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Abstract

Chromatin structure, in terms of positioning of nucleosomes and nucleosome-free regions in the 

DNA, has been found to have an immense impact on various cell functions and processes, ranging 

from transcriptional regulation to growth and development. In spite of numerous experimental and 

computational approaches being developed in the past few years to determine the intrinsic 

relationship between chromatin structure (nucleosome positioning) and DNA sequence features, 

there is yet no universally accurate approach to predict nucleosome positioning from the 

underlying DNA sequence alone. We here propose an alternative approach to predicting 

nucleosome positioning from sequence, making use of characteristic sequence differences, and 

inherent dependencies in overlapping sequence features. Our nucleosomal positioning prediction 

algorithm, based on the idea of generalized hierarchical hidden Markov models (HGHMMs), was 

used to predict nucleosomal state based on the DNA sequence in yeast chromosome III, and 

compared with two other existing methods. The HGHMM method performed favorably among the 

three models in terms of specificity and sensitivity, and provided estimates that were largely 

consistent with predictions from the method of Yuan and Liu (2008). However, all the methods 

still give higher than desirable misclassification rates, indicating that sequence-based features may 

provide only limited information towards understanding positioning of nucleosomes. The method 

is implemented in the open-source statistical software R, and is freely available from the authors’ 

website.
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1 Introduction

In complex organisms, DNA is tightly packed into the nucleus of cells, with stretches of 

DNA about 147 bp in length wrapped around histone proteins (nucleosomes) at 

approximately regular intervals, separated by nucleosome-free linker regions (Luger, 2006). 

Nucleosome-free regions (NFRs) are more susceptible to damage from environmental 
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agents. For example, mutations in regulatory regions of oncogenes can lead to the 

development of cancerous cells (Hershberg et al., 2005). In studies of chromatin it has been 

shown that active regulatory regions of the genome have a general tendency towards 

nucleosome disruption compared to non-regulatory regions (Wallrath et al., 1994). The 

availability of high-resolution nucleosome positioning data can complement genomic 

sequence data, leading to increasingly successful methods for discovering transcription 

factor binding sites (TFBSs) in complex organisms, a field which is typically plagued by 

high false discovery rates (Narlikar et al., 2007; Bussemaker et al., 2007; Gupta and 

Ibrahim, 2007).

1.1 Tiling arrays and their analysis

Recently, genome tiling array techniques (Dion et al., 2005; Casolari et al., 2005; Lee et al., 

2007) including Formaldehyde Assisted Isolation of Regulatory Elements (Giresi et al., 

2007; Hogan et al., 2006), have been used to map genomic positions of nucleosomes. Tiling 

arrays are a type of microarray chip designed to cover the whole or a major part of a genome 

through thousands of short fragments (probes) that are usually contiguous (or even 

overlapping). Tiling arrays are widely used in Chromatin Immunoprecipitation (ChIP-chip) 

for detection of TFBSs, determining DNA hypersensitivity sites (DNAse-chip) and array 

CGH to detect chromosomal copy number aberrations. In this article, we used publicly 

available tiling-array data from the Saccharomyces cerevisiae (yeast) genome (Yuan et al., 

2005) for nucleosome detection. Yuan et al. (2005) used a procedure of shearing chromatin 

by micrococcal nuclease (MNase) digestion to locate nucleosomal positions for a set of 

regions covering about 270 Kbp and sixteen chromosomes in yeast. In this procedure, 

nucleosomal DNA was isolated by MNase treatment, labeled with Cy3 fluorescent dye, 

mixed with Cy5-labeled whole-genomic DNA, and hybridized to a microarray. The DNA 

probes used were 50 bp in length and overlapped with their neighbors by 30 bp. The final 

data contained about 25,000 short overlapping DNA segments, corresponding to the 

microarray probes; for each probe, the available information consisted of intensity 

measurements from the nucleosome-enriched and reference sample.

The spatially dependent structure of the tiling array suggests that models explicitly 

incorporating this dependence are likely to be more powerful in detecting true protein-DNA 

interactions. Hidden Markov models, or HMMs (Juang and Rabiner, 1991), are often used in 

such contexts; HMMs consist of a doubly stochastic process where a latent Markov process 

is inferred through observations from another set of stochastic processes. HMMs are not 

directly appropriate for assessing length-constrained features such as nucleosomes, as they 

induce exponentially decaying state length distributions. Recently, we introduced a 

generalized Bayesian framework (Gupta, 2007) for statistical inference from genome tiling 

arrays, developing a hierarchical model robust to various sources of probe variability and 

measurement error and an explicit state duration model.

