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    Open-channel confluence flows are common in natural river systems as well as in environmental and 
hydraulic engineering, such as in river engineering. Often, these flows are three-dimensional and complex, 
while numerical studies fully describing confluence flow are still few. This paper presents the results of 
investigation of confluence flow using a three-dimensional numerical model with the linear and nonlinear 
k-ε models. To treat the dynamic boundary condition at the free surface, non-hydrostatic pressure is 
included in the present model. The model is validated using the experimental data available. Adequacy of 
the present model with two turbulence models above is indicated based on the result analysis. The 
nonlinear model is indicated as the more advantageous one than the linear one. 
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1. INTRODUCTION 
 

Open-channel confluence flows are often 
encountered in nature as well as in environmental 
and hydraulic engineering. Detailed hydrodynamics 
of confluence flow is found to be complex and 
influenced by a number of parameters, including the 
size, shape, slope, junction angle, and the flow 
Reynolds and Froude numbers. Flow structure at an 
open-channel confluence has a great influence on 
sediment transport and channel evolution, including 
the bed erosion, deposition, and transport and 
diffusion of contaminated matters. However, this 
flow is highly three-dimensional and simulation, 
which reflects all characteristics of the flow in a 
confluence, is not a straightforward work. 

In the past, a number of studies of confluence 
flows have been conducted using physical models, 
one-dimensional theoretical analysis, or 
one-dimensional numerical models, such as works 
of Best and Reid1), Gurram et al.2), and Hsu et al.3), 

4). These studies provided insightful information to 
the understanding of confluence flow. However, 
simplified theoretical or one-dimensional numerical 

models are less capable of considering complicated 
flow conditions, for instance, secondary current and 
separation. 

In order to overcome limitations of the 
one-dimensional models, two-dimensional 
numerical models are developed and applied to 
open-channel confluence flow. Cheng et al.5) 
numerically simulated the two-dimensional T-type 
confluence flow using the standard k-ε model and 
its other versions (low-Reynolds number, improved 
k-ε model proposed by Hanjalic and Launder). Their 
results indicated the reasons of the unsatisfactory 
prediction using these models. One main reason is 
exclusion of secondary current effect due to 
streamline curvature. Attempts to advance the 
two-dimensional model for prediction of confluence 
flow are done by Dinh et al.6). In these studies, the 
authors presented application of four various types 
of the depth-averaged two-dimensional models to 
this flow with and without considering secondary 
current of the first kind due to streamline curvature. 
The results obtained by the models with effects of 
secondary current shown superiority of them over 
the model excluding this flow in term of prediction 



 

 

of average velocity profile and field, water surface 
elevation, and secondary pattern profile. However, 
these advanced depth-averaged models did not well 
predict secondary currents because of highly 
three-dimensional feature as well as complex nature 
of confluence flow. Recently, Uchida and Fukuoka7) 
developed a quasi-3D model using shallow water 
equations and horizontal vorticity equations to 
compute a flow in channel confluences. However, 
the separation size and the water surface depression 
zone for the case of more flow coming from the 
branch than that from the main channel were 
over-predicted in comparison with the measured 
results.  

Three-dimensional computational model is an 
appropriate approach to investigate all confluence 
flow characteristics. As well as two-dimensional 
numerical model, there were a few of studies using 
three-dimensional numerical model to address with 
the confluence flow. Huang et al.8) developed and 
validated a three-dimensional numerical model in 
order to investigate the effect of junction angle on 
the confluence flow. In their study, hydrostatic 
pressure was assumed and the k-ω turbulence model 
was used to calculate the turbulence eddy viscosity. 
The results obtained with this model were fair. 
However, there are some points that do not agree 
well with the experimental results, including 
secondary currents, the width of separation zone, 
and water surface elevation profiles in the separation 
region. Therefore, this model is appropriate to some 
extent. 

