly discuss
some concepts to better understand various similarity measurements.

A.3.1 Path Length
Path length measurements are based on edge counting methods. A simple edge count-
ing method is by Rada et al. [26], which defines the conceptual distance between two
nodes in the ITO network as the shortest path connecting the two nodes. Two major
drawbacks of this approach is that 1) most semantic networks have a non-uniform
density of edges, and 2) it doesn’t take into account other semantic relationships like
holo-meronymy.
figure 7 illustrates different notations used to describe various semantic similarity

measurements. The depth of a type is its distance to the unique root node.⁶ We assume
a virtual top node (for instance, java.lang.Object) that dominates all nodes. The
nearest common hypernym (nch) of two types refers to the type with the maximal
depth that subsumes both types. The length of the shortest path from T1 to T2 is
d(T1, T2) = l1 + l2.

A.4 Semantic Similarity Measurements amongst Types

Semantic similarity measures were initially defined based on shortest path length
measure, and subsequently new measurements were proposed based on different
design principles. In the following, we present various similarity scores for computing
the semantic similarity between the types in the semantic network.

A.4.1 Inverted Path Length
The Inverted Path Length (IPL) is a path length-based measurement to compute
similarity, given in Equation 1, where α denotes the rate of decay. Despite its simplicity,

6 If the structure is a directed graph, the minimal depth is considered.

2:31

On the E�ect of Semantically Enriched Context Models on Software Modularization

the IPL does not take into account that types closer to the root of the hierarchy should
have a lower weight than the ones in lower levels in the hierarchy.

simI P L(T1, T2) =
1

(1+ d(T1, T2))α
(1)

A.4.2 Wu & Palmer
Wu and Palmer [38] describe another path-length based measurement, given in
Equation 2 that scales the path-length with respect to the shortest path between the
two types T1 and T2 to their closest common ancestor (NCH) and the depth of NCH
to the unique root node.

simW U P(T1, T2) =
2dep(nch(T1, T2))

d(T1, nch(T1, T2)) + d(T1, nch(T1, T2) + 2dep(nch(T1, T2))
(2)

A.4.3 Leacock & Chodorow
The Leacock and Chodorow measure [22] is another path-length measurement that
computes the similarity score between two types T1 and T2 as the shortest path
between them, divided by double the maximal depth of the two types in the taxonomy.

simLC(T1, T2) = −log
d(T1, T2)

2max{depth(T1), depth(T2)}
(3)

A.4.4 Conceptual Density
An alternative to IPL is the Conceptual Density (CD) [2] semantic similarity measure-
ment which tries to scale the score by taking into account the topological structural
of the semantic network. The CD measurement is still sensitive to the length of the
shortest path that connects the types, but the types in a deeper part of the hierarchy
are ranked closer. Furthermore, the similarity score is normalized to make it com-
patible with the density of the types: the types in a dense part of the hierarchy are
ranked closer than the ones in a more sparse region [2].

simC D(T1, T2) =
Σh

i=0(µ(nch(T1, T2)))i

|nch(T1, T2)|
(4)

where, for g = nch(T1, T2),
µ(g) is the average number of children per node (i.e. the branching factor) in the
sub-hierarchy of the nearest common hypernym of the types T1 and T2.
h is the depth of the ideal, i.e. maximally dense, tree with enough leaves to cover
the two types, T1 and T2, based on the average branching factor of µ(g). This value
is estimated by:

h=

¨

blogµ(g) 2c iff µ(g) 6= 1

2 otherwise

When µ(g) = 1, h ensures a tree with at least 2 nodes to cover T1 and T2 (height =
2).
|g| is the number of nodes in the sub-hierarchy G.

2:32

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

A.5 Word Sense Disambiguation

Each identifier name may have multiple senses (belong to different synsets). To
disambiguate between different senses of an identifier, for each pair of identifiers,
we choose their senses such that the similarity score between them is the highest.
Since the network is a weighted graph, in case of ISA relationship, we normalize the
score by the outdegree of the types in each sense. Here we define the similarity of
two identifiers id1 and id2 as:

sim(id1, id2) = max1≤i≤m,1≤ j≤nsim(Tai , Tb j)× (
w(id1, Tai)
2out(Tai)

+
w(id2, Tb j)

2out(Tb j)
) (5)

where, Tai and Tb j belong to synonym set Sai and Sb j, respectively. Sa1, . . . , Sam are
the synsets of ida, and Sb1, . . . , Sbn are the synsets of idb.

A.6 Di�usion of Similarity

All the measurements between the types in the first approach depend on the ISA
structure of the type hierarchy. We believe that the ISA structure of the type system
does not fully capture all the relations between types.
1. The problem with measurements based on shortest-path distance on the graph is

that i) mere reachability between two nodes is not a good indicator of measurement
between two nodes, and ii) it is extremely sensitive to the insertion and deletion of
individual edges.