1.2 Determining nucleosome positioning from sequence

The effect of DNA sequence on nucleosome positioning is known to be important, but is 

still not completely understood (Ioshikhes et al., 2011; Trifonov, 2011; Segal et al., 2006; 

Ercan and Lieb, 2006; Giresi et al., 2006). Nucleosome positioning (NP) is known to be 
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influenced by poly-nucleotide and periodic repeats (Ioshikhes et al., 2011; Thastrom et al., 

2004; Wang and Widom, 2005), as well as homopolymer stretches (Yuan et al., 2005). 

Some studies predicted up to 50% of nucleosome positions using DNA sequence (Ioshikhes 

et al., 2006; Segal et al., 2006); recent evidence shows that rather than a few discrete 

sequences influencing NP, cumulative effects over long DNA stretches are likely to be 

important (Ercan and Lieb, 2006; Trifonov, 2011). Segal et al. (2006) used a dinucleotide-

based frequency model to differentiate potential nucleosomal and non-nucleosomal regions 

from a well-positioned subset; and Ioshikhes et al. (2006) used the propensity of periodically 

distributed AA and TT dinucleotides to define a NP sequence. Recent studies, such as Yuan 

and Liu (2008), have developed algorithms to differentiate nucleosomal regions, and to 

calculate overall nucleosome occupancy likelihoods. Yuan and Liu (2008) applied wavelet 

analysis to determine signals, which were used to model the probability that DNA sequence 

is part of a nucleosome via logistic regression. The predicted logits, known as N-scores, 

were used to classify each sequence as a linker or nucleosome. Yuan and Liu (2008) 

compared their method to other nucleosome classification approaches using an ROC-score, 

the area under an ROC curve. The methods proposed by Ioshikhes et al. (2006) and Segal et 

al. (2006) use a non-discriminative approach, and only consider nucleosome sequence data. 

In addition, these approaches focus only on the nucleotide and dinucleotide level counts.

There is unlikely to be enough signal in the sequence surrounding any one nucleosome to 

know which individual bases are important for positioning; our goal is to use data from 

many genome-wide positioning events to derive rules to build meaningful models. Our 

proposed approach incorporates statistical methods that simultaneously learn sequence 

properties related to (i) polynucleotide frequencies and (ii) spatial correlations in sequence 

data that influence NP, leading to a more complete characterization of an NP sequence. We 

have developed an efficient Bayesian statistical model and methodology, based on a 

hierarchical generalized hidden Markov model framework, to determine nucleosomal 

positioning locations by using ChIP-chip tiling array data, that accounts for spatial 

dependence between probes (Gupta, 2007). In this article, we propose a novel segmentation-

based probabilistic model for predicting chromatin structure on the basis of underlying 

sequence. Sequence features can be tested for predictive ability with the goal of predicting 

nucleosome positioning and TF binding propensity from sequence factors alone. The model 

can be estimated through a classical likelihood based approach or a Bayesian approach. We 

prefer the Bayesian approach for two main reasons: (i) it provides a framework for 

hierarchically modeling dependence and for dealing with nuisance parameters (such as 

probe-specific biases) without leading to overwhelming analytical complexity and (ii) it 

allows a principled way of building prior distributions based on partially known information 

(such as TFBS patterns) and hence improve estimation of novel features.

2 Methods

We develop a probe-specific model for tiling array data for analyzing nucleosome 

positioning experiments. The spatial dependence between probes, along with the varying 

state length assumption, is addressed through a generalized hierarchical hidden Markov 

model (HGHMM) approach (Gupta, 2007). To allow for flexible modeling of the 

distribution of latent states, we use a non-homogeneous HMM approach. A two-state model 
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is developed, with the nucleosomal and nucleosome-free regions corresponding to the 

hidden states. In the Bayesian approach, we can hierarchically model probes and efficiently 

pool data to obtain robust parameter estimates. The new approach further allows state-

specific transition distributions which we incorporate in two ways. First, the length of 

sequence generated from an underlying state is allowed to depend on the state identity. Next, 

the emission densities are allowed to depend on location-specific covariates, which lets us 

take into account the effect of local sequence composition on the observed binding 

propensity of a region. Fitting this more complex model in the Bayesian set-up is 

computationally expensive, especially if using standard Markov chain Monte Carlo fitting 

methods such as Gibbs sampling (Gelfand and Smith, 1990). For efficient computation, we 

make use of a recursive data augmentation (Tanner and Wong, 1987) technique which has 

previously been developed for segmentation-type models (Gupta and Liu, 2005; Gupta, 

2007).

