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A simple analytical model of the space-charge (self-fields) of a few picosecond
electron pulse in a RF photocathode electron gun is presented. The model per-
mits a search for the optimal laser distribution (transverse and longitudinal) that
will result in an electron beam with minimum transverse emittance. It is con-
cluded that electron distributions with sharp edges in the transverse dimension

and parabolic (inverted) in the longitudinal direction are best to minimize the
emittance. These effects have been confirmed with extensive simulations using

the numerical code PARMELA.
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INTRODUCTION

Single pass self amplified spontaneous emission (SASE) FELs require electron beams
whose brightness is higher than what has been achieved so far. At the Accelerator Test
Facility (ATF) we are studying the development of higher-brightness sources suitable
to drive short wavelength FELs (XUV and X-ray). The gain length Lg = %r';o{ the
device is proportional to the brightness, By ¥ where B, ~ =L1 and A, is the period
of the wiggler; furthermore, the shor-test coherent radiation achievable is determined
by the emittance of the e” beam, A ~ . It is apparent that any reduction of the
emittance will enhance the brightness and consequently decrease the gain length and
simultaneously, we have potential access to shorter wavelength by either increasing
the electron beam energy v or decreasing the wiggler period A,,.

The intrinsic (thermal) normalized emittance of the cathode is given by ¢, =
:}rc\/g which corresponds to an intrinsic normalized brightness

4 _mc? (1)

Bn=_ c L
7rJ kT

where we have used I = Jenr?; for J. = 600“‘:, and kT = leV, B, = 3.9 x
10‘2(—m+“),-. There are several o;her factors that significantly reduce the actual
brightness of our gun with respect to the cathode brightness. The more important
are time dependent forces introduced by the RF field and space charge forces, both of
which are noa-linear and time dependent (i.e., function of the position in the beam).
This reduction of B;, is due to emittance growth, i.e. higher order correlations in
phase-space zz'. This is the result of the variation of the space charge forces along
the length of the pulse. This dependence produces that the ellipse in phase space,
representing a section of the beam, changes orientation as we consider consecutive

sections; this is the origin of the well known fan figure in phase space (Fig. 1). The

area associated with each section could be small but the emittance of the entire beam



is a figure of merit of the composite of all ellipses and, consequently, is larger than the
individual ones. Ve turn now to a discussion of a possible way of controlling the time

dependence of space-charge forces within the context of a simple analytical model of

the e~ beam close to the cathode.

SIMPLE ANALYTICAL MODEL

Let us consider a laser pulse of 7z = 6 ps and transverse radius ~ 2 — 3mm. We
assume that an identical e~ beam is created with initial energy T ~ 0.5eV. We divide
the beam along the longitudiﬁa.l axis into a collection of disks of radius » = e and
we calculate the self-fields (space charge fields) created by each disk. We then add
all the individual disks’ fields to obtain the total space charge force acting on each
electron.

The functional form of the radial component of the electric field E.(r, 2) (in the rest
frame of the beam), as a function of r and z, will reflect itself in the radial momentum

of the electrons p, = £ [ L%";E,.(r,z) and, consequently in the transverse emittance,

substituting in the emittance definition ¢, = \/< p? >< r? > — < rp, >2? we obtain!

€, \/< E?2><r?> - <rE, >2_ First we solve for the potential functien V(r, z)
created by a single disk of radius a and surface charge density . We solve the Laplace

equation AV(r,z) = 0 with the boundary conditions

oV
E;Iﬂo =—-Ino 0<r<a (2)
/1%
5;— i=0= 0 r<la (3)

Assuming V(r, z} = f(r)g(z} and after some simple manipulations, the Laplace equa-

tion reads,

}{f” + %f} = —g;" = —a? )

where a is a constant. We then write, g(z) = e~ and f(r) = Jy(ar); hence,
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V(r,2) = /m dzJo(z:)A(m)e"% (5)
0 a
where we have defined a = £. Using the Bessel integral

10<2<1

Qi

/om d::Jg(:cE)Jl(:c) = (6)

0 otherwise.

