
IPSJ Transactions on System LSI Design Methodology Vol. 1 126–130 (Aug. 2008)

Short Papar

Embedded System Covalidation with

RTOS Model and FPGA

Seiya Shibata,†1 Shinya Honda,†1 Yuko Hara,†1

Hiroyuki Tomiyama†1 and Hiroaki Takada†1

This paper presents a software/hardware covalidation environment for em-
bedded systems. Our covalidation environment consists of a simulation model
of RTOS which fully supports services of ITRON, multiple hardware simulators,
FPGA and a covalidation backplane. All of the simulators are executed con-
currently with communication. The RTOS model can be executed on the host
computer natively, therefore the software can be simulated much faster than on
an instruction set simulator. FPGA can execute the hardware much faster than
HDL simulators. With the RTOS model and FPGA, both application software
and hardware can be validated in a short time. In the experiment, with using
our covalidation environment, we perform covalidation of an MPEG4 decoder
system and show the effectiveness of the covalidation environment.

1. Introduction

Software and hardware for embedded systems have been increasing their size
and complexity, while the time-to-market pressure has also been increased. In
order to satisfy both of the requirements, fast software/hardware covalidation is
one of the key technologies.

In typical embedded real-time systems, software consists of application tasks
and an RTOS, and therefore, RTOS should be incorporated in the soft-
ware/hardware covalidation flow in order to verify the overall system function-
ality. In the past, several researchers developed simulation models of RTOSs to
be used in their hardware/software cosimulation frameworks 1)–3). They assume
that all of the system components (including software components and hardware
ones) are written in a single system-level description language (SLDL) such as
SystemC and SpecC. Although their approaches lead to fast cosimulation, one

†1 Graduate School of Information Science, Nagoya University

of their serious drawbacks is that hardware components in the SLDL are often
just simulation models whose detailed functionality might be different from that
of the final implementation descriptions in HDL.

In our prior work, we developed an RTOS simulation model and a multilingual
cosimulation platform on which HDL simulators can be executed 4). While the
RTOS model can be executed natively (hence fast) on a host computer, HDL
simulators are inevitably slow. Such cosimulation is appropriate for hardware
debugging, but inappropriate for functional verification of embedded software.

In this work, we have developed a software/hardware covalidation environment
to be used for embedded software verification. In the covalidation environment,
embedded software is executed directly on the host while hardware is executed
on an FPGA. This work solves the two problems of the past approaches at the
same time. Since final HDL designs (not simulation models) can be used for the
software/hardware covalidation, unexpected inconsistency between software and
hardware can be avoided. In addition, our covalidation environment brings the
significant speedup compared with traditional cosimulation using HDL simula-
tors. It should be noted that our covalidation environment presented in this paper
is complementary to the past cosimulation environments. This work provides yet
another covalidation solution to embedded software designers.

This paper is organized as follows. Section 2 shows our prior work on cosimu-
lation which is the basis of this work presented in this paper. Section 3 describes
the covalidation environment with an RTOS model and FPGA. A case study
with an MPEG4 decoder system is presented in Section 4. Finally, Section 5
concludes this paper with a summary.

2. Prior Work

The covalidation environment presented in this paper has been built upon our
prior work on cosimulation. This section describes the cosimulation environment
which we developed in our prior work 4).

2.1 Overview
In our past study, we developed a cosimulation environment and an RTOS

model 4). The overall structure of the cosimulation environment is shown in
Fig. 1. The cosimulation environment consists of an RTOS model, multiple hard-

126 c© 2008 Information Processing Society of Japan



127 Embedded System Covalidation with RTOS Model and FPGA

Fig. 1 Past covalidation environment overview.

ware simulators, and a cosimulation backplane named Device Manager (DM ).
The RTOS model supports all of the service calls which are defined by µITRON
4.0 Standard Profile 5). ITRON is a standardized specification of RTOS for small-
and mid-scale embedded systems, and is one of the most popular RTOSs in
Japanese industries. The RTOS model is implemented in C, so that it is di-
rectly executable on the host computer. The cosimulation environment is very
flexible in that it features plug-and-play of various simulators such as HDL sim-
ulators, the SystemC simulators, functional hardware models in C/C++, and
instruction-set simulators. Each simulator is executed as an application on an
MS-Windows-based host computer.

In summary, our cosimulation environment developed in the past features
• native (hence fast) execution of application software,
• complete support of a standard RTOS,
• cosimulation with various hardware simulators such as HDL simulators and

C/C++ functional models.
2.2 Communication between Simulators
In the cosimulation environment, various simulators can communicate with

each other using a flexible communication mechanism as follows 4).
Memory mapped I/O is assumed in our cosimulation environment, and unique

address spaces are assigned to hardware simulators. DM manages a mapping
table of the addresses and the hardware simulators. When the software needs
to perform a read/write access to a hardware simulator, first the software sends
an access request with an address to DM, and then DM selects a corresponding
hardware simulator by looking up the address map and transfers the request to
the hardware simulator.