We here develop a two stage approach for determining sequence-based characteristics that 

predict nucleosome positioning. Nucleosome positioning sequence signals have previously 

been studied in terms of short nucleotide repeats (Ioshikhes et al., 2006; Segal et al., 2006) 

but these signals are generally too weak to give meaningful predictions in genome-wide 

analysis. We therefore adopt a reverse approach. Instead of testing for significance of 

particular sequence signals in predicting nucleosome positioning, we develop a two-state 

hierarchical HMM, where at the coarsest level, different segment types may potentially have 

different nucleotide compositions. Sequence-specific characteristics are incorporated into 

the model as covariates, and the increase in predictive power is tested by comparing to 

nucleosome positioning data where the true states are known with some accuracy.

2.1 Model for determining sequence determinants of occupancy state

2.1.1 Model description—For notational simplicity, let us represent the ChIP-chip data 

as a single sequence of observations Yi, i = 1, …, N. Yi represents the logarithm of the 

intensity ratio between the enriched and reference sample for probe i of the microarray. 

Corresponding to each observation, let us assume an unobserved state Ci, (i = 1, …, N), 

where Ci = 1(0) represents a nucleosome-rich (nucleosome-free) state. Also, let X = (X1, …, 

XN) denote measurements for a p–dimensional set of “a priori” sequence-based predictors, 

where Xi = (Xi1, …, Xip) for probe i. The p predictors could typically represent sequence-

specific scores, such as 1-mers, 2-mers, motif-based scores, or motif-cluster-specific scores.

Our aim is to predict the best set (or combination) of predictors that can predict the class 

states C a priori, after training our model on a set of experiments to determine nucleosome 

positioning. We use a flexible hidden Markov model-type approach to incorporate (i) 

possible dependence in measurements of neighboring probes and (ii) linking the covariates 

(sequence-based characteristics) to the response of interest (nucleosomal state). Adapting the 

approach from Gupta (2007) the other components of the model are:

1. The initial distribution of states, characterized by the probability vector π = (π0, 

π1). A Dirichlet prior is used for π.
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2. The probability of spending time d in state k, given by the distribution pk (d|ϕ), d ∈ 

Dk (0 ≤ k ≤ 1), characterized by the parameter ϕ = (ϕ0, ϕ1). Here we let D1 (length 

of a nucleosomal state) vary in the range {6, …, 30} to allow for well-positioned 

nucleosomes (covered by 6 to 8 probes) as well as temporally varying unstable 

nucleosomes (between 9 to 30 probes), as suggested by prior biological data. D0 is 

unrestricted and can take any positive integer value. pk(d) is chosen to be a 

truncated negative binomial distribution, between the range specified by each Dk. 

More precisely,

(1)

where the normalizing constant . A 

conjugate Beta(γk, δk) prior is assumed for ϕk.

3. Emission model. If Ci’s are independent (which they are not), a natural way of 

relating Ci’s to sequence specific predictors would be through a logistic link 

function:

so that for a new X*, we could predict states using

(2)

where β = (β1, …, βp) is a p-dimensional regression coefficient vector, and μ a 

scalar intercept term. To incorporate the dependent nature of adjacent probes, 

within the framework of the HMM, we define Zi = X′iβ and note that the right side 

of (2) is equivalent to the probability distribution function of a logistic distribution, 

that is, for every i, P(Ci = 1|Xi) is equivalent to P(Zi > 0), where Zi can be 

interpreted as a measurement on a latent variable. This formulation can be thus 

considered equivalent to using a logistic emission distribution on Zi within the 

HMM, i.e.

where μc denotes the probe mean for state c (c ∈ {0, 1}).

4. Transition model. The transition probabilities between the states τjk = P(Ci = k|Ci−1 

= j), are given by the matrix τ = (τjk), (0 ≤ j,k ≤ 1). Assume a Dirichlet prior for 

state transition probabilities, i.e. τk0, τk,1 ~ Dirichlet(η), where η = (η0, η1).
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Hyperparameters for the Dirichlet and Beta prior densities are chosen to be non-informative. 

Our model is fitted using a cross-validation algorithm, trained on a gold standard data set, 

and then applied to a test set. Below we detail the two sets of steps that comprise the 

algorithm.

2.1.2 Model training

Step 1. Determine the nucleosomal state, C, for each probe in the training data. This 

may be done using a profile HMM (Yuan et al., 2005) or a Bayesian data augmentation 

algorithm under an HGHMM model (Gupta, 2007).

