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Abstract

The problem of finding periodically expressed genes from time course microarray
experiments is at the center of numerous efforts to identify the molecular compo-
nents of biological clocks. We present a new approach to this problem based on
the cyclohedron test, which is a rank test inspired by recent advances in algebraic
combinatorics. The test has the advantage of being robust to measurement errors,
and can be used to ascertain the significance of top-ranked genes. We apply the
test to recently published measurements of gene expression during mouse somitoge-
nesis and find 32 genes that collectively are significant. Among these are previously
identified periodic genes involved in the Notch/FGF and Wnt signaling pathways,
as well as novel candidate genes that may play a role in regulating the segmentation
clock. These results confirm that there are an abundance of exceptionally periodic
genes expressed during somitogenesis. The emphasis of this paper is on the statis-
tics and combinatorics that underlie the cyclohedron test and its implementation
within a multiple testing framework.
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1 Introduction

The search for the molecular components of biological clocks is an important first step
towards understanding the regulatory mechanisms underlying periodic behavior at the
molecular level. Examples of clocks that have been studied include the circadian clock
[McDonald and Rosbash (2001)], the respiratory cycle clock in yeast [Klevecz et.al. (2004),
Spellman et.al. (1998)] and the segmentation clock in vertebrates [Pourquie (2003)]. In
order to find clock-related genes in a high-throughput fashion, time course array exper-
iments are performed to measure the expression levels of genes on a genome-wide scale.
This is followed by a statistical analysis to find periodically expressed genes. The anal-
ysis is non-trivial for reasons that include noisy measurements, variable times between
experiments, vague notions of periodicity, and loss of power due to multiple testing.

The question of how best to analyze cyclic time series is a topic of extensive re-
search in statistics [Chatfield (1978)]. Recent approaches, proposed in the context of
microarray analysis include splines and other curve approximations [Luan and Li (2004),
Storey et.al. (2005)], methods based on signal processing techniques such as the Lomb-
Scargle test [Glynn et.al. (2006)], and non-parametric rank tests [Willbrand et.al. (2005)].
All of these methods address, to varying degrees, the difficulties outlined above, and are
sometimes developed in response to specific needs dictated by individual experiments.

In this paper we introduce a new test for finding periodic genes. Our method belongs
to the family of convex rank tests in [Morton et.al. (2007), Section 5]. These tests were
inspired by up-down analysis, the method of [Willbrand et.al. (2005)]. They are based
on recent advances in algebraic combinatorics, namely the theory of graph associahedra
[Fomin and Reading (2004), Hohlweg and Lange (2005), Markl (1999)]. The connection
between rank tests and polytopes was first suggested in [Cook and Seiford (1983)]. When
using rank tests, an expression time-course is represented by a permutation. This has the
advantage of providing robustness to noise, monotonic transformations, and uncertainty
with respect to the underlying probability distributions, and the disadvantage of preclud-
ing a parametric analysis of the untransformed time courses. In up-down analysis, each
permutation of {1, 2, . . . , n} is mapped to a sign vector, or signature, that records, for
each adjacent pair on the n-path, which of the two measurements is higher. Significance
is determined by counting the number of permutations that have an observed signature.

Our cyclohedron test is based on a similar permutation count to that of up-down anal-
ysis, but the data points are now compared at longer range along the edges of the n-cycle.
The cyclohedron Cn is the graph associahedron when the graph G is the n-cycle, and the
cyclohedron test is the greedy method for linear programming on Cn. It is equivalent
to the test denoted by τ ∗

K(G) in [Morton et.al. (2007), Section 5]. Cyclohedra are also
known as Bott-Taubes polytopes, and they play an important role in representation the-
ory [Fomin and Reading (2004), Section 3.2], combinatorics [Hohlweg and Lange (2005),
Sandman (2004)], and homotopy theory [Markl (1999)]. Connections to statistical learn-
ing theory were explored and developed in [Morton et.al. (2006), Morton et.al. (2007)].

The cyclohedron test is explained in detail in Section 2. Our presentation is elementary
and self-contained. In Section 3 we present a method for assigning p-values to top-ranked
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groups of genes. This is done within a multiple hypothesis testing framework, which
is compatible with any rank test for permutation data, including up-down analysis. In
Sections 5 and 6 we develop the combinatorial details and efficient algorithms for the
cyclohedron test. Our R code is available online, and its use is described in the Appendix.

We apply the cyclohedron test to data reported in [Dequéant et.al. (2006)], consisting
of 17 distinct expression array experiments from the presomitic mesoderm tissue of mouse
embryos. These data were chosen because of the analyses already undertaken and the
possibility for biological validation. Results are discussed in Section 4. We find that
although the high-throughput array experiments are effective for finding groups of genes
likely to be involved with clock regulation, multiple testing issues preclude the assignment
of significance to any individual gene on the basis of periodic-looking patterns alone.

