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Abstract

Background: Mobile Therapeutic Attention for Patients with Treatment-Resistant Schizophrenia (m-RESIST) is an EU Horizon
2020-funded project aimed at designing and validating an innovative therapeutic program for treatment-resistant schizophrenia.
The program exploits information from mobile phones and wearable sensors for behavioral tracking to support intervention
administration.

Objective: To systematically review original studies on sensor-based mHealth apps aimed at uncovering associations between
sensor data and symptoms of psychiatric disorders in order to support the m-RESIST approach to assess effectiveness of behavioral
monitoring in therapy.

Methods: A systematic review of the English-language literature, according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines, was performed through Scopus, PubMed, Web of Science, and the Cochrane
Central Register of Controlled Trials databases. Studies published between September 1, 2009, and September 30, 2018, were
selected. Boolean search operators with an iterative combination of search terms were applied.

Results: Studies reporting quantitative information on data collected from mobile use and/or wearable sensors, and where that
information was associated with clinical outcomes, were included. A total of 35 studies were identified; most of them investigated
bipolar disorders, depression, depression symptoms, stress, and symptoms of stress, while only a few studies addressed persons
with schizophrenia. The data from sensors were associated with symptoms of schizophrenia, bipolar disorders, and depression.

Conclusions: Although the data from sensors demonstrated an association with the symptoms of schizophrenia, bipolar disorders,
and depression, their usability in clinical settings to support therapeutic intervention is not yet fully assessed and needs to be
scrutinized more thoroughly.
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Introduction

mHealth (ie, mobile health) is the intersection of electronic
health and mobile devices for medicine and public health
administration [1]. Many studies have actively exploited
mHealth to provide questionnaires and qualitative feedback to
facilitate treatment accessibility and participant retention or to
monitor symptoms and treatment progress in a qualitative way.
This is widely done using ecological momentary assessment
(EMA) performed through e-diaries recording participants’
behavior. EMA collects self-report data through a variety of
change-sensitive questionnaires [2-6]. However, self-monitoring
has not always been shown to be a valid measurement of
behavior. For example, a systematic review pointed out that
electronic self-monitoring of mood among depression sufferers
appeared to be a valid measure of mood in contrast to
self-monitoring of mood among mania sufferers [7].

The rapid growth of smart-sensor integration in mobile phones
and wearable devices has opened the prospect of increasing
access to evidence-based mental health care. Mobile devices
allow the collection of quantitative behavioral and functional
markers in a transparent and unobtrusive way, providing an
estimation of physiological and mental state [8-11]. A mobile
phone-based approach may be valuable in gathering long-term
objective data, aside from self-ratings, to predict changes in
clinical states and to investigate causal inferences about state
changes in patients (eg, those with affective disorders) [12].

In this review, the term sensor-based data includes the
quantitative information supplied by the mobile phone and its
embedded sensors. Information may range from acceleration
to temperature and from light to pressure, but also from number
of exchanged short message service (SMS) text messages to
number of incoming and outgoing calls. Indeed, the variety of
personal data, easily acquirable in this way, offers a unique
opportunity to describe the person in terms of his or her lifestyle
and behavior at the physical, cognitive, and environmental level
[13,14].

Even if the evidence of association between sensor-based data
and psychiatric disorder status and/or severity of psychiatric
symptoms is limited and scattered [15-17], it is expected that
appropriate management of these data may initiate a new trend
in health care provision characterized by tailored and timely
interventions [18].

Substantial treatment improvements have been achieved for
several psychiatric disorders in the past decades. Nevertheless,

the functional recovery of patients with schizophrenia is still
low [19]. Treatment-resistant schizophrenia (TRS), especially,
has a wide impact on the humanistic burden, which concerns
patients and caregivers and involves several dimensions, such
as quality of life, treatment side effects, caregiver burden, social
impairment, suicide, violence, and healthy lifestyle [20].
Moreover, TRS patients show poor adherence to
treatment-as-usual (TAU) intervention programs, which, in turn,
cannot ensure continuity of assistance, immediacy of attention,
tailored treatment, and caregivers’ integration [21]. In this
context, the Mobile Therapeutic Attention for Patients with
Treatment-Resistant Schizophrenia (m-RESIST) project [22]
addresses patients with TRS by allowing caregivers and
professionals to utilize mobile technology as part of the care
process. These interventions determine a personalized flow of
information based on a “Need 4 Help” scale and the stratification
of patients depending on their risk level. m-RESIST is composed
of three main parts: (1) a mobile phone connected to a
smartwatch for patients and caregivers; (2) a Web-based
dashboard for follow-up and monitoring by clinicians; and (3)
a back-end system for managing data, interventions, and
interactions between users [23].