Step 2. Train model with predictors X (sequence-based covariates: word counts, or 

principal components derived from word count matrix, discussed later) that can predict 

C in the training data set. In this step, we assume the states are known (from Step 1), 

and we estimate the parameters βc and μc for each state c = {0, 1} in the training data 

using standard likelihood-based approaches.

2.1.3 Model testing and prediction

Step 1. With all sequence-based covariates X* in the test data set (corresponding to X in 

the training data set), we fit a new generalized HMM, the model which is detailed in 

Section 2.1.1. Here, we use the notation  to denote the fitted state of probe j in the 

test data set. In this step, we iteratively do the following:

– Determine latent nucleosomal states , (j = 1, …, N) for the N probes in the 

test set using a recursive data augmentation procedure that simultaneously 

estimates states and state durations. The details of this step, adapted from 

Gupta (2007), are given in the Appendices. In contrast to Gupta (2007), a 

logistic distribution is used in place of a hierarchical Gaussian model.

– Estimate transition probabilities τkl (0 ≤ k, l ≤ 1) by sampling from their 

posterior (Dirichlet) distributions. Although this could be potentially done 

during model training, estimating these instead in the testing stage allows 

greater flexibility in adapting to the nucleosomal landscape that may vary 

across different regions of the DNA.

– Estimate initial state distribution parameters π and state duration distribution 

parameter ϕk (k = 0, 1) from their posterior distributions. Sampling π is 

straightforward due to its conjugate prior distribution; for sampling ϕk 

efficiently, an adaptive rejection Metropolis (ARMS) algorithm is used, 

similarly as in Gupta (2007).

Step 2. After fitting the HGHMM, we estimate posterior probabilities  for any 

subset/subsequences of interest, based on the posterior samples from the MCMC 

algorithm. Alternatively, a Viterbi algorithm could be used to predict the states after 

estimating the emission and transition parameters. However, since the full MCMC-

based sampling gives estimates from the joint distribution of parameters, rather than the 

conditional distribution (as in Viterbi), we prefer to use this approach when feasible. In 
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typical runs of our algorithm, it converged within a few iterations, hence was not 

especially computationally intensive.

As discussed in more detail in the following section, we applied this method on the Yuan et 

al. (2005) data set, through ten-fold cross-validation.

3 Results and Empirical Studies

3.1 HGHMM Analysis

Tiling-array data for the Saccharomyces cerevisiae genome (Yuan et al., 2005) were used to 

assess the performance of the proposed generalized hidden Markov model. For each of 

about 25,000 DNA probes, the following information was available: DNA sequence start 

and end coordinates, chromosome of occupancy, and nucleosomal state predicted by Yuan 

et al. (2005). The nucleosomal states indicated whether a given 50 bp segment of DNA was 

a linker or nucleosome-free region (NFR), a nucleosome, or a fuzzy nucleosome.

We first used a logistic regression model, which requires a dichotomous outcome; therefore 

fuzzy nucleosomes were also specified as nucleosomes. The largest chromosomal region for 

our data is chromosome 3, which represents 57% of the total set of probes. This region, 

which has the fewest number of sequence gaps, was used for our analysis. Two additional 

exclusion criteria were also used, which further reduced the data size to 12261 probes. 

Probes with missing nucleosomal or other information were not included in the analysis; 

also, nucleosomal regions that were composed of less than 5 probes were excluded. Five 

contiguous overlapping probes were equivalent to 130 bp of DNA sequence, and 

nucleosomes are ~ 147 bp in length. This final probe distribution was used for analysis.

The DNA sequence was used to predict the nucleosomal states of each of the probes. To 

relate the nucleotides of the DNA sequence to the states, model covariates were obtained 

from DNA words. DNA words are smaller sub-segments of the sequences of varying length. 

There exist 340 possible one, two, three, and four letter word combinations, formed from the 

four nucleotides (A, C, G, and T) which compose DNA. For each of the 12261 overlapping 

probes, the count of each word was calculated. The word counts were then transformed 

using principal components analysis to account for the correlation due to the overlapping 

nature of the probes and the words. Orthogonal covariates, based on the principal 

components (PCs) were computed– they consisted of different parts of the 340 word counts 

and were ordered by the percentage of variability they explained. The first ten PCs, which 

explained 67% of the variability in the data, were selected as the covariates for the models. 

A larger set of PCs (26) which explained about 80% of the variability, was also considered 

for the analysis, but similar results were seen– hence we chose the smaller set for 

computational efficiency.