2. The properties/attributes contained within a type are neglected. However, these
elements can be used to construct access paths to access properties in another type
or invoke operations within that type, implicitly denoting a semantic relation from
the source to the target.

3. Common types (utility and third-party libraries) should have lower weight com-
pared to application types. Treating the semantic network as a graph, less similarity
is diffused through nodes with high outdegree.
We employ a diffusion graph kernel, as outlined in appendix E to compute the

global similarity between any two nodes in the semantic network. A diffusion process
helps to build similarity between identifier names that are not directly related. When
computing this kernel, we do not distinguish between different types of relationships
between nodes in the semantic network. Hence, this approach can be employed in
the context of programming languages with no type system, such as Cobol.

B Lexical Similarity

Although identifiers have formal semantics, their names also carry meaningful infor-
mation that needs to be exploited. For instance, identifiers ‘carModel’ and ‘carOwner’
are of different types, yet both involve holding information about the ‘Car’ entity. Here,
we have employed three techniques presented in table 6 to induce similarity between

2:33

On the E�ect of Semantically Enriched Context Models on Software Modularization

Table 6 Measures of lexical similarity between identifier names

Longest Common Subsequence

simLCS(id1, id2) =
(LCS(id1,id2))2

|id1|.|id2|

Longest Common Substring

simLCU(id1, id2) =
(LCU(id1,id2))2

|id1|.|id2|

Constant String
simConst(id1, id2) =

∑

s∈id1,s′∈id2
nums(id1)nums(id2)

identifier names. One technique is based on the length of the Longest Common Sub-
sequence (LCS) of two identifier names normalized by the product of their respective
lengths. The longest common subsequence of two strings is the maximal number
of characters that is common to both of them. For instance, the LCS of the strings
‘carOwner’ and ‘carModel’ is ‘caroe’. Another technique involves dividing the length of
the Longest Common Substring (LCU) of two identifiers by the product of the length
of each name. The LCU of the two identifier names ‘carOwner’ and ‘carModel’ is ‘car’.
The last technique used for conducting experiments is a string kernel using suffix
arrays called Constant (Const) string kernel which matches all common substrings
between two strings and weights them equally.

C Designing a Semantic Kernel

Kernels are used to incorporate a domain-specific notion of proximity in the input
space. A kernel function k(x1, x2) is used to compute the similarity between two
objects x1 and x2 as a dot-product in a new vector space. An important property of
kernel functions is that the exact mapping from the input space into this new vector
space is not necessary (also known as the kernel trick). Therefore, defining a good
kernel means finding a similarity function that best captures the notion of similarity in
that domain. In this paper, to compute similarity between source code documents (i.e.
classes), we will use the linear kernel with cosine normalization modifier (equivalent
to cosine similarity). The reader is referred to the rich literature on kernel methods
(eg. [29, 30]) for further information.
We have adopted the approach from [36] to enrich the vector representation of

documents. Embedding the semantic knowledge in the document vector requires
transforming the vector representation of document d by φ′(d) = φ(d)P, where P is
a proximity matrix. Using the above transformation, the vector space kernel between
two documents d1 and d2 becomes:

k(d1, d2) = φ(d1)PP>φ(d2)
> = φ′(d1)φ

′(d2)
> (6)

Hence, the new kernel is the inner product of the transformation of each document.

2:34

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

Table 7 The comparison of various lexical similarity measurements

System
LCS LCU Const

PD TED PD TED PD TED
Apache Ant 10437 2030 9594 2040 11626 2044
Apache Hadoop 2584 717 2381 715 2858 719
Apache Log4j 1551 483 1618 487 1740 487
Eclipse JDT Core 17059 2547 16410 2536 17236 2585
JDOM 710 250 691 248 859 256
JEdit 5923 1224 4946 1236 6610 1218
JFreeChart 6397 1438 5608 1436 7344 1436
JHotDraw 2249 643 2174 647 2464 647
JUnit 721 289 672 289 736 285
Weka 11685 1952 9173 1792 9596 1867

P can be defined as P = RS, where S defines the semantic similarities between
features in the source code corpus, and R is a diagonal matrix containing the term
weighing, for which we will use the inverse term frequency (idf) score to punish
common feature names. Embedding the proximity matrix into the vector space model
(VSM) corresponds to representing a document in a less sparse vector, where there
is a non-zero entry for all the terms that are semantically similar [36]. If there is no
semantic relation between any two terms, no similarity can be induced from their
co-occurrence.