2 The cyclohedron test

The cyclohedron test is appropriate when seeking to determine whether a time course
expression is periodic. Within a single hypothesis setting, the null hypothesis states that
a gene or other unit of interest does not exhibit cyclic expression. The cyclohedron test
provides a test statistic, which we call the permutation count, that replaces this vague
null hypothesis. The test applies to data vectors v = (v1, . . . , vn) whose coordinates are
distinct real numbers. The coordinates vi are measurements of the same quantity at
distinct points. In our applications, the ordering of each vector should be with respect to
some ‘cyclic’ time, so that any v′ = (vi, vi+1, . . . , vn, v1, . . . , vi−1) is an equally meaningful
ordering. For example, the data vectors v we analyze in Section 4 are ordered within a
somite-formation cycle; so vj is a measurement taken before vj+1 in the cycle, where j +1
is understood mod n.

The following procedure computes, for any given data vector v, its signature σ(v) and
its permutation count c(v). The signature is an unordered set σ = {σ1, σ2, . . . , σn−1} of
subsets of {1, 2, . . . , n} and the permutation count is a positive integer.

Algorithm 2.1. (Cyclohedron test)
Input: A vector v = (v1, . . . , vn) of distinct real numbers.
Output: The signature σ = {σ1, σ2, . . . , σn−1} and the permutation count c for v.

Initialize c := 1.
For i from 1 to n−1, do

Initialize σi = ∅, the empty set.
Let δi be the unique index such that vδi

is the i-th largest coordinate of v.
Initialize Left := ∅ and Right := ∅.
For k from 1 to i−1, do

if σk contains δi−1 (modulo n) then set Left := σk,
if σk contains δi+1 (modulo n) then set Right := σk.

Set σi := {δi} ∪ Right ∪ Left and c := c ·
(

|Right|+|Left|
|Right|

)

.
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Let Cn denote the set of all signatures σ(v) as v runs over R
n. Algorithm 2.1 constructs

not only the signature σ and the permutation count c but also the descent order permuta-
tion δ = (δ1, δ2, . . . , δn) of the data vector v = (v1, v2, . . . , vn). Since σ(v) depends only on
the descent order permutation δ, our algorithm specifies a map δ 7→ σ from the symmet-
ric group Σn onto the set Cn. For n ≥ 4, this map is not injective, and we are interested
in the cardinalities of the preimages. For instance, the permutations δ = (1, 3, 2, 4) and
δ′ = (3, 1, 2, 4) have the same signature σ(δ) = σ(δ′) =

{

{1}, {3}, {1, 2, 3}
}

.
The test statistic, the permutation count c, is the number of permutations having the

same signature as the permutation of interest. Significant data vectors have small test
statistics, because it is unlikely that a random permutation will have a topographical
map shared by few permutations. The permutation count c = c(v) has the following
interpretation. Suppose that an appropriate null data generating distribution for each
data vector v induces the uniform distribution on all descent order permutations δ in the
symmetric group Σn. Note that this assumption is valid if the coordinates of the data
vector are independent and identically distributed under the null distribution, so our test
is therefore broadly applicable. For each signature σ ∈ Cn, let p(σ) denote the probability
that the signature σ would be observed under such a null distribution. The following
proposition states that p(σ) is the fraction of permutations δ that map to σ.

Proposition 2.2. The permutation count c computed by Algorithm 2.1 depends only on
the signature σ. It equals the number of permutations δ that are mapped to σ, and hence

c = c(σ) = p(σ) · n!.

Proof. For each σi in the signature σ, at most two other sets σj and σk are contained
in σi and are maximal with this property. Here σj and σk are necessarily disjoint. The

permutation count c is the product of the corresponding binomial coefficients
(

|σj∪σk|
|σj |

)

.

It depends only on σ. The second statement is proved by induction on n, using the fact
that any valid permutation of σj can be shuffled with any valid permutation of σk, and
augmented by δi, to get a valid permutation for σi. Carrying out this process until i = n,
with σn = {1, 2, . . . , n}, yields precisely all permutations δ that have signature σ.

The other output of the algorithm, the signature σ(v), can be viewed as a topographic
map on the n-cycle that captures the shape of the data v. Algorithm 2.1 is an iterative
procedure for drawing this topographic map. Namely, we encircle the vertices of the n-
cycle in decreasing order of their corresponding data vector coordinates, that is, in the
order δ1, δ2, . . . , δn−1. (The first circle is the set σ1, the second is σ2, and so on.) We
do this according to the following provision: in order to encircle δi, if it is adjacent to
some vertex j which has already been encircled by some σk, then σi must contain the σk

circle. Accordingly, the sets “Left” and “Right” keep track of how far to the left and right
σi must extend. The result is an unordered set σ of n−1 encircled sets σ1, σ2, . . . , σn−1.
Figure 1 displays the beginning of an example of this encircling process for n = 11.

We say that the height hi of the i-th vertex in the topographic map for v is the
number of sets σj which contain i. We can identify the signature σ with the height vector
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Figure 1: Algorithm 2.1 constructs a topographic map on the n-cycle by subsequently
encircling vertices in order of decreasing size of the corresponding component of a data
vector. Displayed at the top are the formations of the first two components σi, and at
the bottom are the third and fourth, of the signature for an example with n = 11.

h = (h1, h2, . . . , hn), because σ can be recovered uniquely from the vector h. The map
v 7→ h(v) can be viewed as a smoothing of the data; see Figure 2.

Remark 2.3. The cyclohedron test applies when there are no ties vi = vj in the data.
When ties occur, we examine all possible permutations δ arising from small perturbations.

