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Abstract

Background: The radiological differential diagnosis between tumor recurrence and radiation-induced necrosis (ie,
pseudoprogression) is of paramount importance in the management of glioma patients.

Objective: This research aims to develop a deep learning methodology for automated differentiation of tumor recurrence from
radiation necrosis based on routine magnetic resonance imaging (MRI) scans.

Methods: In this retrospective study, 146 patients who underwent radiation therapy after glioma resection and presented with
suspected recurrent lesions at the follow-up MRI examination were selected for analysis. Routine MRI scans were acquired from
each patient, including T1, T2, and gadolinium-contrast-enhanced T1 sequences. Of those cases, 96 (65.8%) were confirmed as
glioma recurrence on postsurgical pathological examination, while 50 (34.2%) were diagnosed as necrosis. A light-weighted
deep neural network (DNN) (ie, efficient radionecrosis neural network [ERN-Net]) was proposed to learn radiological features
of gliomas and necrosis from MRI scans. Sensitivity, specificity, accuracy, and area under the curve (AUC) were used to evaluate
performance of the model in both image-wise and subject-wise classifications. Preoperative diagnostic performance of the model
was also compared to that of the state-of-the-art DNN models and five experienced neurosurgeons.

Results: DNN models based on multimodal MRI outperformed single-modal models. ERN-Net achieved the highest AUC in
both image-wise (0.915) and subject-wise (0.958) classification tasks. The evaluated DNN models achieved an average sensitivity
of 0.947 (SD 0.033), specificity of 0.817 (SD 0.075), and accuracy of 0.903 (SD 0.026), which were significantly better than the
tested neurosurgeons (P=.02 in sensitivity and P<.001 in specificity and accuracy).
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Conclusions: Deep learning offers a useful computational tool for the differential diagnosis between recurrent gliomas and
necrosis. The proposed ERN-Net model, a simple and effective DNN model, achieved excellent performance on routine MRI
scans and showed a high clinical applicability.

(JMIR Med Inform 2020;8(11):e19805) doi: 10.2196/19805
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Introduction

Brain radiation necrosis (ie, pseudoprogression) can be a
consequence of radiation therapy, which is used for the treatment
of brain tumors, with an incidence of 3%-24% [1-4]. It is of
paramount importance to distinguish radiation necrosis from
tumor recurrence, as these two pathologies share similar
appearances in neuroimaging yet have different treatments and
outcomes [5,6]. Currently, various imaging modalities, such as
magnetic resonance spectroscopy (MRS) [7,8],
perfusion-weighted imaging (PWI) [9], diffusion-weighted
imaging (DWI) [10], and positron emission tomography (PET)
with different tracers [11,12], have been applied for
differentiating radiation necrosis from tumor recurrence; yet
their efficacy and reliability still need further validation.
Differential diagnosis between recurrent tumors and necrosis
remains a major challenge in neuro-oncology and
neuroradiology [1,2,5,6,13].

Recent studies demonstrate that although radiologists may not
be able to systematically identify differences in the highly
variable appearances of brain tumors and radionecrosis,
handcrafted features extracted from routine magnetic resonance
imaging (MRI) can effectively differentiate these two conditions
[14-16]. As shown in these studies, handcrafted radiomic
features can capture the variations in image intensity, shape,
and volume and have shown promising results (see Figure 1).
However, there are two major limitations that may restrict the
use of these methods in the clinical setting. The first limitation
is that all these methods require manual segmentation of the
lesion (ie, drawing regions of interest [ROIs] of the lesion on
T1-weighted MRI [T1], gadolinium-contrast-enhanced T1 [T1c],
and/or T2-weighted MRI [T2]/fluid-attenuated inversion
recovery [FLAIR]), from which the texture or shape features
can be extracted [17]. The ROI segmentation is time-consuming

and operator dependent, introducing human interference and
potential noise into the analysis. Furthermore, handcrafted
features extracted in these studies are usually redundant and
require feature selection, which, if inaccurate, may bias the
analysis.