The aim of this paper is to systematically review original studies
on sensor-based data collection, targeting correlations between
objective measurements of personal data and symptoms of
psychiatric disorders to support the m-RESIST clinical approach.
The main goal is to assess the perspective of integrated
sensor-based mHealth interventions to deliver highly
personalized mental care, monitoring the individual and his or
her own modification along the way.

Methods

Overview
This systematic review has been performed according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [24]. Accordingly, strict
eligibility criteria were applied in order to identify journal
articles and reviews addressing the collection of sensor-based
data in mental health and to investigate the association between
sensor-based data and mental state. For a detailed description,
see the PRISMA checklist in Multimedia Appendix 1.

Eligibility Criteria
Eligibility criteria are listed in Textbox 1.
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Textbox 1. Eligibility criteria of papers to be included in this review.

• Types of participants: papers that studied participants with mental disorder diagnoses or symptoms of mental disorders (eg, depression, anxiety,
sleep disorders, psychotic disorders, stress, and panic disorders) were included; papers that studied participants without mental disorder diagnoses,
but that analyzed participants to identify mental disorders or symptoms (eg, depression, anxiety, sleep disorders, and stress) were also included.

• Types of methods: studies reporting transparent and unobtrusive monitoring using commercially available wearable sensors (eg, wristbands,
bracelets, smartwatches, and mobile phones) were included. Studies describing Internet-based interventions, interactive voice-response technologies,
and self-reporting interventions based on questionnaires without a sensor-based mobile app component were excluded. Furthermore, studies
using obtrusive monitoring devices (eg, chest band and helmets) were also excluded.

• Types of outcomes: studies reporting results associating mental health status and sensor-based data were included. Papers providing a description
of the mobile app, but no statistical outcomes, were excluded.

• Language and time frame: English-language full-text articles, reviews, and conference abstracts were included in the review. Considering the
trend of technology evolution, papers published between January 1, 2009, and September 30, 2018, were included.

Information Sources, Search Strategy, and Study
Selection
The search for papers was performed using the following
electronic databases: Scopus, PubMed, Web of Science, and
the Cochrane Central Register of Controlled Trials. The
following combinations of search terms were used: (“mental
health” OR “mental disorder” OR depression OR anxiety OR
psychosis OR schizophrenia OR “treatment resistant
schizophrenia” OR bipolar OR insomnia OR stress) AND
(mobile OR smartphone) AND (monitor OR sensing OR sensor).

Results of the search were made available in Excel files and
included the title, authors, source, date, and abstract for study
selection. Duplicated studies were removed before starting the
selection. An eligibility check was performed on the title,
keywords, and abstract of each study. Full-text copies of all
potentially relevant papers, or papers where there was
insufficient information in the abstract to determine eligibility,
were obtained.

Study selection, according to the eligibility criteria described
in Textbox 1, was performed independently by two reviewers:
one with a clinical background and one with technological
background. There were no cases of disagreements between the
two reviewers.

The extracted information consisted of the following: (1) sensors
that were used; (2) computed parameters; (3) participants (ie,
number and state of health); and (4) relation to clinical
outcomes.

Results

As summarized in Figure 1, a total of 345 unique records were
found from PubMed, 1038 from Scopus, 1358 from Web of

Science, and 385 from the Cochrane Central Register of
Controlled Trials, for a total number of 3126 hits. In all, 522
duplicates among the four databases were identified and
removed.