and the boundary conditions, we obtain A(z) = 2rg2Jy(z) if & = constant; conse-

quently, the potential functions is

T‘)Jl(z)e_:l%[ (7)

V(r,z) = 27rcra/; d:cJo(:c;
On the other hand, if o(r/a) = oo(1 — (r/a)?), then A(z) = 87095 J>(x) and the
potential function is

r . Jo(z) _ bl

V(r,z) = 8mce /:o dzJo(z )Te"'T. (8)

a
Adding the contribution of all the disks we can calculate the electric field E(r,z) =
——61/’(r,z) at any point (r,z). Care must be taken with the position of the disk and
the absolute value in the exponential. We also add the contribution of the image

charge due to the metallic surface of the cathode. Next, we generalize the result to
an arbitrary longitudinal distribution of surface charge density o(z). Our working

expression for the electric field are,
Ed(r,z)= Zf dle(zg)B,,,J,,,(z){ J d2'o(2)e- 36
+ JE do'o(2")eSle=2) — L dz'a'(z')e'f(”'""'")} 9)
r .
E.(r,z)= %[> d:cJo(a:f;)Bme(z:)if; dz'o(z2')e~5(==")
— [F d2'a(2ed>~) - fF d:’a'(z’)e'f(”’"*“)} (10)
where 1 is the radial coordinate, z is the relative coordinate respect to the back of the
pulse and z, is its actual position respect to the cathode; we have also defined
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BoJ. = Ji(z) foro =0y (1)

1J,(z)for o = ao(1 — (r/a)?).
Figs. 2 and 3 show the radial and longitudinal electric field for an electron beam
with rectangular transverse and inverted parabolic longitudinal distributions. We
observe that E, is nearly constant as a function of z and essentially linear with r.
For comparison we present in Figs. 4 and 5 the self-fields for a parabolic transverse
and flat-top longitudinal distributions; they show a curvature in E.(r,2) .vs. z and

different slopes of E.(r,z) .vs. 1 which will result in a significant fan-like figure in

phase space and consequently, a larger emittance than in the previous case.

CONCLUSIONS

To completely cancel the aberrations introduced by space-charge field, £, must be
linear in r and independent of z. This is best obtained using transverse distributions
with sharp edges which tend to reduce the time dependence of the radial electric field
and therefore, the emittance growth. Furthermore, to compensate for the decrease
of the space charge at both ends of the pulse, an inverted parabolic longitudinal
distribution will tend to further reduce the extend of the fan in phase space.

The results of this simpie analytical model of the space-charge forces have been
confirmed with extensive simulation? (see, Table 1 ) using the code PARMELA3.

An experimental test of these ideas will be performed with the RF photocathode

gun at the Accelerator Test Facility, Brookhaven National Laboratory.
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FIG. 1. Phase space plot showing a typical fan-like shape

FIG. 2. Radial self-field for an electron beam of 3 mm radius and 6 ps length. Rectangu-
lar transverse and parabolic (inverted) longitudinal distribution. a) E,(r, z) .vs. z showing

no z dependence for » < 2mm; b) E.(r,z) .vs. r showing a constant linear dependence with

I.

FIG. 3. Longitudinal self-field for the same electron beam of Fig 2. a) E,(r,2) .vs. z ;
b) E,(r,z) .vs.

FIG. 4. Radial self-field for an electron beam of 3 mm radius and 6 ps length. Parabolic
transverse and flai-top longitudinal distribution. a) E.(r, z) .vs. z showing a z dependence;

b) E.(r, z) .vs. r showing changing slopes as we move along the beam axis.

FIG. 5. Longitudinal self-field for the same electron beam of Fig 4. a) E,(r,z) .vs. z ;
b) E,(r,z) .vs. T




TABLE 1. Results of simulations using the code PARMELA for different initial electron

distributions.

cathode radius r [mm] 3
pulse length 7 {ps] 6
charge Q [nC] 1

Normalized Emittance e,[mm — mrad)

transverse gaussian 10.8
transverse rectangular 6.57
transverse rectangular, parabolic longitudinal 4.42
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