Deep learning is a data-driven approach that uses deep neural
network (DNN) models to learn the feature representations at
multiple levels of abstraction [18]. Deep learning models, such
as Visual Geometry Group (VGG) [19], residual neural network
(ResNet) [20], and Inception [21], have substantially improved
the state of the art in many visual analysis tasks (eg, ImageNet
Large Scale Visual Recognition Challenge [22]), compared to
handcrafted features. Deep learning methods have also
demonstrated human-level performance in medical image
computing, such as skin cancer classification [23], diabetic
retinopathy grading [24], glaucoma detection [25], early
diagnosis of Alzheimer disease [26], and, most recently,
COVID-19 severity assessment [27]. Yet to the best of our
knowledge, the application of deep learning in differentiating
glioma recurrence from postradiotherapy necrosis has not been
investigated so far.

Therefore, in this work we aim to explore the potential benefit
of deep learning algorithms for distinguishing between
radionecrosis and tumor recurrence using routine MRI scans.
We proposed a novel DNN model (ie, efficient radionecrosis
neural network [ERN-Net]) to automatically characterize the
features of gliomas and necrosis from MRI images and to
classify the lesions at image-based and subject-based levels,
which outperformed the human experts (ie, neurosurgeons) and
the state-of-the-art DNN models. Furthermore, the proposed
method does not depend on lesion segmentation or any
handcrafted features and, therefore, may have a higher clinical
applicability.
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Figure 1. The T1, T2, and T1c magnetic resonance imaging (MRI) sequences of 4 patients with their histograms of the voxels within the lesion masks.
Patients (a) and (b) represent recurrent tumors; patients (c) and (d) represent radionecrosis lesions. The lesion masks were manually drawn using the
software ITK-SNAP, generally used for delineating regions of interest. The histograms were created for individual sequences and further smoothed
using the Hann filter. ITK: Insight Toolkit. T1: T1-weighted MRI; T1c: gadolinium-contrast-enhanced T1-weighted MRI; T2: T2-weighted MRI.

Methods

Patient Data and Imaging Protocol
This study was approved by the Institutional Review Board of
Beijing Tiantan Hospital, Capital Medical University
(BTH-CMU), China, and the requirement for informed consent
was waived by the board as this research involves no more than
minimal risk. The criteria for selecting the patient cohorts are
shown in Figure 2.

We retrospectively identified patients who underwent brain
tumor resection between January 2010 and November 2018,
confirmed by pathology examination to be gliomas. Among the
selected patients, we further selected the ones who underwent
subsequent radiation therapy and presented with suspected
recurrent lesions on radiological follow-up. All the patients

included in this study underwent a second surgery to
differentiate glioma recurrence from radiation necrosis.
Histopathologic diagnoses of both the initial and recurrent
lesions were performed by neuropathologists at BTH-CMU.
Patients were excluded from the study if their histopathological
analyses showed a mixture of tumor and necrosis.

A cohort of 146 patients were identified using our criteria. Of
those, 96 (65.8%) patients were diagnosed to be affected by
recurrent glioma, and 50 (34.2%) by necrosis. Of the 146
patients, 117 subjects (80.1%) were randomly assigned to the
training set, and the remaining 29 subjects (19.9%) were retained
as the test set. It is a common practice to split the cohort into a
training set and a test set in machine learning studies, and the
training set to test set ratio usually varies from 60:40 to 90:10
[20,23,26]. In this study, we chose the 80:20 split ratio to
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balance the number of cases that can be used to train the model
and the workload on the human experts to assess the test cases.
Table 1 shows the demographic data of the subjects in the cohort
as well as the distribution of the cases in the training and test

data sets. The histopathological analysis results of the recurrent
lesions, either recurrent tumor or necrosis, were used to
categorize patients’ imaging data.

Figure 2. The selection process for the patient cohorts in this study. MRI: magnetic resonance imaging; T1: T1-weighted MRI; T1c:
gadolinium-contrast-enhanced T1-weighted MRI; T2: T2-weighted MRI.

JMIR Med Inform 2020 | vol. 8 | iss. 11 | e19805 | p. 4http://medinform.jmir.org/2020/11/e19805/
(page number not for citation purposes)

Gao et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Demographic and clinical data of the patient cohorts enrolled in this study.