Example 2.4. In our analysis in Section 4, the number of microarray experiments is
n = 17, and the number of probesets (labels of the data vectors) is N = 13, 873. The
probeset ranked first in Table 1 represents a gene named Obox. Its data vector equals

v =
(

0.738, 0.996, 0.705, 0.150,−0.566,−0.673, 0.774,−0.736,−0.788,

−0.802,−1.276,−0.521, 0.238,−0.258,−0.249,−0.084,−0.117
)

.

The descent order permutation for this vector v equals

δ =
(

2, 7, 1, 3, 13, 4, 16, 17, 15, 14, 12, 5, 6, 8, 9, 10, 11
)

.

The signature σ is given by the unordered set σ1 = {2}, σ2 = {7}, σ3 = {1, 2},
σ4 = {1, 2, 3}, etc. The permutation count c = 480 is the product of the three con-
tributions made by 5, 8 and 12, respectively, when constructing σ8 = {1, 2, 3, 4, 16, 17},
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σ10 = {1, 2, 3, 4, 13, 14, 15, 16, 17}, and σ13 = {1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17}. When
viewing σ as a topographic map for the data v, we obtain the height vector

h(v) =
(

12, 13, 11, 10, 5, 4, 5, 3, 2, 1, 0, 6, 8, 7, 8, 10, 9
)

.

Figure 2 displays the data v and the height vector h(v) plotted around the circle. �
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Figure 2: The data v (left) and the height vector h(v) (right) for the gene Obox.

3 Significance testing

Multiple hypothesis testing is of concern in microarray experiments, because the number
of hypotheses that are tested simultaneously is large. In our application, there are N =
13, 873 null hypotheses. The hypotheses take the form “the r genes with the smallest
counts c arose by chance”, for r = 1, 2, . . . , N . In this section, we explain how to assign
p-values to these groups, leading to a criterion for determining which hypotheses to reject.

Applying the cyclohedron test to N data vectors v(1), . . . , v(N) in R
n means computing

their permutation counts c(v(1)), . . . , c(v(N)) . The highest ranked data are those for which
c(v(i)) is smallest. Under the null hypothesis, the probability distribution on R

n of each
data vector v(i) induces the uniform distribution U on the n! permutations δ. Viewed as
a random variable, the permutation count c has probability distribution function

Pc : im(c) → [0, 1] , γ 7→ Pr
U

(c(δ) = γ). (1)

Here im(c) = {γ1 < γ2 < · · · < γsn} is the set of all positive integers that arise as
permutation counts c(σ) for some σ ∈ Cn. The probability distribution function Pc is
displayed in Figure 3 for n = 17, which will be the number of time points in Section 4.
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Figure 3: The probability distribution function of c for n = 17.

We now fix two integers 1 ≤ r ≤ N . The order statistic C(r) is the function R
N×n →

im(c) which takes any list of N data vectors V = (v(1), . . . , v(N)) and returns the rth

smallest value among the permutation counts c(v(1)), . . . , c(v(N)). Recall that under the
null hypothesis, each v(i) has a distribution on R

n which induces the uniform distribution
on permutations δ. Further let us assume that the data vectors v(i) are independent. This
induces a joint distribution Q0 on the vector

(

c(v(1)), . . . , c(v(N))
)

∈ R
N×n of counts. In

this framework, we view the order statistic C(r) as a random variable with distribution

F(r) : im(c) → [0, 1], γ 7→ Pr
Q0

(C(r) = γ).

In other words, F(r)(γ) is the probability that the r-th smallest value among the permuta-
tion counts c(v(1)), . . . , c(v(N)) of N random data vectors equals γ. The function F(r)(γ)
depends only on n, N and r. Its efficient computation is explained In Section 6.

Definition 3.1. (p-value) Suppose we apply the cyclohedron test to N data vectors in
R

n, and the data vector whose permutation count is the r-th smallest has permutation
count γk. Then the collective p-value of the group of r highest ranked data vectors is

Pr
Q0

(C(r) ≤ γk) = F(r)(γ1) + F(r)(γ2) + · · ·+ F(r)(γk). (2)

The p-value (2) is the probability that the r-th order statistic for random data under the
null would be less or equal to the value of the r-th order statistic for the observed data.

7



We now offer some remarks regarding how our multiple testing procedure differs from
those typically used when the number of hypotheses is large (say, in the thousands). To
analyze gene expression data, it is often appropriate to employ a joint null distribution Q
that allows for dependencies among the genes. These dependencies are unknown, so an es-
timate of the null distribution of the test statistics (for the cyclohedron test, the vector of
counts) is made from bootstrap samples of the data; two such estimates are the null shift
and scale [Birkner et.al. (2005)] and null quantile [van der Laan and Hubbard (2006)] dis-
tributions. Further, there is typically one null hypothesis per gene, and p-values are
assigned to control some general Type-I error rate. However, our chosen joint null distri-
bution Q0 is simple and can be computed exactly. In addition, this test was motivated by
the exploratory data analysis described in the next section. Having a powerful procedure
was not critical; rather, the aim was to identify groups of top genes for further biological
testing. In other settings, however, different choices of joint null distribution or of multiple
testing procedure (such as those in [Birkner et.al. (2005)]) can improve power.