A total of 1967 additional records were excluded because they
reported on other technologies and/or other scientific fields.
Another 226 were excluded because they did not report on
suitable wearable sensors or did not report on sensors at all. An
additional 234 were excluded because they described mainly
methodological issues (eg, protocols of analyses, mobile
phone-based monitoring, and treatment apps) without suitable
testing of subjects. Another 110 were excluded because they
addressed pathologies, symptoms, and disorders outside of the
mental health domain.

Altogether, 67 full-text papers were read; of these, 16 were
excluded because they did not relate sensor data to health status
assessment [25-40], while another six were feasibility studies
with no relation to health status assessment [41-46].

In all, 35 articles were included in this review; two of them were
complete reviews. One complete review addressed the
association between a collection of behavioral features from
mobile phones and wearable sensors with depressive mood
symptoms in patients with affective disorders [47]. The other
complete review addressed the use of digital health technology
in the wider domain of serious mental illness [48]. Association
of depressive mood symptoms with social behavior assessed
through phone usage, physical activity measured through
accelerometer and gyroscope, location measured by GPS, and
overall device usage was not consistent across all studies
[47,48]. The other 33 original papers are summarized in Table
1 [49-81].
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Figure 1. Flowchart of study selection process.
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Table 1. Summary of original papers.

ResultsRelated clinical
measures

Collected dataSample descriptionSource

Speech duration, sleep duration, and
geospatial activity relate to PHQ-9; kines-

PHQ-9a, PSSb, and

revised UCLAc

loneliness scale

GPS, accelerometer, gyro-
scope, microphone, and light
sensor

47 healthy subjectsBen-Zeev et al [49]

thetic activity relates to UCLA loneliness
scale.

Psychiatric assessment scores relate to
physical activity level at specific time inter-
vals of the day.

HAMDd and

YMRSe

Accelerometer and gyro-
scope

9 subjects with bipolar disor-
ders

Osmani V et al [50]

Social anxiety and depression relate to time
spent at home in specific time intervals of
the day.

SIASf and DASS-

21g

GPS72 healthy subjectsChow P et al [51]

Social anxiety relates to limited social life
and reduced mobility.

SIASGPS, phone calls, and mes-
sages

54 healthy subjectsBoukhechba et al
[52]

Moderate correlation between sleep estimate
and PSQI.

PSQIhAccelerometer and gyro-
scope

17 subjects with
schizophrenia

Staples et al [53]

PSQI and stress relate to phone usage.PSQI, Big Five In-
ventory Personality

Accelerometer, gyroscope,
skin temperature, skin con-

66 healthy subjectsSano et al [54]

Test, MEQi, PSS,ductance, phone calls, mes-
sages, and screen on/off and MCS for mental

healthj

Stress relates to phone usage and physical
activities at specific time intervals of the
day.

PSS, PSQI, and Big
Five Inventory Per-
sonality Test

GPS, accelerometer, gyro-
scope, skin conductance,
phone calls, messages, and
screen on/off

18 healthy subjectsSano et al [55]

PSS relates mainly to phone usage.PSSAccelerometer, gyroscope,
light, app usage, and screen
on/off

15 healthy subjectsStutz et al [56]

Locations detected through GPS relate well
to the activities identified in the social
functioning scale.

Birchwood’s Social
Functioning Scale

GPS7 subjects with schizophre-
nia

Difrancesco et al
[57]

Physical activity and voice features relate
to the patient’s state.

Mental scale (not
specifically defined)

GPS, accelerometer, gyro-
scope, and microphone

12 subjects with bipolar dis-
orders

Osmani V [58]

Limited association between mobility and
depressive symptoms rating.

PHQ-2kGPS600 subjects with depressionRenn B et al [59]

Moderate correlation between depression
state and notification management as well

PHQ-8lPhone notification manage-
ment (eg, clicks, decision,

25 healthy subjectsMehrotra et all [60]

as phone and app usage in a 14-day period;and response time), phone
calls, and app usage limited correlation on shorter periods of

time.

Good relationship between sensor data and
the patient’s state.