Total (N=146)Test set (n=29)Training set (n=117)Characteristic

146 (100)29 (19.9)117 (80.1)Sample size (N=146), n (%)

41.1 (11.9)42.0 (9.9)40.9 (12.4)Age in years, mean (SD)

Gender, n (%)

78 (53.4)15 (52)63 (53.8)Male

68 (46.6)14 (48)54 (46.2)Female

Diagnosis of primary lesion, n (%)

41 (28.1)8 (28)33 (28.2)Grade II

32 (21.9)6 (21)26 (22.2)Grade III

56 (38.4)11 (38)45 (38.5)Grade IV

17 (11.6)4 (14)13 (11.1)Unknown

Diagnosis of recurrent lesion, n (%)

50 (34.2)10 (34)40 (34.2)Necrosis

96 (65.8)19 (66)77 (65.8)Glioma

The follow-up MRI scans of the identified patients prior to the
second surgery for histopathologic diagnosis were selected to
perform the analysis. The MRI data were acquired from five
MRI systems at BTH-CMU. The specifications of the imaging
data are listed in Table 2. All the patients have the axial T1, T2,
and T1c sequences, acquired during routine clinical visits. A

total of 42 MRI scans were acquired using the MAGNETOM
Trio, A Tim system (Siemens), 28 scans using the MAGNETOM
Verio system (Siemens), 25 scans using the Discovery MR750
system (GE Healthcare), 29 scans using the GENESIS SIGNA
system (GE Healthcare) with 3 T magnetic field, and 22 using
the SIGNA system (GE Healthcare) with 1.5 T magnetic field.

Table 2. Specifications of the imaging data acquired from the different magnetic resonance imaging systems.

Matrix sizeSlice spacing, mmSlice thickness, mmField of view, mmImaging system

496 × 5126.55.0220Siemens MAGNETOM Trio Tim

496 × 5126.05.0220Siemens MAGNETOM Verio

512 × 5126.55.0240GE Healthcare Discovery MR750

512 × 5126.05.0240GE Healthcare GENESIS SIGNA 3 T

512 × 5126.55.5240GE Healthcare SIGNA 1.5 T

Data Preprocessing
To standardize the MRI data across multiple MRI systems, the
following preprocessing pipeline was used. First, the imaging
data were corrected for bias field using the improved
nonparametric, nonuniform-intensity normalization algorithm
[28] built into the Advanced Normalization Tools suite of tools
for brain and image analysis [29]. Second, for every patient’s
MRI data, the T1c and T2 images were coregistered to the T1
space using the Functional Magnetic Resonance Imaging of the
Brain (FMRIB) Software Library (FSL) FMRIB Linear Image
Registration Tool (FLIRT) pipeline with a 6-degree-of-freedom
transform [30,31]. Finally, the magnetic resonance images were
linearly mapped and resampled to the Montreal Neurological

Institute 152 template [32], also using FSL FLIRT, in order to
make the dimensions and orientation of all the images uniform.

The MRI slices presenting enhancing lesions were identified
by neuroradiologists or neurosurgeons; the multimodal magnetic
resonance slices—T1, T2, and T1c—were then fused into
multichannel images, as shown in Figure 3 (a). To minimize
the interrater variance, we requested that the radiologists and
neurosurgeons use 3D Slicer, version 4.6.2 [33], to place a
marker on the axial slices if they saw a suspected recurrent
lesion on the slice. Therefore, no manual outlining of the lesion
was performed, taking less than two minutes for a radiologist
to review an MRI image and identify the slices containing the
lesion. These annotations provided by experienced
neurosurgeons were used as the ground truth for evaluating the
performance of the classifier.
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Figure 3. Overview of the proposed approach. (a) The co-registered multimodal images were fused as a multichannel RGB image with T1, T2, and
T1c images representing the Red, Green and Blue channels, respectively. (b) The multichannel magnetic resonance (MR) images were used to train the
deep neural network (DNN) models that classified the test MR images as either a recurrent tumor or radiation necrosis. (c) Architecture of the proposed
efficient radionecrosis neural network (ERN-Net). ReLU: rectified linear unit; T1: T1-weighted magnetic resonance imaging (MRI); T1c:
gadolinium-contrast-enhanced T1-weighted MRI; T2: T2-weighted MRI.