The purpose of this paper is to present a 
three-dimensional numerical simulation using the 
linear and nonlinear k-ε models. Governing 
equations and two equations of the turbulence 
model are written in a moving boundary-fitted 
coordinate. Non-hydrostatic pressure is used in this 
study. The computed results are compared to the 
experimental results of Weber et al.9) for validation, 
and then adequacy of the models are discussed 
based on this comparison.        

                      
2. COMPUTATIONAL MODEL 
 
(1) Governing equations 

In this study, the unsteady Reynolds-Averaged 
Navier-Stokes equations are used. In a moving 
boundary-fitted coordinate, they are written as 
follows. 
a) Continuity equation 
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b) Momentum equations 
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where t=time; Vi=contravariant components of 
velocity; Wi=contravariant components of mesh 
velocity; vi=turbulent flow velocity vector; 
Fi=contravariant components of gravitational vector, 
p=pressure; gij=contravariant metric tensor; 
g=determinant of metric tensor; ρ=fluid density; 
ξi=boundary-fitted coordinates; ν=dynamic 
viscosity; jivv− =Reynolds stress; Sij=contravariant 
components of strain tensor; and k

i A∇  =covariant 
derivative of contravariant vector, Ak, and is defined 
as 
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where Γij
k=Christoffel symbol of the second kind 

defined as 
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Here gij=covariant metric tensor. 
   In the linear turbulence model, Reynolds stress 
is evaluated as Eq. (5), while this term is calculated 
using Eq. (6) in the nonlinear one, which is 
proposed by Kimura and Hosoda10). 
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In the linear turbulence model, Cμ=0.09. 
However, in the nonlinear model, the coefficients cβ 
in Eq. (6) and Cμ in Eq. (8) are evaluated using the 
model proposed by Ali et al.11). They are not 
constant, but a function of strain parameter, S and 
rotation one, Ω as follows. 
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Here, Cμ0=0.09; S and Ω are strain and rotation 
parameters, respectively and they are defined as 
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The model coefficients, α1, α2, and α3 are calculated 
using Eq.(13). 
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c) k and ε equations 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+∇+−

∇−=∇+⎥⎦
⎤

⎢⎣
⎡ −∇+

∂
∂

ki
ijg

k

t
D

j

iV
j

jvlv
il

gjW
j

kjWjVk
jt

k

ν
σ

ε                                     

)(
        (15) 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+∇+−

∇−=∇+⎥⎦
⎤

⎢⎣
⎡ −∇+

∂
∂

εν
ε

σ
ε

ε

ε
ε

εεε

i
ijgt

D

jk
C

iVj
jvlvilg

k
CjWj

jWjVjt
2

2
                                

1)(
    (16) 

where σk=1.0, σε=1.3, Cε1=1.44, and Cε2=1.92 are 
the model constants.

   
(2) Free surface calculation 
   In this study, an approach of free surface 
calculation is employed using the kinematic and 
dynamic boundary conditions. 
a) Kinematic boundary condition 

Kinematic boundary condition used here is the 
hybrid Cartesian/curvilinear approach. 
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where H is height of the free surface; t is time; V1 
and V2 are contravariant components of flow 
velocity in ξ1 and ξ2 directions, respectively; and w 
is the Cartesian component of  velocity in the 
z-direction. 
b) Dynamic boundary condition 

In the previous studies, the hydrostatic pressure 
is often assumed as considering dynamic boundary 
condition. However, non-hydrostatic pressure is 
used in the present work with effect of the surface 
tension and viscosity considered. The following 
dynamic boundary condition is adopted (Hodge and 
Street12)). 