HAMD and YMRSGPS, accelerometer, gyro-
scope, microphone, and
phone calls

10 subjects with bipolar dis-
orders

Grunerbl et al [61]

Good relationship between phone usage (ie,
calls and duration) and depression symp-

PHQ-9GPS and phone usage28 healthy subjectsSaeb et al [62]

toms as well as GPS processed data and
depression symptoms.

No clear relationship between voice features
and clinical assessment.

QIDm and YMRSMicrophone1 patient with bipolar disor-
der

Guidi et al [63]

Phone usage relates positively to depression
state while activity relates negatively to
manic symptoms.

HAMD and YMRSGPS, phone calls, and mes-
sages

13 subjects with bipolar dis-
orders

Beiwinkel et al [64]

Depression symptoms relate to mobile
phone extracted features.

PHQ-9GPS, accelerometer, and
phone usage

126 healthy subjectsWahle et al [65]

Psychiatric symptoms relate to lower activ-
ity level.

PANSSoFitbit (ie, activity tracker)61 patients with schizophre-

nia, DSM-IVn
Shin et al [66]
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ResultsRelated clinical
measures

Collected dataSample descriptionSource

Location recordings relate to depressive
episodes.

QIDGPS29 subjects with bipolar dis-
orders and 20 controls

Palmius et al [67]

Physical activity correlates with reduction
in the level of depression and anxiety.

PHQ-9Fitbit (ie, activity tracker)20 subjects with alcohol use
disorders

Abrantes et al [68]

GPS correlates with depression differently
on weekdays and weekends.

PHQ-9GPS48 healthy subjectsSaeb et al [69]

Physical activity and phone usage relate to
depression symptoms.

Semi-structured
clinical interview

GPS, accelerometer, gyro-
scope, phone calls, mes-
sages, microphone, and
screen on/off

73 subjects with at least one
symptom of depression

Place et al [70]

No consistent relationship between GPS-
based semantic location and depression or
anxiety.

PHQ-9 and GAD-7qGPS, accelerometer, gyro-
scope (Android activity-

recognition APIp), light
sensor, microphone, screen
on/off, phone calls, and
messages

206 healthy subjectsSaeb et all [71]

Significant correlation between depressive
and manic symptoms and phone usage.

HAMD and YMRSPhone calls and messages61 subjects with bipolar dis-
orders

Faurholt-Jepsen et al
[72]

Weak negative correlation between staying
in clinics and self-reported state.

HAMD and YMRSWi-Fi-based position7 subjects with bipolar disor-
ders

Sabatelli et al [73]

No clear relationship between sensor data
and administered assessment scales.

Friendship Scale,

SF-36r, CES-Ds, and

YPASt

Accelerometer, gyroscope,
barometer, and microphone

8 healthy subjects (elders)Rabbi et al [74]

Correlation between depression scales and
sensor data.

CES-DGPS, accelerometer, gyro-
scope, microphone, and light
sensor

3 healthy subjectsDoryab et al [75]

Correlation between PHQ-9 scores and all
the sensor data is pointed out.

PHQ-9GPS, accelerometer, gyro-
scope, microphone, phone
lock and unlock, light sen-
sor, and phone call duration

60 healthy subjectsFarhan et al [76]

Significant correlation between mobility
patterns and depressive mood.

PHQ-8GPS28 healthy subjectsCanzian et al [77]

Accelerometer activity while typing, num-
ber of exchanged messages, and typing er-
rors correlate with depression and mania
scores.

HAMD and YMRSPhone keyboard usage16 subjects with bipolar dis-
orders

Zulueta et al [78]

Skin conductance relates to MCS, skin
temperature, and phone usage timing and
duration; GPS relates both to PSS and MCS.

PSS and MCSuSkin conductance, skin tem-
perature, accelerometer,
ambient light, GPS, phone
calls, messages, app usage,
and phone lock and unlock

201 healthy subjectsSano et al [79]

Physical activity relates to PANSS.PANSSAccelerometer, light, temper-
ature

25 subjects with
schizophrenia, DSM-IV

Tron et al [80]

JMIR Ment Health 2019 | vol. 6 | iss. 2 | e9819 | p. 6http://mental.jmir.org/2019/2/e9819/
(page number not for citation purposes)

Seppälä et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


ResultsRelated clinical
measures

Collected dataSample descriptionSource

Interbeat intervals negatively correlate with
positive symptoms; movement negatively
correlates with negative symptoms.