The MRI slices containing the lesion were identified manually
by an experienced neurosurgeon (NJ) and further reviewed by
an imaging analyst (YG) based on the T1c scans. The axial T1c
and corresponding T2 and T1 slices were then saved as 2D
multichannel images for further analysis. A total of 5824
multichannel images, each consisting of a T1, a T2, and a T1c
slice, were extracted from the 117 patients in the training set,
and 1472 multichannel images were extracted from the 29
patients in the test set. The multichannel images were used to
train the DNN models, which were subsequently applied to
predict the patients’ lesion types in the test set based on their
imaging data, as shown in Figure 3 (b).

Efficient Radionecrosis Neural Network
DNN models can be considered as mathematical functions with
numerous parameters. For image classification, DNN models
usually use pixel values as the input features. The neurons in
the hidden layers of the DNN are responsible for transforming
lower-level features to higher-level features that can be used
for classification. While training a DNN model, the training
images and diagnostic labels (dichotomized; 0: radiation
necrosis; and 1: tumor recurrence) are used to update the
parameters of the model. At each training step, the model
predicts the diagnostic label for an input training image, then
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the prediction is compared to its ground truth label, such that
the parameters of the model are modified to reduce the error on
that image prediction. This process is then repeated for every
image in the training set over many iterations to let the model
“learn” how to differentiate the tumor recurrence signature from
the necrosis one in magnetic resonance images. After the model
is fully trained, it is used to infer the diagnostic probability
distribution of necrosis and tumor recurrence for the test images.

For feature learning and classification, we proposed a
light-weighted DNN model (ie, ERN-Net) to learn radiological
features of gliomas and necrosis from MRI scans. The proposed
ERN-Net model, as illustrated in Figure 3 (c), consists of only
nine convolutional modules, including seven with inverted linear
bottleneck layers [34]. We also benchmarked five state-of-the-art
DNN models: VGG16 and VGG19 [19], ResNet-50 [20],
Inception-v3 [21], and Inception-ResNet-v2 [35]. It is
noteworthy that ERN-Net is 3 times smaller and 8.1 times faster
than Inception-v3 [36]. All the DNN models were implemented
using the TensorFlow framework, version 1.14 [37], with the
ImageNet pretrained weights imported from the Keras library
[38]. To address the imbalanced sample distribution, we
assigned different weights to the classes during the training
phase based on the ratio between the number of samples in each
class and the total number of samples scaled by the number of
classes (necrosis: 1.5; recurrence: 0.75). A more detailed
description of these DNN models can be found in Multimedia
Appendix 1.

Performance Evaluation
To evaluate the performance of the DNN models on image-wise
classification, we designed an experiment in which we trained
and tested these DNN models on the same data set, including
5824 training images and 1472 test images. This experiment
was carried out on a per-image basis, with each image treated
as an individual input sample. We also compared the
performance of single-modal and multimodal MRI in the
image-wise classification task. Sensitivity, specificity, accuracy,
and area under the curve (AUC) of the receiver operating
characteristic (ROC) curve were used to evaluate the
classification performance.

To evaluate the performance of the DNN models on a subject
basis, we designed another experiment in which we aggregated
the image-wise classification results to infer each subject’s
diagnosis. For each subject in the test set, the models that had

been trained for image-wise classification in the previous
experiment were reused to classify the stack of the subject’s
images; the image-wise classification results were then averaged
as the output prediction of that subject. Performances of these
DNN models in subject-wise classification were also compared
with those of the human experts.

Results

Image-wise Classification
Table 3 shows the summary of the comparison of different MRI
sequences using DNN models. T1c was the best performing
sequence among the three routine MRI sequences, with
consistently higher accuracy and AUC than T1 and T2 sequences
across all the DNN models. T1c also achieved the highest
sensitivity with VGG16 and Inception-v3 models (0.874 and
0.769, respectively), and the highest specificity with VGG19
and ResNet-50 models (both equal to 0.653). Considering AUC
as a single metric that combines sensitivity and specificity, T2
performed slightly better than T1, although there was
disagreement in other evaluation metrics. ERN-Net
outperformed the VGG models in AUC on T1c (0.807, 95% CI
0.782-0.832), while Inception-ResNet-v2 achieved the highest
AUC (0.841, 95% CI 0.818-0.864). We found that the sensitivity
was higher than specificity in most models and sequences. This
can be partially explained by the imbalanced sample distribution
in the two classes, which might bias the models and, hence, the
classification results.