The transfers of requests are implemented with a standard remote procedure
call (RPC) on MS-Windows, named COM. COM is a mechanism for communica-
tions between MS-Windows applications. In order for simulators to communicate
with each other, the RTOS model, hardware simulators and DM have so-called
COM objects which realize the COM-based communication (shown in Fig. 1).

ITRON project 5) defines an API for hardware accesses. For example, applica-
tion software reads from or writes to hardware devices using the following API
functions.� �

x = sil rew mem(address); // x=*address;
sil wrw mem(address, x+1); // *address=x+1;

� �
Since our cosimulator completely supports the API, application software does

not have to be rewritten for cosimulation. For cosimulation, these APIs are
translated to COM-based RPC calls to DM. For the final implementation, on
the other hand, the APIs are translated to device driver software for the hardware.

3. Covalidation with RTOS Model and FPGA

As shown in the previous section, the hardware/software cosimulation environ-
ment which we developed in the past is very flexible. Specifically, it is useful for
hardware debugging since software can serve as a fast, interactive testbench. For
software debugging, however, the cosimulation environment is less efficient since
HDL simulators are inevitably slow. In order to improve the execution speed, in
this work, we have extended the environment to be able to connect to an FPGA.

We have developed two types of FPGA connection. One type uses RPC-based
communication to make the most of communication flexibility of the environment
(described in Section 2). Because of the flexibility of the RPC-based communi-

IPSJ Transactions on System LSI Design Methodology Vol. 1 126–130 (Aug. 2008) c© 2008 Information Processing Society of Japan



128 Embedded System Covalidation with RTOS Model and FPGA

Fig. 2 Covalidation using an FPGA by RPC-based communications.

cation, software and hardware do not have to be modified from HDL simulation
to FPGA execution. Another type uses direct communication from the RTOS
model to FPGA. The latter type enables faster covalidation than the former type
because of less communication overhead. Application software do not have to be
modified regardless of the type of FPGA connection because both communica-
tion types are implemented under the hardware interface API of the ITRON
standard.

With the former type which uses RPC-based communication, software can
communicate with FPGA in the same way as when connected with an HDL
simulator, because FPGA is connected to DM through FPGA process provided
by our covalidation environment (illustrated in Fig. 2). The FPGA process is
an MS-Windows process which intermediates the communication between DM
and the FPGA. In brief, the FPGA with the FPGA process is equivalent to the
HDL simulator from a view point of software. The FPGA process has a COM
object to communicates with DM, and through the DM, the software performs
read/write to the FPGA. When the software needs to communicate with the
hardware implemented on the FPGA, first the software sends a request to DM,
next DM dispatches the request to the FPGA process, and then the FPGA
process actually reads from or writes to the FPGA. For the sake of flexibility,
this type of connection causes a large overhead caused by RPC communication
which costs over 0.1 milliseconds per communication.

Fig. 3 Covalidation using an FPGA by direct communications.

With the latter type, the FPGA communicates directly with the RTOS model.
The use of hardware interface API on RTOS model (described in Section 2) trans-
lates to the direct use of the device driver for the FPGA, resulting in about two
order of magnitude faster communication than using COM. This type of FPGA
connection is useful especially for exhaustive validation with a large amount of
test patterns. The direct connection is, however, less flexible than the COM-
based connection. If connection is COM-based, the same device driver can be
used independent of whether the hardware is executed on an FPGA or an HDL
simulator, or even the hardware is a C++ model. Thus, hardware models can
be easily replaced in a plug-and-play manner. If the FPGA is connected directly
with the RTOS model, however, the device driver needs to be replaced as well.
However, it should be stressed that, as described earlier, software programmers
do not have to care about the type of FPGA connection at the application level.

For synchronization between hardware and software, our covalidation environ-
ment supports interrupts from hardware to software. In target systems, inter-
rupts are performed immediately by interrupt signals at any time except when
CPU is locked or the interrupts are masked (hence ignored).

In our covalidation environment, interrupts are handled differently between
the HDL simulator and FPGA. When the hardware modules are simulated on
an HDL simulator, hardware interrupt signals are checked every clock rise in the
HDL simulator, and an RPC of DM is called, so that covalidation environment

IPSJ Transactions on System LSI Design Methodology Vol. 1 126–130 (Aug. 2008) c© 2008 Information Processing Society of Japan



129 Embedded System Covalidation with RTOS Model and FPGA

can handle hardware interrupts immediately. When the hardware modules are
executed on the FPGA, however, the FPGA process or the RTOS model cannot
check interrupt signals from the FPGA at every clock timing of the hardware,
because it cannot synchronize with the FPGA at clock timing level. Thus, the
FPGA process or the RTOS model checks interrupts from hardware modules at a
certain time interval (this function is denoted as Interrupt Checker in Fig. 2 and
in Fig. 3). Although this implementation causes a delay of a few milliseconds,
the functionality of interrupts can be correctly performed.