PANSSAccelerometer, skin conduc-
tance, heart rate variability,
and interbeat intervals

30 subjects with
schizophrenia, DSM-IV, and
25 controls

Cella et al [81]

aPHQ-9: Patient Health Questionnaire-9.
bPSS: Perceived Stress Scale.
cUCLA: University of California, Los Angeles.
dHAMD: Hamilton Depression Rating Scale.
eYMRS: Young Mania Rating Scale.
fSIAS: Social Interaction Anxiety Scale.
gDASS-21: Depression, Anxiety, and Stress Scale.
hPSQI: Pittsburgh Sleep Quality Index.
iMEQ: Horne-Ostberg Morningness-Eveningness Questionnaire.
jMCS for mental health: Short Form-12 Physical and Mental Health Composite Scale.
kPHQ-2: Patient Health Questionnaire-2.
lPHQ-8: Patient Health Questionnaire-8.
mQID: Quick Inventory of Depression.
nDSM-IV: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition.
oPANSS: Positive and Negative Syndrome Scale.
pAPI: application programming interface.
qGAD-7: General Anxiety Disorder questionnaire.
rSF-36: Short Form-36 Health Survey.
sCES-D: Center for Epidemiologic Studies-Depression scale.
tYPAS: Yale Physical Activity Survey.
uMCS: Mental Component Summary.

Only five studies addressing schizophrenia were included in
this review [53,57,66,80,81]. None of them included patients
with treatment-resistant schizophrenia. Early studies by
Ben-Zeev et al [34,49] analyzed patients’ location, activity, and
speech, but did not associate sensor data to the severity of
symptoms. Difrancesco et al [57] implemented a time-based
method and a density-based method to identify the geolocations
visited by 5 schizophrenic patients, detecting patients’
out-of-home activities with moderate recall. Staples et al [53]
investigated sleep estimation of 17 patients by comparing the
Pittsburgh Sleep Quality Index (PSQI), EMAs, and
accelerometer data, but did not address the severity of
symptoms. Psychiatric symptoms evaluated by the Positive and
Negative Syndrome Scale (PANSS) among those with
schizophrenia were related to lower activity level [66,80,81],
while interbeat intervals correlated negatively with positive
symptoms [81].

Nine studies were conducted among bipolar disorder patients
[50,58,61,63,64,67,72,73,78]. Among those with bipolar
disorder, physical activity was related to psychiatric assessment
scores [50,58,61], but the association of voice features and
patients’ psychiatric evaluation was incongruent [58,63]. A
correlation between depressive and manic symptoms and phone
usage was also detected [64,72]. Location recordings correlated
with depressive symptoms and a weak negative association
between staying in clinics and self-reported state was found
[67,73]. Typing features (ie, interkey delay, backspace ratio,
and autocorrect rate) were positively related to depression and
mania [78].

Most of the other included studies referred to depression [59,70]
or symptoms of depression and anxiety in healthy subjects
[49,51,52,54-56,60,62,65,68,69,71,74-77,79]. In one study, a
limited association was found between mobility and ratings of
depressive symptoms [59], while physical activity and phone
usage were related to depressive symptoms in another [70]. In
healthy subjects with symptoms of depression and anxiety,
several data such as speech, sleep duration, mobility, and phone
usage were related to severity of symptoms
[49,51,52,54-56,60,62,65,74-77], while GPS-based semantic
location did not correlate with depression or anxiety [71].

Discussion

Principal Findings
The data from sensors were associated with symptoms of
schizophrenia, bipolar disorder, and depression. This may have
the potential to change the nature of identification, follow-up,
and treatment of mental disorders. Early identification of
behavioral markers of psychiatric disorders may allow health
care providers to react early to patients’ needs and deliver
personalized dynamic treatment.