Table 4 shows the performance comparison of the DNN models
on multimodal MRI images. ERN-NET had the highest AUC
(0.915, 95% CI 0.895-0.932), which was slightly better than
Inception-ResNet-v2 (0.913, 95% CI 0.895-0.931) and
substantially better than the other DNN models.
Inception-ResNet-v2 achieved the highest score in sensitivity
(0.925, 95% CI 0.907-0.941) and accuracy (0.867, 95% CI
0.848-0.884), while VGG16 had the highest specificity (0.826,
95% CI 0.791-0.858). The DNN models based on multimodal
MRI outperformed the models based on individual MRI
sequences in all the evaluation metrics. We again noticed that
the sensitivity was higher than specificity for all the DNN
models, with differences ranging from 0.032 (VGG16
sensitivity: 0.858; specificity: 0.826) to 0.236 (ResNet-50
sensitivity: 0.899; specificity: 0.663).
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Table 3. Performance of the deep neural network (DNN) models on individual magnetic resonance imaging (MRI) sequences: T1-weighted MRI (T1),
T2-weighted MRI (T2), and gadolinium-contrast-enhanced T1-weighted MRI (T1c).

Area under the curve (95% CI)Accuracy (95% CI)Specificity (95% CI)Sensitivity (95% CI)DNN model and magnetic
resonance sequence

VGGa16

0.718 (0.689-0.747)0.684 (0.660-0.708)0.606 (0.562-0.648)0.725 (0.696-0.753)T1

0.767 (0.740-0.794)0.689 (0.665-0.713)0.686 (0.644-0.727)0.690 (0.660-0.719)T2

0.770 (0.743-0.797)0.759 (0.736-0.781)0.540 (0.496-0.585)0.874 (0.851-0.894)T1c

VGG19

0.692 (0.663-0.721)0.681 (0.657-0.705)0.448 (0.404-0.492)0.804 (0.778-0.829)T1

0.741 (0.713-0.769)0.678 (0.653-0.702)0.554 (0.510-0.598)0.743 (0.714-0.770)T2

0.795 (0.769-0.821)0.749 (0.726-0.771)0.653 (0.610-0.694)0.800 (0.773-0.825)T1c

ResNetb-50

0.732 (0.704-0.760)0.714 (0.690-0.737)0.584 (0.540-0.627)0.782 (0.755-0.808)T1

0.762 (0.735-0.789)0.727 (0.703-0.750)0.525 (0.480-0.569)0.833 (0.808-0.852)T2

0.824 (0.800-0.848)0.766 (0.743-0.787)0.653 (0.610-0.694)0.825 (0.799-0.848)T1c

Inception-v3

0.706 (0.677-0.735)0.680 (0.656-0.704)0.596 (0.552-0.639)0.724 (0.695-0.752)T1

0.734 (0.706-0.762)0.668 (0.644-0.693)0.734 (0.693-0.772)0.634 (0.603-0.665)T2

0.831 (0.807-0.855)0.756 (0.733-0.778)0.732 (0.691-0.770)0.769 (0.741-0.795)T1c

Inception-ResNet-v2

0.748 (0.720-0.776)0.711 (0.687-0.734)0.590 (0.546-0.633)0.774 (0.746-0.800)T1

0.804 (0.779-0.829)0.726 (0.702-0.748)0.529 (0.484-0.573)0.829 (0.804-0.852)T2

0.841 (0.818-0.864)0.781 (0.759-0.802)0.722 (0.681-0.761)0.812 (0.786-0.837)T1c

ERN-Netc

0.646 (0.615-0.676)0.640 (0.615-0.665)0.519 (0.474-0.563)0.704 (0.674-0.732)T1

0.675 (0.645-0.705)0.624 (0.599-0.649)0.606 (0.562-0.648)0.634 (0.603-0.665)T2

0.807 (0.782-0.832)0.748 (0.725-0.770)0.643 (0.600-0.685)0.803 (0.777-0.828)T1c

aVGG: Visual Geometry Group.
bResNet: residual neural network.
cERN-Net: efficient radionecrosis neural network.
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Table 4. Performance of different deep neural network (DNN) models on the T1a-T2b-T1cc-fused images for image-based classification.