4. A Design Example

This section evaluates the effectiveness of our covalidation environment through
a design of an MPEG4 decoder system. Experimental environments for this
covalidation are shown in Table 1. Note that we used an FPGA introduced in
Ref. 6), which is connected to and accessed from the host computer through PCI
Bus (denoted in Fig. 2).

4.1 A Case Study: An MPEG4 Decoder
Figure 4 shows the design of the MPEG4 decoder system and allocation of

tasks for the simulators. The MPEG4 decoder converts input data in the MPEG4
format into the YUV format, and writes the output data to a buffer of a video
graphics array (VGA) device. The decoder system consists of a processor which
executes application software with an RTOS, an acceleration circuit, and the
VGA device.

The MPEG4 decoder application has four tasks; VLD, dequantization, IDCT
and the others (denoted in Fig. 4). In the figure, the Others task covers any other
tasks needed for MPEG4 decoder, e.g., decoder control, motion compensation
and managing input and output data. The tasks executed on a processor are
described in the C language. These tasks are compiled and linked together with

Table 1 Experimental environments.

Host CPU Intel Core 2 Duo on 2.66GHz
Host main memory 2GB
Host OS MS-Windows XP Professional
HDL simulator ModelSim SE 6.1c

FPGA 6) Spartan3 on 15MHz

the RTOS model to generate a binary code which is executable on the host
computer. In order to shorten execution time of the MPEG4 decoder, some
tasks are implemented as an acceleration hardware circuit. We used an MPEG4
file as input data which has 49 frames. Each frame size is 192 × 192 pixels, and
the total file size is approximately 120KB. For the input data, each task of VLD,
dequantization and IDCT is executed 7,766 times.

Table 2 shows elapsed times for covalidation for two system architectures. The
second column of Table 2 shows covalidation time of the system where the IDCT
task is implemented as an acceleration circuit. The third column of Table 2 shows
that of the system where both dequantization and IDCT tasks are implemented
as an acceleration circuit. The acceleration circuit is written in HDL at the
register-transfer level, and simulated on an HDL simulator or an FPGA. The
VGA simulator is written in C++ and simulated in native execution.

Fig. 4 The MPEG4 decoder system and covalidation environment.

Table 2 MPEG4 covalidation time.

Hardwares IDCT dequant+IDCT

with HDL simulator 4) 5.36 × 102 sec 7.53 × 102 sec

with FPGA (COM) 1.48 × 102 sec 1.49 × 102 sec
with FPGA (Direct) 9.97 sec 6.25 sec

IPSJ Transactions on System LSI Design Methodology Vol. 1 126–130 (Aug. 2008) c© 2008 Information Processing Society of Japan



130 Embedded System Covalidation with RTOS Model and FPGA

A comparison of the second and fourth rows of Table 2 describes that our co-
validation environment can perform software/hardware covalidation two orders
of magnitude faster than the previous work 4). Moreover, the second row shows
that covalidation time is significantly affected by hardware complexity with the
HDL simulator. On the other hand, hardware complexity has less effect on cov-
alidation time when the hardware is emulated on the FPGA. These results shows
effectiveness of our covalidation environment with RTOS model and FPGA.

5. Conclusion

This paper presented a software/hardware covalidation environment for embed-
ded systems, which supports an RTOS model and an FPGA. The heart of our
covalidation environment is the use of an RTOS model and an FPGA. The use of
an RTOS model enables accurate system specification, efficient validation, and
smooth implementation. In addition, the use of an FPGA enables performing
covalidation in a short time. We also showed a case study in order to demonstrate
the effectiveness of our covalidation environment.

Acknowledgments This work is in part supported by NEC Corporation

and KAKENHI 19700040.

References

1) Gerstlauer, A., Yu, H. and Gajski, D.D.: RTOS Modeling for System Level Design,
DATE (2003).

2) Hassan, M.A., et al.: RTK-Spec TRON: A Simulation Model of an ITRON Based
RTOS Kernel in SystemC, DATE (2005).

3) Posadas, H., Villar, E. and Blasco, F.: Real-Time Operating System modeling in
SystemC for HW/SW co-simulation, DCIS (2005).

4) Honda, S., et al.: RTOS-Centric Cosimulator for Embedded System Design, IEICE
Trans. Fundamentals, Vol.E87, No.A (12), pp.3030–3035 (2004).

5) ITRON. http://ertl.jp/ITRON/home-e.html
6) Nakamura, Y., et al.: A fast hardware/software co-verification method for system-

on-a-chip by using a C/C++ simulator and FPGA emulator with shared register
communication, DAC (2004).

(Received December 25, 2007)
(Accepted February 22, 2008)

(Released August 27, 2008)

(Recommended by Associate Editor: Tsuyoshi Isshiki)

IPSJ Transactions on System LSI Design Methodology Vol. 1 126–130 (Aug. 2008) c© 2008 Information Processing Society of Japan


