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A simple analytical model of the space-charge (self-fields) of a few picosecond

electron pulse in a RF photocathode electron gun is presented. The model per-

mits a search for the optimal laser distribution (transverse and longitudinal) that

will result in an electron beam with minimum transverse emittance. It is con-

cluded that electron distributions with sharp edges in the transverse dimension

and parabolic (inverted) in the longitudinal direction are best to minimize the

emittance. These effects have been confirmed with extensive simulations using

the numerical code PARMELA.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

MASTER



INTRODUCTION

Single pass self amplified spontaneous emission (SASE) FELs require electron beams

whose brightness is higher than what has been achieved so far. At the Accelerator Test

Facility (ATF) we are studying the development of higher-brightness sources suitable

to drive short wavelength FELs (XUV and X-ray). The gain length LG = ^£of the

device is proportional to the brightness, Bn * where Bn ~ p- and Xw is the period

of the wiggler; furthermore, the shortest coherent radiation achievable is determined

by the emittance of the e" beam, A ss J a . It is apparent that any reduction of the

emittance will enhance the brightness and consequently decrease the gain length and

simultaneously, we have potential access to shorter wavelength by either increasing

the electron beam energy 7 or decreasing the wiggler period Xw.

The intrinsic (thermal) normalized emittance of the cathode is given by en =

^ which corresponds to an intrinsic normalized brightness
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where we have used / = JC-KT2
C; for Jc % 6 ° 0 ^ r a n d kT — leV, Bn — 3.9 x

1012. _^ » t. There are several other factors that significantly reduce the actual

brightness of our gun with respect to the cathode brightness. The more important

are time dependent forces introduced by the RF field and space charge forces, both of

which are non-linear and time dependent (i.e., function of the position in the beam).

This reduction of Bn is due to emittance growth, i.e. higher order correlations in

phase-space xx'. This is the result of the variation of the space charge forces along

the length of the pulse. This dependence produces that the ellipse in phase space,

representing a section of the beam, changes orientation as we consider consecutive

sections; this is the origin of the well known fan figure in phase space (Fig. 1). The

area associated with each section could be small but the emittance of the entire beam



is a figure of merit of the composite of all ellipses and, consequently, is larger than the

individual ones. »Ve turn now to a discussion of a possible way of controlling the time

dependence of space-charge forces within the context of a simple analytical model of

the e~ beam close to the cathode. :

SIMPLE ANALYTICAL MODEL

Let us consider a laser pulse of TL = 6ps and transverse radius ~ 2 — 3 mm. We

assume that an identical e~ beam is created with initial energy T ~ 0.5 eV. We divide

the beam along the longitudinal axis into a collection of disks of radius r = a and

we calculate the self-fields (space charge fields) created by each disk. We then add

all the individual disks' fields to obtain the total space charge force acting on each

electron.

The functional form of the radial component of the electric field ET(r, z) (in the rest

frame of the beam), as a function of r and z, will reflect itself in the radial momentum

of the electrons pr = £ / ^~ET(r,z) and, consequently in the transverse emittance,

substituting in the emittance definition ex = J< p2. >< r2 > — < rpT >2 we obtain1

e± oc J< E2 X r2 > - < rET >2 . First we solve for the potential function V(r,z)

created by a single disk of radius a and surface charge density cr. We solve the Laplace

equation AV(r,z) — 0 with the boundary conditions

dV
-^-|2=o = -2*<r 0 < r < a (2)

dV
~Q;U=O= 0 r<a (3)

Assuming V(r, z) = f(r)g(z) and after some simple manipulations, the Laplace equa-

tion reads,
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where a is a constant. We then write, g(z) = e~a'z' and f(r) = J0(ar); hence,