Area under the curve (95% CI)Accuracy (95% CI)Specificity (95% CI)Sensitivity (95% CI)DNN models

0.864 (0.842-0.886)0.847 (0.828-0.865)0.826 (0.791-0.858)0.858 (0.834-0.880)VGGd16

0.828 (0.804-0.852)0.801 (0.780-0.821)0.704 (0.662-0.744)0.852 (0.828-0.874)VGG19

0.866 (0.844-0.888)0.818 (0.797-0.837)0.663 (0.620-0.704)0.899 (0.879-0.918)ResNete-50

0.845 (0.822-0.868)0.800 (0.778-0.820)0.716 (0.675-0.755)0.844 (0.819-0.866)Inception-v3

0.913 (0.895-0.931)0.867 (0.848-0.884)0.755 (0.716-0.792)0.925 (0.907-0.941)Inception-ResNet-v2

0.915 (0.895-0.932)0.809 (0.788-0.829)0.789 (0.751-0.824)0.820 (0.794-0.844)ERN-Netf

aT1: T1-weighted magnetic resonance imaging (MRI).
bT2: T2-weighted MRI.
cT1c: gadolinium-contrast-enhanced T1-weighted MRI.
dVGG: Visual Geometry Group.
eResNet: residual neural network.
fERN-Net: efficient radionecrosis neural network.

Subject-wise Classification
Table 5 shows the performance of different DNN models in the
subject-wise classification task. Each of the 29 test subjects was
considered as a single sample to be classified. In this experiment,
the classification results of the images extracted from the same
patient were averaged as the final output prediction of the
subject. When the DNN models were evaluated on a per-subject
basis by aggregating the subject’s image stack, the performance
was further improved to an average sensitivity of 0.947 (SD
0.033), specificity of 0.817 (SD 0.075), accuracy of 0.903 (SD
0.026), and AUC of 0.938 (SD 0.022). Both ERN-Net and
Inception-ResNet-v2 achieved the highest AUC of 0.958. While
Inception-ResNet-v2 also had higher sensitivity and accuracy,
ERN-Net had higher specificity. In particular,
Inception-ResNet-v2 achieved a sensitivity of 100%, indicating
that all recurrent tumors identified by Inception-ResNet-v2 were
correct. VGG16 tied for the highest specificity (0.900) with
ERN-Net and the highest accuracy (0.931) with
Inception-ResNet-v2. The DNN models had higher sensitivity

than specificity, except ERN-Net, implying that ERN-Net was
less affected by the imbalanced distribution of necrosis and
recurrent tumor samples on the subject level.

We also compared the performance of the DNN models to that
of five neurosurgeons, with 7-26 years of experience, who were
presented with the same multimodal MRI scans as used to test
the DNN models. The neurosurgeons were not shown the
pathological analysis reports and were requested to make
diagnoses based on the MRI data alone. The neurosurgeons
achieved an average sensitivity of 0.768 (SD 0.109), specificity
of 0.360 (SD 0.089), and accuracy of 0.628 (SD 0.075), which
were significantly worse than the DNN models when measured
using t tests (P=.02 in sensitivity and P<.001 in specificity and
accuracy).

Figure 4 further shows the ROC curves and the AUC scores of
the DNN models in the image-wise and subject-wise
classification tasks. The red dots in Figure 4 (b) represent the
neurosurgeons’ sensitivity and specificity scores.
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Table 5. Performance of different deep neural network (DNN) models for subject-based classification; the T1a-T2b-T1cc-fused images were used as
the input to the models.

Area under the curveAccuracySpecificitySensitivityDNN models

0.9110.9310.90.947VGGd16

0.9110.8970.80.947VGG19

0.9370.8620.70.947ResNete-50

0.9530.8970.80.947Inception-v3

0.9580.9310.81.000Inception-ResNet-v2

0.9580.8970.90.895ERN-Netf

0.938 (0.022)0.903 (0.026)0.817 (0.075)0.947 (0.033)All DNNs, mean (SD)

N/Ag0.628 (0.750)0.360 (0.089)0.768 (0.109)All neurosurgeons, mean (SD)

N/A<.001<.001.02P values for t tests between the DNNs and the neurosurgeons

aT1: T1-weighted magnetic resonance imaging (MRI).
bT2: T2-weighted MRI.
cT1c: gadolinium-contrast-enhanced T1-weighted MRI.
dVGG: Visual Geometry Group.
eResNet: residual neural network.
fERN-Net: efficient radionecrosis neural network.
gN/A: not applicable. The diagnoses made by neurosurgeons are definite (ie, yes or no), unlike those made by the DNN models (eg, 30% yes or 70%
no); therefore, the area under the curve cannot be computed without a probability distribution of predictions.