Our initial analysis used the 10 covariates as predictors in a multiple logistic regression 

analysis. The outcome of interest was nucleosomal state, and we modeled the probability of 

a probe being a nucleosome free region (NFR), across chromosome 3. This modeling 

strategy ignores the underlying correlation structure of the probes. To assess the predictive 

accuracy of the logistic model, cross validation strategies were used. The data were stratified 
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into 10 groups of equal size, 1226 probes per group. For each of the 10 subgroups, the 

nucleosomal state of each probe was predicted based on the combined data from the 

remaining groups. The algorithm predicted the average percentage of nucleosomal regions 

to be 84%, across all ten sets. The results of the cross validation are presented in Table 1; all 

values are calculated using a 0.5 cutoff for the posterior probability.

The overall misclassification rate of the method is a combination of the false positive and 

false negative predictions. The evaluated performance characteristics of the prediction 

algorithm are as follows:

Sensitivity = P(Predicted NFR | NFR)

Specificity = P(Predicted nucleosome | nucleosome)

False Negative = P(Predicted nucleosome | NFR)

False Positive = P(Predicted NFR | nucleosome)

The logistic analysis had low sensitivity on average, yet high specificity. This indicates that 

the model was not good at detecting NFRs, but was more successful at detecting nucleosome 

regions. (Changing the cutoff from 0.5 may bring these values closer to the HGHMM 

predictions, but the misclassification rates are still substantially higher.) Next, the HGHMM 

model was applied to the data using a logistic emission distribution, and also a normal 

approximation to the emission distribution. The data were again divided into 10 different 

test sets of size 1226 probes.

Prediction and cross-validation analysis was conducted for each test set. For each test set, 

the HGHMM model fit was run for 1000 iterations of the MCMC samples and the 

predictions with the largest posterior probability were selected. Misclassification rates and 

other prediction assessment rates were calculated - as well as receiver operator curves. The 

output for the HGHMM logistic and HGHMM normal approximation for the emission 

distributions are also shown in Table 1. The predictions in the table are classified with a 0.5 

cutoff for the posterior probability. The two HGHMM-based methods yielded similar results 

with sensitivity levels of around 0.54, and specificity levels of around 0.68. The methods 

seem to classify nucleosome-rich regions with greater accuracy than the NFRs, however, 

even the NFR classification was improved compared to the crude logistic model-based 

estimation.

3.2 Comparison of HGHMM with other methods

The HGHMM method showed promising results, compared to the non-HGHMM logistic 

method. Additional comparisons were done between the HGHMM method and other 

approaches to modeling nucleosome positioning with tiling-array data– Yuan and Liu (2008) 

and Segal et al. (2006). The S. cerevisiae tiling-array data were analyzed with both these 

methods and compared to the HGHMM results.

Yuan and Liu (2008) developed an algorithm to predict nucleosome positioning by 

modeling covariates using wavelet analysis. This method models the probability that a 

sequence segment is part of a nucleosome, and is expressed as the predicted log-odds, 
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known as the N-score. The N-score computation algorithm requires sequences to be 131 bp 

in length, and thus our tiling-array data were recombined into overlapping segments of 131 

bp DNA sequences. Five consecutive tiling-array probes, which cover 130 bp of sequence, 

were combined along with one additional base-pair to create the 131 bp sequences. Each of 

the following 131 bp sequences were found by shifting the previous by 20 bp, equivalent to 

a probe shift. Gaps in the sequence were defined as any region with more than one missing 

probe. The 131 bp sequences were generated as above until a gap was encountered. Because 

of the probe overlap, the sequence remained continuous if only one probe was missing, 

otherwise a gap was recorded. In total, 10727 overlapping sequences of 131 bp length were 

created. These sequences were analyzed using the Yuan and Liu (2008) N-score method in 

Matlab. All methods and software were obtained from the Yuan and Liu (2008) website. An 

N-score for each 131 bp sequence represented the log-odds of a nucleosome being 

positioned along the given sequence. N-score values smaller than zero were identified as 

NFRs, and N-score values larger than zero were identified as nucleosomes. In order to 

compare the predictions from the N-score method to the true nucleosomal states, the true 

states were also transformed to a 131 bp resolution. For each 131 bp sequence, the 

proportion of true NFR probes was calculated and was used to classify the new 131 bp 

sequences as NFR or nucleosomal. The proportion was calculated based on non-missing 

values, such that if one probe was missing, only the true states of the non-missing probes 

were included in the calculation of the NFR percentage. If the proportion of NFR probes 

was greater than 0.5 then the new sequences were classified as NFR, and if the proportion 

was less than 0.5, then the new sequences were classified to be nucleosomal.