V(r,z) = f°° dxJ0{x-)A{x)e-x^ (5)
Jo a

where we have defined a = | . Using the Bessel integral

/•<*> r 10 < T- < 1
/ dxJQ{x-)Jy{x) = { ~ " " (6)

and the boundary conditions, we obtain A(x) = 2ir(r^Ji(x) if er — constant; conse-

quently, the potential functions is

V(r,z) = 2-Koa f°° dxUx-)^^-e-'^ (7)
Jo ax

On the other hand, if <r{r/a) — <ro(l — (r/a)2), then A(x) = 87r<ro^J2(x) and the

potential function is

V(r,z) = 87ro-a / dxJ0{z-)^^-e-'^. (8)
Jo a x2

Adding the contribution of all the disks we can calculate the electric field E(T, Z) ~

-VVr(r,0J at any point (r,z). Care must be taken with the position of the disk and

the absolute value in the exponential. We also add the contribution of the image

charge due to the metallic surface of the cathode. Next, we generalize the result to

an arbitrary longitudinal distribution of surface charge density <r(z). Our working

expression for the electric field are,

Er(r,z)= 2fjo° {

+ £ dz'a(z')e^*-*') - tf dz'<r(z')e-^z+*'+*>)\ (9)

Ez(r,z)= £ J ~ dxJo(x
r-)BmJm('){fo dz'<r{z')e-ll'-'')

- / / «feV(z')e^-*'> - ft <fe'<r(2')e-f<*+*'+*»> J (10)

where r is the radial coordinate, z is the relative coordinate respect to the back of the

pulse and Zf, is its actual position respect to the cathode; we have also defined



Jx( i ) for <r = (T0

(11)

Figs. 2 and 3 show the radial and longitudinal electric field for an electron beam

with rectangular transverse and inverted parabolic longitudinal distributions. We

observe that ET is nearly constant as a function of z and essentially linear with r.

For comparison we present in Figs. 4 and 5 the self-fields for a parabolic transverse

and flat-top longitudinal distributions; they show a curvature in ET(r, z) .vs. z and

different slopes of Er(r, z) .vs. r which will result in a significant fan-like figure in

phase space and consequently, a larger emittance than in the previous case.

CONCLUSIONS

To completely cancel the aberrations introduced by space-charge field, ET must be

linear in r and independent of z. This is best obtained using transverse distributions

with sharp edges which tend to reduce the time dependence of the radial electric field

and therefore, the emittance growth. Furthermore, to compensate for the decrease

of the space charge at both ends of the pulse, an inverted parabolic longitudinal

distribution will tend to further reduce the extend of the fan in phase space.

The results of this simple analytical model of the space-charge forces have been

confirmed with extensive simulation2 (see, Table 1 ) using the code PARMELA3.

An experimental test of these ideas will be performed with the RF photocathode

gun at the Accelerator Test Facility, Brookhaven National Laboratory.
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FIG. 1. Phase space plot showing a typical fan-like shape

FIG. 2. Radial self-field for an electron beam of 3 mm radius and 6 ps length. Rectangu-

lar transverse and parabolic (inverted) longitudinal distribution, a) ET(r, z) .vs. z showing

no z dependence for r < 2mm; b) ET{r, z) .vs. r showing a constant linear dependence with

FIG. 3. Longitudinal self-field for the same electron beam of Fig 2. a) Ez(r,z) .vs. z ;

b) Ez{r,z) .vs. r

FIG. 4. Radial self-field for an electron beam of 3 mm radius and 6 ps length. Parabolic

transverse and flat-top longitudinal distribution, a) Er(r, z) .vs. z showing a z dependence;

b) ET{r,z) .vs. r showing changing slopes as we move along the beam axis.

FIG. 5. Longitudinal self-field for the same electron beam of Fig 4. a) Ez(r,z) .vs. z ;

b) Ez(r, z) .vs. r



TABLE I. Results of simulations using the code PARMELA for different initial electron

distributions.

cathode radius r [mm] 3

pulse length r [ps] 6

charge Q [nC] 1

Normalized Emittance €n[mm — tnrad]

transverse gaussian 10.8

transverse rectangular . 6.57

transverse rectangular, parabolic longitudinal 4.42
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Fig. 2b
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