Figure 4. Plots showing (a) performance of the deep neural network (DNN) models on multimodal magnetic resonance imaging in the image-based
classification task and (b) performance of the DNN models and neurosurgeons in the subject-based classification task. Performance of the DNN models
was evaluated using the area under the curve (AUC) of the receiver operating characteristic curves, while the five neurosurgeons’ sensitivity and
specificity scores are represented by the red dots. ERN-Net: efficient radionecrosis neural network; ResNet: residual neural network; VGG: Visual
Geometry Group.

Discussion

Principal Findings
To the best of our knowledge, this is the first research on the
application of DNN models to routine MRI scans for the
purposes of automated differentiation between radiation necrosis
and recurrent tumors. We found that T1c is the most informative

routine MRI sequence for identifying radiation necrosis, which
aligns well with many previous studies [1,2,5,6,13,15].
However, other routine MRI sequences, including T1 and T2,
also provide useful and complementary information to T1c in
characterizing the tumors and necrosis, as evidenced by the
improved performance of the combined MRI sequences.
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The proposed ERN-Net model achieved the highest AUC in
both image-wise classification (0.915) and subject-wise
classification (0.958), while being substantially smaller and
faster compared to the other DNN models. Overall, the DNN
models achieved better performance than the human experts.
The most important advantage of the DNN models is that they
have a higher discriminative power in recognizing radiation
necrosis with a mean specificity of 0.817 (SD 0.075) compared
to the mean specificity of 0.360 (SD 0.089) achieved by
experienced neurosurgeons (P<.001).

Compared to previously reported machine learning methods,
which were generally based on handcrafted features and
user-defined classifiers [14-16], DNN models use an end-to-end
approach to integrate feature learning and classification and,
therefore, could eliminate the dependence on the selected feature

descriptors and classifiers. Furthermore, the proposed method
does not require manual drawing of the lesion, which is
time-consuming and may result in interreader variance [17,39],
as shown in Figure 5. We proposed a lesional slice identification
approach to select the relevant slices instead of creating the
lesion masks manually. This approach reduced the time required
for annotating tumor masks and can also capture contextual
spatial information of the perilesional tissues. Both the trained
DNN models and the lesion slice identification module support
cross-platform systems and can be seamlessly integrated into
existing image analysis and reporting workstations within a
hospital, aiming to generate differential diagnosis reports
automatically. More importantly, the performance of the
proposed method is substantially higher than that of the
previously reported methods [14-16].

Figure 5. A T1c tumor image and its corresponding tumor masks created by two neuroradiologists independently, which shows the disagreement
between annotators. MRI: magnetic resonance imaging; T1c: gadolinium-contrast-enhanced T1-weighted MRI.

Currently, there exist other imaging techniques for differential
diagnosis of recurrent tumor and radiation necrosis, such as
MRS [7,8], PWI [9], DWI [10], and PET [11,12], yet none of
them demonstrate sufficiently high efficacy for clinical use. A

meta-analysis on PET showed that L-[methyl-11C]methionine
(11C-MET) PET achieved promising results, with a pooled
sensitivity and specificity of 0.880 (95% CI 0.850-0.910) and
0.850 (95% CI 0.800-0.890), respectively, and a summary
receiver operating characteristic (SROC) score of 0.935 [12].
Another meta-analysis of 11C-MET PET showed an SROC
score of 0.8914 [40]. Both PET meta-analysis studies showed
a lower performance than the proposed method. In addition, the
relative accessibility, radiation exposure, and higher cost of
PET limit its clinical applicability. MRS demonstrated moderate
diagnostic performance in differentiating glioma recurrence
from radiation necrosis based on metabolite ratios, such as
choline to creatinine and choline to N-acetylaspartate, and it is
strongly recommended to combine MRS with other imaging
technologies to improve diagnostic accuracy [3]. Previous
studies on machine learning and imaging techniques have two
notable limitations: first, the diagnoses included in many earlier
studies were not pathologically confirmed; second, the sample