4 Application to mouse microarray data

We applied the cyclohedron test to microarray data from recent work that investigated
the mouse segmentation clock [Dequéant et.al. (2006)]. Dequéant et al. took 17 expres-
sion measurements from mouse presomitic mesoderm on Affymetrix MOE430A arrays.
By independently measuring the expression of the gene Lunatic Fringe (Lfng) which is
known to be periodic within the somitogenesis cycle of embryonic development, Dequéant
et al. ordered the 17 experiments within the cycle. Each array consisted of over 22, 000
probesets, however we restrict the analysis to a subset of 13, 873 probesets by removing
genes whose expressions are deemed “absent” across the experiments by Affymetrix stan-
dards. In other words, the data consisted of 13,873 data vectors v, each of which was the
expression level of one gene (divided by the mean across experiments and transformed to
log2). We then applied the cyclohedron test to these data. We were interested in those
genes whose counts c(v) were small. Accordingly, we ranked the genes by their counts;
Table 1 presents the first 32 genes. Table 2 lists the significance of top groups of genes.
For example, the first 32 genes collectively have a p-value of 0.081, which suggests that
these 32 genes are of interest. At this point we recall the definition of a p-value which was
given in equation (2). The p-value of the rank-1 gene Obox1 is the probability under the
null hypothesis that the top-ranked permutation count is less than or equal to 480, while
the p-value of the first 16 genes (the number 0.008 in Table 2) is the probability that the
gene ranked 16 has permutation count less than or equal to 4928. It is important to em-
phasize that the p-values do not reveal the significance of any individual gene, but rather
of a collection of genes. For example, the top 19 genes having a collective p-value of 0.046
means this: the probability that the first 19 genes would collectively all have permutation
count at most 6825 under the null distribution is 0.046. In other words, the group as a
whole is significant. However, we determine whether any individual gene in that group
is significant. For example, there is no significance to the fact that Obox1 is ranked first.
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Rank ProbeSet Gene Name Gene Description Count
1 1456017 x Obox1 similar to oocyte specific gene 480
2 1452041 Klhl26 kelch-like 26 (Drosophila) 1440
3 1418593 Taf6 TAF6 RNA polymerase II 1560
4 1417985 Nrarp Notch-regulated ankyrin repeat protein 1950
5 1436845 Axin2 axin2 2240
5 1436343 Chd4 chromodomain helicase DNA binding protein 2240
7 1426267 Zbtb8os zinc finger and BTB domain 2310
8 1420360 Dkk1 dickkopf homolog 1 (Xenopus laevis) 2520
9 1449643 s Btf3 basic transcription factor 3 2772
10 1417399 Gas6 growth arrest specific 6 2800
11 1418102 Hes1 hairy and enhancer of split 1 (Drosophila) 3120
12 1448799 s Mrps12 mitochondrial ribosomal protein S12 3150
13 1418729 Star steroidogenic acute regulatory protein 3600
14 1425424 MGC7817 hypothetical protein LOC620031 3850
15 1455740 Hnrpa1 heterogeneous nuclear ribonucleoprotein 4004
16 1450204 a Mynn myoneurin 4928
17 1449120 a Pcm1 pericentriolar material 1 6006
18 1423106 Ube2b ubiquitin-conjugating enzyme E2B 6720
19 1420386 Seh1l SEH1-like (S. cerevisiae) 6825
20 1456380 x Cnn3 calponin 3, acidic 8008
21 1419438 Sim2 single-minded homolog 2 (Drosophila) 8640
22 1426524 Gnpda2 glucosamine-6-phosphate deaminase 2 9009
23 1438557 x Dnpep aspartyl aminopeptidase 9450
24 1454904 Mtm1 X-linked myotubular myopathy gene 1 10500
25 1448951 Tnfrsf1b tumor necrosis factor receptor superfamily 10530
25 1433952 Tufm Tu translation elongation factor 10530

27 1422327 s
G6pd2/
G6pdx glucose-6-phosphate dehydrogenase 2 10725

28 1416295 a Il2rg interleukin 2 receptor, gamma chain 10920
29 1417316 Them2 thioesterase superfamily member 2 11025
30 1450242 Tlr5 toll-like receptor 5 11232
31 1449164 Cd68 CD68 antigen 11340
32 1418337 Rpia ribose 5-phosphate isomerase A 11760
...

...
...

...
...

Table 1: The 32 genes ranked highest by the cyclohedron test. Gene descriptions are
derived from those provided by Affymetrix. The suffix “ at” was removed from each
ProbeSet ID.
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Group 1..1 1..2 1..3 1..4 1..5 1..6 1..7 1..8
p-value 0.279 0.458 0.244 0.204 0.064 0.064 0.031 0.020

Group 1..9 1..10 1..11 1..12 1..13 1..14 1..15 1..16
p-value 0.014 0.005 0.005 0.002 0.003 0.003 0.002 0.008

Group 1..17 1..18 1..19 1..20 1..21 1..22 1..23 1..24
p-value 0.047 0.069 0.046 0.139 0.165 0.173 0.195 0.312

Group 1..25 1..26 1..27 1..28 1..29 1..30 1..31 1..32
p-value 0.192 0.192 0.168 0.159 0.118 0.096 0.075 0.081

Table 2: Significance of top-ranked groups of genes. For example, the first 32 genes have
a collective p-value of 0.081.