γν MVPP ss 22 3
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      (18) 
where P is the total pressure (=hydrostatic pressure 
(SP) + dynamic pressure (DP)); the subscripts s+ 
and s− indicate the pressure on the upper and lower 
sides of the free surface; ν is the dynamic viscosity; 
M is the mean curvature of the free surface and is 
defined for the ξ3 surface; γ is the surface tension 
(=0.0728 N/m); and 3

3V∇ is covariant derivative of 
the contravariant velocity component, V3 with 
respect to the ξ3 direction. Assuming that pressure 
on the upper side of the free surface is zero and 

water depth at a lower point of the free surface is 
small enough to SP assumed to be zero, Eq. (18) is 
then reduced to Eq. (19). 

γν MVDP 22 3
3 −∇=          (19) 

 
(3) Numerical procedure 
   The momentum equations and transport 
equations of k and ε are solved with the conservative 
finite-volume method base on a fully-staggered grid 
system. In order to prevent the generation of 
oscillations and spurious solution in regions of high 
gradients, a MUSCL-TVD scheme with the 
MINMOD limiter which has third-order accuracy is 
applied to the convective terms in the momentum 
equations and the transport equations of k and ε.  
The Adams-Bashforth scheme with second-order 
accuracy in time is used for time integration in each 
equation. The governing equations are discretized as 
fully explicit forms and are solved along the time 
axis step by step. Calculation of pressure field is 
implemented using a fractional step method 
coupling with the Highly Simplified Mark and Cell 
(HSMAC) method. 
 
(4) Boundary conditions 

The turbulent kinetic energy, k and its ratio of 
dissipation, ε  at wall are evaluated using a wall 
function which is evaluated by the log-law. At the 
boundary inlets, the value of k is chosen to be (0.05U)2 
(U=average velocity at each inlet); the level of ε is 
determined from the value of k at the inlets and Eq. (8) 
by specifying the ratio Dt/ν=100. 

In order to consider effect of the rapid attenuation 
of turbulence intensities in the vertical direction near 
the free surface, the following damping function, fs, is 
multiplied to the eddy viscosity. 
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where H=water surface height; B=constant (=10); ξ3= 
vertical coordinate; subscript s indicates the value at 
the free surface layer. The turbulent dissipation rate at 
the free surface layer, εs, is evaluated by the following 
formula to calculate the secondary currents of second 
kind. 
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where 3ξ is same as that in Eq. (20). 
 
3. COMPUTATIONAL CONDITION AND 

DOMAIN 
 
   The 3D model described above is validated by 
computing one flow case of the experiment of Weber 
et al.9), which are shown in Table 1. In this table, 
Qm=main channel discharge; Qb=branch channel 



 

 

Table 1 Computational conditions. 
 

Case Qm 

(m3/s) 
Qb 

(m3/s) 
Qt 

(m3/s) 
q*=Qm/Qt H0  

(m) 
U0 

(m/s)
1 0.043 0.127 0.170 0.250 0.3054 0.608

 
Fig.1 Computational domain and grid. 

 
discharge; Qt=Total post-confluence channel 
discharge (=Qm+Qb); q*=Qm/Qt; H0 and U0 are the 
average water depth and the bulk average flow 
velocity at the downstream end, respectively. 
   In the experiment of Weber et al.9), the channel 
consists of a main channel of 21.946 m in length 
and a branch channel of 3.658m in length, which 
locates 5.484 m downstream of the entrance of the 
main channel. Both channels have the same with 
(W) of 0.914 m. However, the computational 
domain is chosen as follows. The length of 
post-confluence channel is shorten to 7W (6.398 m) 
where the water depth, H0, is nearly constant as 
shown in Table 1, while the main channel length 
upstream of the branch channel is prolonged to 12W 
(10.968 m), and the branch channel length is 
lengthened to 10W (9.14 m).     
   A grid independence study has been conducted 
to determine the appropriate grid point number. The 
final grid chosen has 92×55×29 cells with a total of 
146,740 cells. The computational grid around the 
junction is shown in Fig. 1. 
 