D Evalutation of Enrichment Processes

Table 7 gives the results for different lexical similarity metrics. The string kernel
computed for each metric comprises of the similarity of identifier names extracted
from the body of methods in each document with the tf-idf weighing schema. As
shown, the normalized longest common substring (LCU) yields the best result.
Table 8 gives the results for various semantic relatedness measurements. In general,

the conceptual density (CD) measurement performs well in comparison with other
methods. The CD measurement computes the proximitiy of the senses of the words
based on the hypernymy relationship, as the information expressed by the maximally
dense subhierarchy that includes both senses.
Based on the previous results, we have configured our enrichment approaches for

both the string kernel and the choice of semantic relatedness measure. We compare
the performance of the following three methods:

BoI (baseline): A bag of identifier names (BoI) extracted from the body of methods
with the idf weighing schema.

2:35

On the E�ect of Semantically Enriched Context Models on Software Modularization

Table 8 The comparison of various semantic relatedness measurements

System
IPL WUP LC CD

PD TED PD TED PD TED PD TED
Apache Ant 18509 2038 13454 2166 11965 2026 11468 1965
Apache Hadoop 3918 713 3344 721 3051 709 3146 723
Apache Log4j 2277 485 2009 489 1895 481 2013 487
Eclipse JDT Core 19274 2643 18154 2612 18039 2602 17328 2552
JDOM 856 254 795 262 798 256 787 248
JEdit 8892 1244 6836 1220 6649 1228 6873 1234
JFreeChart 9624 1454 6539 1450 6146 1430 7125 1452
JHotDraw 2814 637 2139 645 2483 641 2129 627
JUnit 7968 289 808 289 865 285 706 281
Weka 14716 2451 13488 2254 12152 2098 11436 2035

SSN1: The bag of features enriched with the semantic matrix from element-wise
product of CD metric for semantic relatedness and normalized common substring
kernel with the idf weighing schema.
SSN2: The bag of features enriched with the semantic matrix from element-wise
product of the diffusion kernel on the semantic network and normalized common
substring kernel with the idf weighing schema.
Table 9 gives the comparative results of our enrichment approaches against the plain

BoF representation of the source code corpus. Both of the enrichment approaches
give results that are superior to the plain vector representation of documents. In
some cases, the result is improved by 65%. As anticipated, the diffusion kernel-based
semantic matrix outperforms the NLP-based semantic relatedness measures in 7 out
of 10 cases for PD metric and 6 cases for TED score.

E Graph Kernels

Here, we outline two different sets of graph kernels, those used to compute the pairwise
similarity between vertices in a graph, and the ones used to compute similarity
between two graphs. For theoretical background and evaluation of different kernels
on graphs, please refer to [11].

E.1 Di�usion Kernels

A class of graph-based kernel functions are the diffusion kernels, originally introduced
by Kondor and Lafferty [18]. The kernel function used in this paper is the exponential
diffusion kernel [18], defined as follows:

KEX P = ex p(αA) =
∞
∑

k=0

αkAk

k!
(7)

2:36

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

Table 9 The comparison of identifier similarity measurements with plain bag of identifiers,
and the enriched variants with CD and diffusion kernel

System
BoI SSN1 SSN2

PD TED PD TED PD TED

Apache Ant 21218 2042
8235
(−61.19%)

1996
(−2.25%)

7457
(−64.86%)

1961
(−3.97%)

Apache
Hadoop

4452 743
2264
(−49.14%)

705
(−5.11%)

2466
(−44.61%)

711
(−4.31%)

Apache
Log4j

2263 487
1534
(−32.19%)

479
(−1.64%)

1365
(−39.69%)

457
(−6.16%)

Eclipse JDT
Core

31327 2748
16522
(−47.26%)

2561
(−6.80%)

14344
(−54.21%)

2374
(−13.61%)

JDOM 878 273
600
(−31.65%)

238
(−12.82%)

765
(−12.87%)

265
(−2.93%)

JEdit 9148 1286
4769
(−47.87%)

1220
(−5.13%)

4461
(−51.24%)

1194
(−7.15%)

JFreeChart 12444 1446
5474
(−56.01%)

1372
(−5.12%)

5652
(−54.58%)

1380
(−4.56%)

JHotDraw 3002 665
2028
(−32.42%)

649
(−2.41%)

1958
(−34.77%)

653
(−1.80%)

JUnit 1098 300
667
(−39.25%)

287
(−4.33%)

563
(−48.72%)

252
(−16.00%)

Weka 18023 2301
9773
(−45.77%)

2114
(−8.13%)

8471
(−53.00%)

2038
(−11.43%)

where α denotes the sinking factor of each node and A is the adjacency matrix of an
undirected graph. This kernel represents an average of path counts between nodes,
adjusted by the inverse factorial of path length.