While it appears to be the most periodic pattern in the data by our analysis, that could
have happened by chance (p-value 0.279). A natural cutoff value is to look at the first 32
genes because collectively they have a p-value of 0.081 (the next ten p-values are between
0.13 and 0.30). Note that analyses of microarray data have this property, that Type-1
errors are all but guaranteed due to the large number of genes (and thus the large number
of hypotheses) that are tested. Our computations were performed with the statistical
software R [R Team (2005)], using the implementation described in the Appendix.

Dequéant et al. performed significance testing according to a Lomb-Scargle analysis,
and then based on gene expression profile clustering, they identified genes belonging to
three pathways Notch/FGF and Wnt that are involved with somitogenesis. There are
genes that are deemed interesting by both the analysis of Dequéant et al. and the cyclo-
hedron test. For example, Axin2 is ranked highly by the Lomb-Scargle (rank 6) and the
cyclohedron test (rank 5). In addition, nrarp (rank 4 according to the cyclohedron test) is
ranked poorly by Lomb-Scargle (rank 482), although it belongs to the Notch pathway and
its gene expression clusters accordingly. Finally, there are novel genes such as Obox (rank
1 by the cyclohedron test, but not known to be related to somitogenesis) that require
further investigation. This suggests that to find periodic gene expression, it is beneficial
to apply many methods, including Lomb-Scargle, clustering, and the cyclohedron test.
Doing so enables us to find genes overlooked by each method, as well as to confirm find-
ings of other tests. In other words, the findings of each method complement those of
others by identifying candidate genes for knockout experiments. The forthcoming paper
[Dequéant et.al. (2007)] will compare various methods, including Lomb-Scargle, up-down
analysis, and the cyclohedron test, for identifying cyclic genes from this data set.

In conclusion, we remark that, although microarray expression analyses are frequently
criticized due to the noise in individual measurements, the massively parallel nature of
the experiments provide the possibility for finding groups of significant genes. Indeed, we
confirm this in our analysis of the Dequéant et al. experiments [Dequéant et.al. (2006)], in
which we are unable to confirm whether any individual gene is statistically significant, yet
we can identify a group of genes that collectively are significant. The biological significance
of individual genes can be determined by further targeted experimental validation.
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Figure 4: The cyclohedron C4; its vertices correspond to the distinct signatures for n = 4.
Following the notation of [Morton et.al. (2006)], the string 1

324 labels the cyclohedron
vertex of data vectors whose descent permutation is 1324 or 3124.

5 Combinatorics of the cyclohedron test

We now describe the combinatorics and geometry behind our test. First, the set Cn of
cyclic signatures is in natural bijection with the vertices of a certain convex polytope. The
n-cycle has n(n−1) connected induced proper subgraphs, namely, the cyclic segments of
the form S = {i, i + 1, . . . , i + k}. Here k < n−1, and the indices are understood modulo
n. The cyclohedron vertex of a data vector v ∈ R

n is the vector τ(v) ∈ N
n whose i-th

coordinate τ(v)i is the number of cyclic segments S containing i such that vi = min{vs :
s ∈ S}. The cyclohedron Cn is the convex hull in R

n of all the cyclohedron vertices τ(v)
where v ranges over R

n. For n = 4 and the data vector v = (0.49, 5.73, 4.01, 2.67), we
have τ(v) = (6, 1, 2, 3), while for v′ = (0.49, 5.73, 2.67, 4.01) we have τ(v′) = (6, 1, 4, 1).
For example, τ(v)3 = 2 because v3 = 4.01 is minimal in S1 = {3} and S2 = {2, 3}.

Two vectors in R
4 share the same signature σ = {σ1, σ2, σ3} if and only if they are

mapped to the same cyclohedron vertex τ . The convex hull of all cyclohedron vertices
τ(v) is the 3-dimensional cyclohedron C4. This is a simple polytope with 20 vertices, 30
edges and 12 facets (for the 12 cyclic segments). It is depicted in Figure 3. Vertices in
the figure, incident to a ‘double’ edge indicate signatures σ with c(σ) = 2. Thus the set
C4 of all signatures has 20 elements, one for each vertex of C4.

The following theorem summarizes what is known about the cyclohedron. It is ex-
tracted from [Fomin and Reading (2004), Hohlweg and Lange (2005), Markl (1999)].
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Theorem 5.1. The cyclohedron Cn is an (n−1)-dimensional polytope. It is the solution
set in R

n of the following system of one linear equation and n(n − 1) linear inequalities:

x1 + x2 + · · · + xn = n(n − 1), (3)

∑

s∈S

xs ≥

(

|S| + 1

2

)

for each cyclic segment S. (4)

The cyclohedron Cn is simple, i.e. each vertex lies on precisely n−1 facets. Each inequality
(4) defines a facet. The total number of vertices equals

(

2n−2
n−1

)

. More generally, the number
fi of i-dimensional faces of the cyclohedron is given by the generating function

n−1
∑

i=0

fi · z
i =

n−1
∑

k=0

(

n − 1

k

)2

· (z + 1)k. (5)