4. RESULTS AND DISCUSSIONS 
 
(1) Turbulence kinetic energy 
   Generation of turbulence of the present model after 
an almost steady state is evaluated through comparison 
of the calculated turbulence kinetic energy to the 
experimental one. Here, both are normalized by U0

2. 
The distance is normalized by the channel with, W, 
named as x/W, y/W and z/W. The calculated result at 
z/W=0.278 (near the water surface) is used for this 
comparison as shown in Fig. 2. It can be seen that the 
two models fairly generates general tendency of 
turbulent region. However, the linear turbulence model 
under-predicts too much turbulence along the 
boundary of the passing flow, while the position of the 
highest turbulent region is not correctly predicted. In 
contrast, the result with the nonlinear turbulence model 
is agreeable with the measured one: the highest 
turbulent region is reasonably reproduced.  

 
Fig. 2 Comparison of dimensionless turbulence energy (k) by 

the models with the experimental one at z/W = 0.278. 
 
This difference is because the anisotropy of turbulence 
and effect of the strain and rotation parameters on the 
eddy viscosity (Dt) through Cμ are included in the 
nonlinear model, which are not considered in the linear 
one. 
 
(2) Water surface elevation 
   Water surface is normalized with the channel 
width (W). Fig. 3 displays calculated water surface 
contours by the linear and nonlinear turbulence 
models, Figs. 3b and 3c, respectively together with the 
experimental one. It can be observed that the predicted 
results agree well with the measured ones. 
Quantitatively, the predicted minimum dimensionless 
water surface elevations in the separation zone are 
0.306 and 0.308 with the linear and nonlinear models, 
respectively. These values are very close to the 
experimental one of 0.306. In comparison with the 
previous study results (for example, Huang et al.8)), the 
present predicted results are better in terms of 
water-surface mapping and the minimum water surface 
elevation (this minimum elevation predicted with 
Huang et al.8) is 0.311). The main reason may be 
attributed to non-hydrostatic pressure considered and 
effect of surface tension and viscosity is taken into 
account in evaluating dynamic boundary condition.  
 
(3) Flow velocity field 
   Flow velocity components are normalized by U0, 
named as u*, v* and w*. Two velocity fields, one near 
the water surface and another near the bed, are 
performed together with those of the experiment in 
order to assess the prediction of the present 3D model 
with the linear and nonlinear turbulence models as 
shown in Figs 4 and 5, respectively. 

It can be observed that the critical features of the 
junction flow are captured with the present 3D model. 
There is a significant difference between the surface 
lateral flow and the bed one. The surface lateral flow   

Y

Z

W

X

Y

Qt
Qm

Qb

y/
W

y/
W

y/
W

Highest turbulence region

Highest turbulence region

Highest turbulence region

a) Exp.

b) Calculated with the linear 

c) Calculated with the nonlinear 



 

 

 
Fig. 3 Comparison of water surface contours. 

 
enters at a larger deflection angle to the main channel 
in comparison with the bed flow. The larger angle of 
entry results in a higher momentum at the surface, 
leading to a wider separation zone at the near surface 
depths than at the near bed. Another important feature 
observed is that the surface flow is skewed toward the 
outer bank, while the bed one is deflected toward the 
inner bank in the downstream of the confluence when 
looking downstream. This implies different sediment 
transport tendencies at the surface and the bed. 

Figs 4 and 5 both show that there is a separation 
zone where reverse velocity occurs downstream of the 
junction and its size is significantly different between 
the surface and the bed: The separation zone is larger 
near the surface than near the bed. Both the results 
with the linear turbulence model and the nonlinear one 
generally agree with the experimental results. 
However, the separation zones generated with the 
linear model are over-predicted, especially at the bed. 
The experiment shows the dimensionless lengths of the 
separation zone at the surface and at the bed are about 
2.0 and 1.3, respectively, while those with the linear 
model are about 2.2 and 1.7. When the nonlinear 
model is used, these results are significantly improved 
and reasonably agreeable with the measured ones. 
These lengths are about 1.9 and 1.4, respectively. The 
size of the separation zone is influenced by interaction 
between the passing flow and the flow in the 
separation. This interaction results in a decrease in 
momentum of the flow in the boundary region of the 
separation. Depending on this decrease, the length of 
the separation zone may be longer or shorter. As 
indicated above, the linear turbulence model 
under-predicts turbulence along the boundary of the 
separation. This implies that decrease in momentum in 
this region is under-predicted in comparison with that 
in the experiment, leading to the longer calculated 
length than the measured one. In contrast, the 
nonlinear turbulence model predicts fairly the 
distribution of turbulence along the boundary region of 
the separation, thus generating the more reasonable 