sizes were too small. These limitations led to inconclusive
findings, such that the differential diagnosis of tumor recurrence
and necrosis is still a largely unsolved clinical problem [2,12].
To the best of our knowledge, the imaging data set (N=146)
used in this study represents the largest cohort in the same kind
of studies and includes pathologically confirmed diagnoses as
ground truth labels; therefore, it is a more reliable data set to
address this problem.

Limitations and Future Work
There are also a few limitations of this study. Although we used
a larger data set for the same analysis, it is still a relatively small
data set compared to the generic image data sets used in the
field of computer vision. This may potentially lead to overfitting
or undertraining when training a DNN model. Furthermore, due
to the retrospective nature of this study, the DNN models were
only trained on an imbalanced data set with readily available
2D routine MRI sequences. The imbalanced distribution of
samples may induce bias in the DNN model, leading to higher
sensitivities but low specificities. Although we attempted to
address this issue by weighting the samples during the training
phase, the models still favor positive class over the negative
class. It will be beneficial to extend the sample size by including
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data from other centers and using data augmentation methods
to further improve and validate the proposed method. Other
MRI sequences, such as FLAIR, PWI, DWI, and
delayed-contrast MRI, and the 3D data set may potentially
improve the classification performance of the DNN models.
Last but not least, also due to the retrospective nature of this
study, no glioma subtypes, such as astrocytoma,
oligodendroglioma, and glioblastoma; molecular genetic
features, such as isocitrate dehydrogenase and alpha
thalassemia/mental retardation syndrome X-linked genes; nor
1p/19q chromosome co-deletion status [41,42] were included.
These aspects should be investigated in future studies.

The proposed method has high clinical potential. Distinguishing
glioma recurrence from radiation necrosis remains a critical
challenge in clinical neuro-oncology. Misdiagnosing radiation
necrosis as tumor recurrence may result in unnecessary surgery,
whereas misdiagnosing tumor recurrence as radiation necrosis
will delay the treatment of tumors. Currently, the differential
diagnosis of radiation necrosis and recurrent tumor relies on
histopathologic analysis, which requires biopsy or open surgery
to gain tissue for the analysis. This study’s method proposes a
sound alternative to the second surgery for the purpose of

gaining tissue for histopathologic analysis, therefore avoiding
invasive operations and lowering the risks to patients. In
addition, up to now, there have been no clinical guidelines for
preoperative diagnosis of glioma recurrence and radiation
necrosis based on routine MRI sequences. Our study underlines
important insights about the imaging of recurrent tumors and
radiation necrosis through examining the radiological features
learned by the DNN models; hence, it is likely to take an
important role in formulating the guidelines for the differential
diagnosis of recurrent lesions and for glioma follow-up.

Conclusions
In this work, we demonstrated that DNN models based on
multimodal MRI can differentiate radionecrosis from recurrent
gliomas more effectively than models based on single MRI
sequences; in addition, the DNN model’s performance is
significantly better than that of the tested experienced clinicians
on subject-wise diagnosis. Therefore, the proposed deep learning
method, which does not depend on lesion segmentation or any
handcrafted features, can be a useful tool for differentiating
between radiation necrosis and recurrent tumors, with a high
applicability potential in the clinical setting.
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FLIRT: Functional Magnetic Resonance Imaging of the Brain Linear Image Registration Tool
FMRIB: Functional Magnetic Resonance Imaging of the Brain
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MRI: magnetic resonance imaging
MRS: magnetic resonance spectroscopy
NHMRC: National Health and Medical Research Council
PET: positron emission tomography
ResNet: residual neural network
ROC: receiver operating characteristic
ROI: region of interest
SROC: summary receiver operating characteristic
T1: T1-weighted magnetic resonance imaging
T1c: gadolinium-contrast-enhanced T1-weighted magnetic resonance imaging
T2: T2-weighted magnetic resonance imaging
VGG: Visual Geometry Group
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