The second method, the Segal et al. (2006) prediction algorithm, models the probability that 

a basepair is located within a nucleosome region. The tiling-array data was combined to 

form non-overlapping segments of continuous DNA. In total, there were 442 gaps, which 

results in 443 continuous sequences of varying length. Each continuous sequence was 

analyzed with Segal et al. (2006) method, and the probability that each base pair was part of 

a nucleosome was calculated. The resulting bp resolution probabilities, corresponding to 

each of the original probes, were averaged to obtain an overall estimate for the nucleosomal 

probability for each probe. The bp probabilities from Segal et al. (2006) were averaged over 

the 50 bp length to compare to the HGHMM at the individual probe level. Differing cutoffs 

were used to classify the findings and are seen in Figure 1, which compares the 

classification of the NFR regions for the HGHMM and Segal et al. (2006) analyses with a 

receiver operator curve (ROC). The ROC shows that the HGHMM results, which were 

combined across test sets, outperform those of the Segal et al. (2006) approach, when 

comparing at the probe level.

The classifications for the three approaches compared to the true states are displayed in 

Table 2. To compare all the results simultaneously, the Segal and HGHMM results were 

also transformed to 131 bp resolution (rows D and E in Table 2). The NFR classification for 

the Segal and HGHMM results, at the 131 bp resolution, were done with the same method as 

the true state classification. The Segal method produces a probability for every basepair that 

it is part of a nucleosomal region. We took each segment out of the 443 segments (produced 

by gaps in the data) and divided it into non-overlapping segments of 131 bp (excluding any 

basepairs left over at the ends). Next, we calculated the average nucleosomal probability of 

Moser and Gupta Page 9

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2015 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the basepairs within each sequence to assign one value to each 131 bp sequence. If this 

probability exceeded 0.5, the 131 bp segment was assigned to have been predicted a 

nucleosome, otherwise it was considered nucleosome-free. For the HGHMM, we 

recombined the overlapping probes into non-overlapping 131 bp sequences, and then 

averaged the posterior probabilities of being predicted a nucleosome within that segment. 

Each segment was assigned to have been predicted a nucleosome or NFR based on whether 

this probability was greater or less than a cutoff of 0.5. Finally, for the N-score method of 

Yuan and Liu (2008), each 131 bp segment was assumed to be predicted a nucleosome or 

NFR based on whether the N-score (which is on the logit scale) was greater or less than 

zero. The HGHMM logistic model slightly under-predicted the nucleosomal state 

percentages (in this data this is estimated as 62.9%). The Yuan and Liu (2008) method 

appeared to strongly under-predict nucleosomes, whereas the Segal et al. (2006) approach 

over-predicted the values.

The misclassification rates are shown, along with the predicted percentages, in Table 3. The 

Yuan and Liu (2008) approach and the HGHMM had comparable results for sensitivity and 

specificity, the HGHMM having a 3.2% lower misclassification rate overall. The Segal et al. 

(2006) approach had poor NFR prediction, but was stronger at predicting the nucleosomal 

regions. When examining the Segal results at the probe level, the percentage of nucleosomes 

decreases slightly; the results are displayed in Table 2.

The nucleosome predictions from the three approaches were also compared to determine the 

amount of overlap between the methods, in terms of predicted states. The least amount of 

mismatch was between the Yuan and HGHMM methods, with 28.4% of the predictions 

being concordant for nucleosomes, and 32.9% concordant for NFRs. The comparisons 

between the Segal method and the others more agree for the nucleosome regions than the 

NFRs. Examining the three-way comparison of the methods, it is clear that the methods are 

not necessarily consistent in their predictions. The Segal method does not have strong 

predictive ability when examining sequences at the 131 bp resolution. NFR predictions were 

not similar across methods; however, the nucleosomal predictions were comparable. Details 

of these comparisons are in Tables A1 and A2 in the Appendices.

The Area Under the Curve (AUC) for the Segal analysis and for the HGHMM logistic 

analysis, both at the probe level, from Figure 1 were calculated to be 38.63% and 62.25%, 

respectively. A similar calculation was done for the three methods at the 131 bp resolution. 