This systematic review uncovered a broad investigation, but
still limited use, of data coming from mobile phones and
wearable sensors to support therapeutic intervention for
psychiatric disorders or for psychiatric symptoms. This review
showed a high variability in participant selection criteria,
investigation protocols, and data processing techniques, which
limits the generalizability of the identified associations between
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sensor-based data and clinical assessment. This was also seen
in three recent studies in the area of passive sensing in the
mental health domain and the wider health care domain
[13,47,82]. The available studies in this review often had
methodological limitations (eg, small sample size, variations
in the number of observations or monitoring duration, lack of
randomized control group, and heterogeneity of methods).

In addition, there were issues related to usability of sensors and
acceptance by patients; risks (eg, they may increase psychotic
experiences and fears), feasibility (eg, psychiatric patients may
have cognitive and economic limitations), risk-benefit ratio,
costs, and health economics were not widely investigated. Also,
potential biases in measurements due to the individual usage of
the devices were only marginally addressed in most of the
selected papers; for example, practical mobile phone use
modalities (eg, only at work or at home) or reliability of
wearable sensors (eg, a tight or loose smartwatch bracelet).

On the other hand, current psychiatric evaluation is strongly
limited by assessment through scales on the day of the visit with
the clinician and not necessary during a crisis (eg, “bad day” or
relapse situation); it does not appropriately reflect the subjective
experience of the patient nor the impact of the treatment in real
life. The benefits of sensor-based data information may also be
useful among those with TRS, as they show poor adherence to
TAU programs of intervention; TAU intervention programs
cannot ensure continuity of assistance, immediacy of attention,
tailored treatment, and caregiver integration [21].

The data collected from sensors is expected to strongly
contribute to behavioral monitoring and mental status assessment
over time on an individual basis in a transparent way. Within
an intraperson investigation, the data may be used as a trigger
to personalized interventions facilitating the implementation of
remote psychiatric therapeutic programs. It is expected that the
long-term analysis of sensor-based data, building on a personal
baseline and assessing individual modifications, may play a key
role in clinical applications [14]. To realize this, all aspects of
mobile phone sensor technology should be thoroughly
investigated. Studies using rigorous methodology are needed
to investigate the beneficial as well as the harmful effects of
extracting behavioral markers of psychiatric disorders or
symptoms from sensor-based data.

m-RESIST Project Contribution
Building on the results of this review, m-RESIST set up a
framework to create a clinical decision support system (CDSS)
based on a mobile therapeutic intervention for schizophrenic
patients. The CDSS is designed to provide the users with
necessary information to support health-related and clinical
decision-making. The system utilizes available data sources in
order to assess the patient’s condition using decision algorithms
and, as a result, classify the clinical condition in order to provide
clinical and lifestyle recommendations. The CDSS starts with
a training period of two weeks, during which sensor-based data
are collected, without activation of further system actions, in
order to assess the patient’s baseline. Once trained, the system
monitors the changes against the baseline. The functionality of
the CDSS is based on the workflows developed by expert
clinicians, reflecting the process of interaction between the
system and its users in order to establish novel health care
pathways. The CDSS activation is triggered by an event (ie,
change in the baseline value) that is interpreted in a context of
additional information that exists regarding a specific patient
(ie, records in the patient’s file and information regarding
attendance of scheduled visits) and a series of predefined
conditions and actions [83].

The features supplied by sensor data that are used to trigger the
CDSS are as follows: app number and duration of incoming,
outgoing, and missed calls; number of incoming and outgoing
SMS text messages by mobile phone; amount of time spent at
home and in other places, measured by GPS data; and amount
of time sleeping measured by physiological heart rate [83].

Conclusions
The data from sensors are associated with symptoms of
schizophrenia, bipolar disorder, and depression, but their
usability in clinical practice needs to be scrutinized more
thoroughly. m-RESIST aims to support intervention
administration by sensor-based data in TRS. m-RESIST also
plans to go a step further in remote therapy management of TRS
by implementing a CDSS to correlate clinical information and
sensor-based data. In m-RESIST, a mental status evaluation
based on the most common perceptions and risk behaviors of
patients with schizophrenia has been developed, together with
the usual clinical scales. A pilot study has been carried out and
its results are under analysis.
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