separation size. 
In this computation, the standard wall function was 

used to evaluate turbulence kinetic energy and its 
dissipation rate at wall based on the assumption of 
logarithmic velocity law. However, in the reattachment 
region, flow velocity would no longer obey the 
log-law. This may lead to larger velocity after the 
reattachment point in computation than in experiment 
as seen in Fig. 5. 
 
(4) Secondary flow 
   Secondary flow is one of the most complex and 
distinctive features of the confluence flow. 
However, a correctly 3D simulation of this flow 
pattern is also not a straightforward work. Fig. 6 
displays the cross-sectional velocity field at the 
position x/W = -2.00. Both the present model and 
the experiment show that there is a clockwise large 
vortex near the outer bank. Its strength and position 
are quite well generated with the numerical model. 
Comparing with the experiment, the center position 
of the large vortex (at about y/W = 0.8) is correctly 

 
Fig. 4 Comparison of u*-v* velocity field at the surface 

(z/W = 0.278). 

 
Fig. 5 Comparison of u*-v* velocity field at the bed (z/W = 

0.014). 
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Fig. 6 Comparison of v*-w* velocity field at x/W = -2.00 

 
predicted by the nonlinear model, while this is 
slightly skewed (at about y/W = 0.7) when using the 
linear model. At this section, the experiment also 
shows another clockwise small vortex near the inner 
bank. This important feature is not captured by the 
linear model. It is agreeable with the result of Huang 
et al.8) at this point. The linear model, in fact, 
incorrectly predicts this vortex in term of its 
direction (anti-clockwise) and strength as seen in 
Fig. 6b. On the contrary, this small vortex is well 
reproduced by the nonlinear model as seen in Fig. 
6c. The linear model does not consider the 
anisotropy of the Reynolds stresses, while the 
nonlinear one includes this aspect through the 
nonlinear term in Eq. (6). As seen in Fig. 6b and 
Fig. 6c, it can be seen that this term affects 
secondary current patterns, and may include the 
interaction between secondary current kinds. 
Therefore, the very good result obtained with the 
nonlinear model proves the important role of 
consideration of this aspect. 

The border of the separation zone defined as the 
zero-velocity contour is also displayed in Fig. 6. It 
can be seen that comparing to the measured result, 
the shape of the separation along the depth is well 
captured with the nonlinear model. While the linear 
model under-predicts the dimensionless maximum 
width of the separation zone (0.19), the nonlinear 
model predicts this quantity (0.25) well in 
comparison with the measured one (0.26). 

   
5. CONCLUSION 

In the present paper, a 3D numerical model with 

the linear and nonlinear k-ε model is presented and 
validated in order to investigate flow features at an 
open-channel confluence. Based on the results 
obtained and discussions in the above sections, the 
following conclusions can be drawn: 
  The linear k-ε model predicts quite well the water 
surface mapping and velocity field. However, the 
model under-predicts the maximum width of the 
separation zone. Moreover, the turbulence kinetic 
energy and secondary currents are not well 
reproduced. 
  The nonlinear k-ε model performs very well and 
overcomes almost the limitations the linear one 
encounters to become the superiority over than the 
later. Therefore, the present 3D model with the 
nonlinear k-ε model is recommended to intensively 
investigate the confluence flow. 
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Border of the separation zone (u=0)
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