The AUCs for the Yuan, Segal, and HGHMM methods are 57.41%, 43.63%, and 58.93%, 

respectively. This summary measure, AUC, is similar to the ROC score assigned to the 

different approaches outlined in Yuan and Liu (2008). The initial ROC scores reported in 

Yuan are based on a different data set composed of 199 nucleosome sequences and 292 

linker sequences, which is used to train for cross-validation and prediction. The second set 

of ROC scores, based on genome-wide predictions, were obtained using nucleosome-

enriched probes (highest 10% of log-ratios) and NFR-enriched probes (lowest 10% of log-

ratios). Hence our AUC values appear slightly lower than seen in Yuan and Liu (2008), 

being more conservatively estimated.
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4 Discussion

Our nucleosomal state prediction approach incorporates a large amount of flexibility through 

segment-specific transition distributions and hierarchical modeling. For fitting and testing 

models, while limiting the computational cost, we made use of efficient Monte Carlo 

procedures such as recursive data augmentation. For larger data sets, it may be possible to 

use numerical and analytical approximations at various stages that will speed the 

computation by orders of magnitude without compromising the predictive power of the 

model.

Results were similar across the HGHMM Logistic and HGHMM Normal model; and both 

HGHMM-based approaches have higher AUC values than the crude logistic model. The 

non-HGHMM logistic model over-predicts nucleosome occupancy with a predicted 

percentage of 84%. The true percentage of nucleosome occupancy is 62.9%. The estimated 

percentages for each of the two HGHMM methods with different emission distributions are 

about 60%. The HGHMM logistic and the approximated approach with the HGHMM 

normal both give similar results. Contrasting the the HGHMM model with Segal et al. 

(2006) and Yuan and Liu (2008), the HGHMM model appears to be most consistent with the 

Yuan and Liu (2008) approach. The Yuan method under-predicts the nucleosomal 

percentages, while the Segal method over-predicts nucleosomal occupancy both at the probe 

and the 131 bp levels. The main reason for the discrepancy of the Segal method is 

potentially the lack of a training set for nucleosome-free regions, only concentrating on a 

known set of nucleosomal regions.

One ultimate goal of this approach is to get a sense of how each sequence feature contributes 

(or is unrelated) to nucleosome positioning. Table 4 shows that a number of sequence 

features were strongly related to nucleosome positioning, including A/T-containing dimers 

that have already been implicated in nucleosome positioning in other studies. In particular, 

we observed that A/T-containing dimers and trimers were the top contributors to the 1st, 4th, 

5th and 7th PC. Also, the 3rd PC which was most strongly correlated with nucleosome 

positioning, was seen to heavily depend on C- and G- containing k-mers, which suggests 

that there may be mechanisms at work other than the rigidity of the DNA alone in 

positioning nucleosomes.

In summary, the HGHMM approach appears to give overall lower misclassification rates 

compared to other methods, and has great flexibility in use and interpretation, as it can be 

used directly on any data without the need for any specific subdivision into pre-specified 

windows (such as the 131-bp windows necessary in Yuan and Liu (2008)) which can 

constitute a problem, for example, in data containing gaps and missing probes. In addition, 

this method provides a direct interpretability in terms of how different sequence features 

contribute to nucleosome positioning; by looking at the weight age of each sequence feature 

within the principal components used to fit the model, we can directly see how much each k-

mer is related to positioning of nucleosomes or NFRs. In conclusion, sequence factors 

appear to be generally indicative of differences between nucleosomal and nucleosome-free 

regions, but may have limited predictive power. Other chromatin measurements such as 

crystalline structure of the DNA (Greenbaum et al., 2007) may need to be integrated into 
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nucleosomal positioning models for maximal predictive efficiency. Moving on from a two-

step discriminative approach to develop a unified framework to estimate the regression 

parameters simultaneously with fitting the HMM would be ideal. However, given the small 

proportion of variability seemingly explained by sequence-based characteristics alone, this 

approach would probably only be successful if further relevant biological data could be 

incorporated into such a model.
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Appendices

A1.1 Bayesian data augmentation algorithm for HGHMM state prediction

This is adapted from Gupta (2007). For notational simplicity, assume a single long sequence 

of length N, Y = {y1, …, yN}, with r replicate observations for each yi = (yi1, … yir)′. If there 

are gaps, each separated segment of the sequence should be taken separately, and the same 

procedure repeated for each segment. Let the set of all parameters be generically denoted by 

θ = (μ, τ, ϕ, π), and let the latent variables C = (C1, …, CN) and L = (L1, …, LN) denote the 

state identity and state lengths, where Li = l is a non-zero number denoting the state length if 

it is a point where a run of states ends. Then,

The observed data likelihood then may be written as:

(3)

Recursive data augmentation

In the data augmentation algorithm, the key is to update the states and state length durations 

in an recursive manner, after calculating the required probability expressions through a 

forward summation step. Let an indicator variable It take the value 1 if a segment boundary 

is present at position t of the sequence, meaning that a state run ends at t (It = 1, ⇔ Lt ≠ 0). 