Algorithm 2.1 is a greedy method for linear programming on the cyclohedron Cn.
Indeed, computing the cyclohedron vertex τ(v) of a data vector v = (v1, . . . , vn) is equiv-
alent to the linear program of minimizing

∑n
i=1 vixi subject to the constraints (3) and

(4). The optimal vertex of that linear program on Cn is precisely the vector x = τ(v).
Given the linear functional

∑n
i=1 vixi to be minimized, Algorithm 2.1 generates a

collection σ = {σ1, σ2, . . . , σn−1} of subsets of {1, 2, . . . , n}. These sets S = σi are cyclic
segments, and they indicate which n−1 inequalities (4) are tight at the optimal vertex
x = τ(v) of Cn. This implies that τ(v) can be recovered from σ(v) and vice versa:

Corollary 5.2. The cyclohedron vertex τ(v) of any data vector v ∈ R
n can be obtained

from the signature σ(v) = {σ1, σ2, . . . , σn−1} by solving the linear system of equations

(3) and
∑

s∈σi

xs =

(

|σi| + 1

2

)

for i = 1, 2, . . . , n−1. (6)

Conversely, the signature σ(v) is recovered from the vertex τ(v) by substituting x = τ(v)
into the inequalities (4) and collecting all index sets S for which equality holds.

In light of Corollary 5.2, we henceforth shall identify signatures σ ∈ Cn with their
corresponding vertices τ of the cyclohedron Cn. We note that the solution τ to (6) can
be read off easily within Algorithm 2.1. It always holds that τδn :=

(

n
2

)

, and the other
n−1 coordinates are obtained by adding one line at the end of the main i loop:

Output τδi
= (|Left| + 1) · (|Right| + 1).

Two data vectors v and v′ are cyclically equivalent if and only if σ(v) = σ(v′) , i.e.,
if and only if the linear functionals corresponding to v and v′ are minimized at the same
vertex τ(v) = τ(v′) of the cyclohedron Cn. The cyclic equivalence classes are the normal
cones at the vertices of Cn. They are specified by the inequalities v

δi
< v

δk
for all

inclusions σk ⊂ σj in σ(v). Since Cn is simple, n−1 inequalities suffice, and these can be
generated by augmenting Algorithm 2.1, again at the end of the main i loop, as follows:

if Right 6= ∅ or Left 6= ∅ then output vδi
< vδk

.

The generated inequalities permit the study of confidence regions for the cyclohedron test.
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Example 5.3. Fix n = 17 and let v be the data vector for the Obox gene in Example 2.4.
The augmented Algorithm 2.1 reveals that the cyclic equivalence class of v is given by

v11 < v10 < v9 < v8 < v6 < v5 < v12 < v14 < v15 < v17 < v4 < v3 < v1 < v2

and v6 < v7 and v17 < v16 and v14 < v13.

These inequalities specify the normal cone at the vertex

τ(v) =
(

2, 1, 3, 4, 11, 24, 1, 14, 15, 16, 136, 10, 1, 16, 7, 1, 10
)

of the 16-dimensional cyclohedron C17. Recall that the possible signatures for data with
n = 17 are (in bijection with) the vertices of C17, and their total number equals

|C17| =

(

2 · 17 − 2

17 − 1

)

=

(

32

16

)

= 601, 080, 390.

Among all these signatures, the vertex τ(v) is of interest because the probability that a
random linear functional attains its minimum over C17 at that vertex is rather small:

p(v) = c(v)/n! = 480/17! = 1.35 · 10−12.

The results of our analysis for the full data set were presented in Section 4.

The theory of graph associahedra also offers the following combinatorial characteriza-
tion of the possible outputs of Algorithm 2.1. A collection {σ1, σ2, . . .} of cyclic segments
is called a tubing of the n-cycle if any two elements satisfy the following property: ei-
ther σi ⊂ σj , or σj ⊂ σi, or σi and σj are disjoint and no node in σi is adjacent to a
node in σj Each maximal tubing has the same number of elements, namely n−1, and the
maximal tubings are precisely the signatures generated by Algorithm 2.1. The simplicial
complex of all tubings is dual to the face poset of the simple polytope Cn. Analogous
statements hold for the face poset of the graph associahedron of any graph G with vertex
set {1, 2, . . . , n}. The cyclohedron Cn is the special case when G is the n-cycle.

We propose that rank tests which are associated with graphs G in this manner be
called topographical models. This is motivated by their relationship with graphical models
(Markov random fields) which was developed in [Morton et.al. (2007)]. Our cyclohedron
vertex map τ , for G the n-cycle, was denoted τ ∗

K(G) in [Morton et.al. (2007), §5]. We
believe that topographical models for graphs G other than the n-cycle will be useful for
wide range of statistical problems concerning data with an underlying graphical structure.

6 Null distribution of the counts and order statistics

We next compute two probability distribution functions, that of the random variable c and
of its order statistics. In the first part of this section we introduce a generating function
that represents the distribution Pc of c under the null distribution. This is applied in the
second part to derive the order statistics of Pc and a formula for computing the collective
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p-values (2) exactly. Recall that the set Cn of signatures equals the set of maximal tubings
or vertices of the cyclohedron Cn. For each σ ∈ Cn, the quantity c(σ) = p(σ) · n! is the
number of permutations δ which map to τ . See Algorithm 2.1 and Proposition 2.2.