E.2 Random Walk Graph Kernels

Random walk graph kernels are used to compute similarity between a pair of graphs.
The generalized random walk graph kernel is based on the idea of random walks:
given a pair of graphs, perform random walks on both, and count the number of
matching walks.
We will use the Kronecker product of graphs G1 and G2. The product graph G× =

(V×, E×), is defined via

V×(G1× G2) = {(v1, w1) ∈ V1× V2} (8)

For each pair of vertices x = (v1, w1) and y = (v2, w2) in Gx , the weighted adjacency
matrix A for the product of graphs is defined as below

A×(x , y) = σlabel(v1, w1)× A1(v1, v2)× A2(w1, w2)×σlabel(v2, w2) (9)

2:37

On the E�ect of Semantically Enriched Context Models on Software Modularization

where σlabel is a function that computes similarity between the labels of two vertices.

The random walk kernel function is defined as follows:

k×(G1, G2) = Σ
V×
i, j=1[Σ

∞
n=0λ

nAn
×]i j = e>(I−λA×)

−1e (10)

2:38

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen

About the authors

Amir M. Saeidi is a software engineer at Mendix and a PhD candi-
date at the Department of Information and Computing Sciences at
Utrecht University. He is currently investigating various techniques
to facilitate migration of legacy systems in financial domain to SOA.
The techniques employed range from static analysis to data analy-
sis to help both with understanding the legacy systems as well as
their decomposition. He can be reached at a.m.saeidi@uu.nl.

Jurriaan Hage is an assistant professor at the Department of In-
formation and Computing Sciences at Utrecht University. His work
in programming technology is largely focused on two aspects: the
optimisation of functional languages by means of type and effect
systems, and type error diagnosis for strongly typed functional
languages. He is currently the lead maintainer of the Helium com-
piler for learning Haskell. Besides these two focus areas, he is
also active in programming plagiarism detection, legacy system
modernization, and the (soft type) analysis of dynamic languages.
He can be reached at j.hage@uu.nl.

Ravi Khadka is currently a technology architecture manager at
Accenture. His focus area include legacy software modernization,
light-weight architecture, model-driven development (MDD), API
management, and micro-service architecture. Khadka received his
PhD in computer science from Utrecht University in 2016. His PhD
thesis is titled “Revisiting Legacy Software System Modernization”.
He can be reached at ravi.khadka@gmail.com.

Slinger Jansen is an assistant professor at the Department of
Information and Computing Sciences at Utrecht University. His
research focuses on software product management and software
ecosystems, with a strong entrepreneurial component. Jansen
received his PhD in computer science from Utrecht University,
based on the 2007 work titled “Customer Configuration Updating
in a Software Supply Network”, PhD thesis Utrecht University. He
can be reached at slinger.jansen@uu.nl.

2:39

mailto:a.m.saeidi@uu.nl
mailto:j.hage@uu.nl
mailto:ravi.khadka@gmail.com
mailto:slinger.jansen@uu.nl

	1 Introduction
	2 Related Work
	2.1 Inferring similarity between lexical terms
	2.2 Contextual representation of words in source code
	2.3 Semantic clustering of software systems

	3 Motivation
	3.1 Contextual Vector Representation
	3.2 Syntax-based Context Models
	3.3 Enrichment of Context Models with Semantic Knowledge

	4 Methodology
	4.1 Semantic Enrichment Process
	4.2 Contextual Vector Representation
	4.3 Dependency-based Construction of Context Model

	5 Empirical Evaluation
	5.1 Methods and Evaluation Measures
	5.1.1 Tree Edit Distance
	5.1.2 Path Difference Metric
	5.1.3 Complete Linkage Algorithm

	5.2 Experimental Settings and Results
	5.2.1 Evaluation of Context Vector Representation
	5.2.2 Comparison of Context Models

	5.3 JEdit Case Study
	5.4 Topic Analysis
	5.5 Context Analysis
	5.6 Discussions
	5.7 Threats to Validity

	6 Conclusion and Future Work
	A Conceptual Similarity
	A.1 Knowledge Representation
	A.2 Semantic Network
	A.3 Semantic Relatedness Measurements
	A.3.1 Path Length

	A.4 Semantic Similarity Measurements amongst Types
	A.4.1 Inverted Path Length
	A.4.2 Wu & Palmer
	A.4.3 Leacock & Chodorow
	A.4.4 Conceptual Density

	A.5 Word Sense Disambiguation
	A.6 Diffusion of Similarity

	B Lexical Similarity
	C Designing a Semantic Kernel
	D Evalutation of Enrichment Processes
	E Graph Kernels
	E.1 Diffusion Kernels
	E.2 Random Walk Graph Kernels

	About the authors