In the following, the notation y[1:t] is used to denote the vector {y1, y2, … yt}. Define the 

partial likelihood of the first t probes, with the state Ct = k ending at t after a state run length 

of Lt = l, by the “forward” probability:

Also, let the state probability marginalized over all state lengths be given by
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(4)

Let d(1) = min{D1, …, DK} and d(K) = max{D1, …, DK}. Then, assuming that the length 

spent in a state and the transition to that state are independent, i.e. P(l,k|l′, k′) = P(Lt = l|Ct = 

k)τk′k = pk(l)τk′k, we have

(5)

for 2 ≤ t ≤ N; 1 ≤ k ≤ K; l ∈ {d(1), d(1) + 1, …, min[d(K), t]}. To complete the calculation, the 

boundary conditions needed are: αt(k, l) = 0 for t < l < d(1), and αl(k, l) = πkP(y[1:l]|Cl = 

k)pk(l) for d(1) ≤ l ≤ d(K), k = 1, …, K. pk(·) denotes the k-th truncated negative binomial 

distribution given in (1).

The states and state duration lengths (Ct, Lt) (1 ≤ t ≤ N) can now be updated, for current 

values of the parameters θ = (μ, τ, ϕ, π), using a backward sampling-based imputation step.

Algorithm

1. Set i = N. Update CN|y, θ using

2. Next, update LN|CN = k, y, θ using

3. Next, set i = i−LN, and let LS(i) = LN. Let D(2) be the second smallest value in the 

set {min D1, …, min DK}. While i > D(2), repeat the following three steps:

• Draw Ci|y, θ, Ci+LS(i), Li+LS(i) using

where k ∈ {1, …, K} \ Ci+LS(i), the simplification resulting from the 

assumption that the duration in the previous state and the next state transition 

are independent events.

• Draw Li|Ci, y, θ using
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• Set LS(i−Li) = Li, i = i−Li.

Note that the proposed sampling algorithm is generally applicable to any length restricted 

HMM and not limited to the forms of the state-specific distributions used here. Once the 

states and state duration lengths (Ci, Li) (1 ≤ i ≤ N) have been updated, updating the 

parameters from their posterior distributions is straightforward.

A1.2 Additional tables

Table A1

Two-way Classification for Yuan, Segal, and HGHMM methods at 131 bp level.

Yuan vs. Segal

Segal NUC Segal NFR Overall Mismatch

Yuan NUC 3673 504
0.6005

Yuan NFR 5938 612

Yuan vs. HGHMM

HGHMM NUC HGHMM NFR Overall Mismatch

Yuan NUC 3049 1128
0.3863

Yuan NFR 3016 3534

Yuan vs. Segal

HGHMM NUC HGHMM NFR Overall Mismatch

Segal NUC 5154 4457
0.5005

Segal NFR 911 205

NUC: nucleosomal region; NFR: nucleosome-free region.

Table A2

Three-way Classification for Methods at 131 bp level.

HGHMM NUC HGHMM NFR

Yuan NUC
Segal NUC 2586 1087

Segal NFR 463 41

Yuan NFR
Segal NUC 2568 3307

Segal NFR 448 164

Overall NFR Match 0.0153

Overall NUC Match 0.2411

Overall Mismatch 0.7436
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Figure 1. 
Receiver Operator Curve for HGHMM Logistic model and Segal model at unit probe level.
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Table 1

Measures of performance across test sets with 0.5 cut off.

SENS SPEC FP FN NPP

Non-HGHMM Logistic 0.2258 0.8856 0.1144 0.7742 0.8444

HGHMM Logistic 0.5436 0.6851 0.3149 0.4564 0.6001

HGHMM Normal 0.5330 0.6813 0.3187 0.4670 0.6015

Column headers: SENS=Sensitivity, SPEC=Specificity, FP=False Positive, FN=False Negative, NPP=Nucleosome Prediction Percentage.
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Table 2

State classification table.

True NUC (%) True NFR (%) Nucleosomes (%)

A Segal 70.7 6.6 79.1

B HGHMM 69.1 55.4 60

C Yuan 45.2 69.6 38.9

D Segal 84.2 3.0 89.6

E HGHMM 64.1 53.8 56.5

A: Segal compared to true states at probe level with 0.5 cut off; B: HGHMM logistic compared to true states at probe level with 0.5 cut off; C: 
Yuan compared to true states at 131 bp level; D: Segal compared to true states at 131 bp level; E: HGHMM compared to true states at 131 bp level. 
“NUC”: nucleosome; “NFR”: nucleosome-free region.
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