We define the count generating function for the cyclohedron test to be the polynomial

Γn(t) :=
∑

σ∈Cn

tc(σ).

By Theorem 5.1, this polynomial gives a refinement of the central binomial coefficient:

Γn(1) = |Vert(Cn)| =

(

2n − 2

n − 1

)

.

Similarly, the first derivative Γ′
n(t) = d

dt
Γn(t) gives a refined count of the permutations:

Γ′
n(1) = |Σn| = n!.

We list the first few non-trivial instances of the count generating function:

Γ4(t) = 4t2 + 16t,

Γ5(t) = 20t3 + 10t2 + 40t,

Γ6(t) = 12t8 + 24t6 + 48t4 + 48t3 + 24t2 + 96t,

Γ7(t) = 28t20 + 56t15 + 140t10 + 28t8 + 56t6 + 112t5+112t4+112t3+56t2+224t,

Γ8(t) = 8t80 + 32t48 + 128t45 + 64t40 + 64t36 + 64t30 + · · · + 256t3+128t2+512t,

Γ9(t) = 72t210 + 72t168 + 108t140 + 144t126 + 432t105 + · · · +576t3+288t2+1152t.

The count generation function encodes the probability distribution function of c:

Remark 6.1. The probability Pc(γ) is the coefficient of tγ in the polynomial (t/n!)·Γ′
n(t).

Example 6.2. Consider the case n = 7. The s7 = 10 possible permutation counts are

im(c) =
{

1, 2, 3, 4, 5, 6, 8, 10, 15, 20
}

.

The probability for each of these counts to be observed is the corresponding coefficient in

∑

γ∈im(c)

Pc(γ) · tγ =
t

5040
· Γ′

7(t) =
1

9
t20 +

1

6
t15 +

5

18
t10 + · · · +

1

45
t2 +

2

45
t.

For instance, the cyclohedron C6 has 56 vertices σ with c(σ) = 15, and this accounts for
56 · 15 = 840 of the 5040 permutations δ in Σ7. Thus the probability that a random data
vector v ∈ R

7 has permutation count c(v) = 15 is equal to Pc(15) = 840/5040 = 1/6.

We now describe a formula for computing the count generating function. Let Tm

denote the set of unlabeled rooted trees with m nodes, where each node has at most two
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children. The number of these trees is the Wedderburn-Etherington number, denoted by
tm := |Tm|. Starting with t0 = 1, the Wedderburn-Etherington numbers are

1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, 127912, . . .

and they can be computed by the following recursion:

tm =
⌊m/2⌋−1

∑

i=0

ti · tm−i−1 if m is even,

tm =
(

t(m−1)/2

2

)

+
⌊m/2⌋−1

∑

i=0

ti · tm−i−1 if m is odd.

This holds because each tree T in Tm is constructed uniquely by taking an unordered pair
consisting of a tree T1 in Ti and a tree T2 in Tm−i−1 and attaching them to a new root.
Note that t0 = 1 corresponds to the case when the new root has outdegree one. We call
(

m−1
i

)

the order of the root. The node is called balanced if i = (m − 1)/2 and the two
subtrees T1 and T2 are isomorphic. In this manner, each node of a tree T ∈ Tm has an
order, and it is either balanced or unbalanced. For instance, all leaves are balanced of
order 1, all nodes with one child are unbalanced of order 1, and nodes with two children
have order ≥ 2. For a tree T ∈ Tm let unbal(T ) denote the number of unbalanced nodes
in the tree T , and let order(T ) denote the product of the orders of all nodes in T .

Theorem 6.3. The count generating function for the cyclohedron test equals

Γn(t) = n ·
∑

T∈Tn−1

2unbal(T ) · torder(T ).

Proof. Every signature σ = {σ1, . . . , σn−1} in Cn maps to an unordered tree T = T (σ) in
Tn−1. If n = 2 then T is the tree with one node. For n ≥ 3 we construct T iteratively as
in Algorithm 2.1: by induction, the sets Left and Right correspond to two subtrees T1 and
T2, and a new root is attached to form the tree corresponding to {δi}∪Right∪Left. The
order of the resulting tree T (σ) equals the permutation count c(σ) computed. It remains
to be shown that the set of all signatures σ which are mapped to the same tree T ∈ Tn−1

has precisely n ·2unbal(T ) elements. The factor n comes from the fact that the last element
δn can be chosen arbitrarily. So, let us suppose δn = n. Then the indices appearing in
σ are precisely 1, 2, . . . , n−1. Let T1 and T2 be the two subtrees of the root of T , and
suppose they have i and n − 2 − i nodes respectively. If i 6= n/2 then either δn−1 = i + 1
and both {1, 2, . . . , i} and {n−2−i, . . . , n−2, n−1} are in σ, or δn−1 = n−1−i and both
{1, 2, . . . , n−2−i} and {n − i, . . . , n−2, n−1} are in σ. If i = n/2 then δn−1 = n/2 and
both {1, 2, . . . , n/2−1} and {n/2+1, . . . , n−1} are in σ. The choices for the remaining
elements of σ are constructed inductively by identifying the nodes of the two subtrees
with these two sets. If the two subtrees are identical (i.e. the root is balanced) then
there is only one identification to be considered, otherwise we must consider two cases.
Proceeding in this manner along the tree, we see that there are 2order(T ) many choices of
signatures σ on {1, 2, . . . , n − 1} which map to T .
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We next present a recursive method for computing the count generating function Γn(t).
Let f =

∑

i ait
i and g =

∑

j bjt
j be any two generating functions and M any positive

integer. Then we define the ∗-product of f and g with respect to M as follows:

f ∗M g :=
∑

i,j

ai · bj · t
i·j·M . (7)

Corollary 6.4. Let Ωn(t) be the polynomial defined recursively by

Ω0(t) = Ω1(t) = t and Ωm(t) =
m−1
∑

i=0

Ωi(t) ∗(m−1
i ) Ωm−1−i(t).

Then Γn(t) = n · Ωn−1(t) is the count generating function for the cyclohedron test.

Proof. This follows from the recursive tree construction in the proof of Theorem 6.3.

Example 6.5. Corollary 6.4 easily yields the full expansion of Ωn(t) for small values of
n. For n = 17, the case of interest in Section 4 (see also Examples 2.4 and 5.3), we find

Γ17(t) = 272t108108000 + 544t89689600 + 272t86486400 + 544t80720640 + · · · · · · + 348160t8

+278528t7 + 417792t6 + 278528t5 + 278528t4 + 278528t3 + 139264t2 + 557056t.

The number of terms in this polynomial equals | im(c)| = 2438. The 2438 values of the
probability distribution function Pc are plotted on a logarithmic scale in Figure 4. For
larger values of n, say n ≥ 30, it becomes infeasible to compute the expansion of Γn(t),
but Corollary 6.4 can still be used to design efficient methods for sampling from Pc.

The distribution function F(r)(γ) of the order statistic C(r) is now computed. Defining
pi = Pc(γi) to be the probability under the null hypothesis that the count is equal to γi,
Remark 6.1 tells us that

(t/n!) · Γ′
n(t) = p1t

γ1 + p2t
γ2 + · · ·+ psntγsn , where γ1 < γ2 < · · · < γsn.

Consider the identity

(p1 + p2 + · · ·+ psn)N =
∑

i1+i2+···+isn=N

(

N

i1 i2 · · · isn

)

· pi1
1 pi2

2 · · · pisn
sn

= 1.

By definition, F(r)(γk) is the sub-sum of all terms in this sum whose indices satisfy

i1 + · · ·+ ik−1 < r ≤ N − ik+1 − · · · − isn.

For the purpose of computational efficiency we rewrite this sub-sum as follows. The
formula below furnishes us with an efficient method for computing the collective p-values.
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Lemma 6.6. The probability distribution function under the null distribution Q0 of the
order statistic C(r) is given by

F(r)(γk) =
N

∑

i=1

min(r−1,N−i)
∑

j=max(0,r−i)

(

N

i, j, N−i−j

)

(p1 + · · ·+ pk−1)
j · pi

k · (pk+1 + · · ·+ psn)N−i−j

Proof. The first sum is over the number of data points that have permutation count γk.
The second sum is over j, the number of data points whose permutation count is less than
γk. Then, the multinomial coefficient gives the possible ways to partition {1, 2, . . . , N}
into sets of size i, j, and N − i− j; that is, it accounts for possible rearrangements among
the permutation counts equal to, less than, and greater than γk. The probability that
such rearrangement occurs is the product (p1+ · · ·+pk−1)

j ·pi
k ·(pk+1+ · · ·+psn)N−i−j.

Appendix: R code for the cyclohedron test

The R source code topoGraph.R is available for the cyclohedron test. The software can
be downloaded from

http://bio.math.berkeley.edu/ranktests/index.html

Our code requires the free statistical software package R [R Team (2005)]. Here we de-
scribe how to perform basic tasks related to the cyclohedron test. The data file must be
a CSV (comma-separated values) file, where the first column consists of identifying labels
(such as gene names), and the first row labels the time points (all other rows are the
corresponding data vectors). We illustrate the use of the basic functions with the data
file (named ‘13873.csv’) that we described in Section 4. The first column consists of the
ProbeSet IDs. The source code containing the R functions is topoGraph.R. First, we call
the source code and load the data file from an R command line (here, we assume that
both files are in the current working directory):

source("topoGraph.R")

dataset<-loaddata("13873.csv")

Next, we calculate the count of each data vector, which is done by the following command:

counts<-cycleCounts(dataset)

This defines “counts,” a vector which lists the counts c of the data vectors in the order
given by the data file. To list the genes according to their count ranking, as shown in
Table 1, we call the function rankby which outputs the labels (here, the ProbeSet IDs)
of the genes. The following command outputs the ten highest ranked ProbeSets.

rankby(row.names(dataset),counts)[1:10]

[1] "1456017_x_at" "1452041_at" "1418593_at" "1417985_at"

[5] "1436845_at" "1436343_at" "1426267_at" "1420360_at"

[9] "1449643_s_at" "1417399_at"

More extensive documentation is available online.
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