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ABSTRACT

The purpose of this paper is to obtain the admittance of a monopole
antenna to a higher degree of accuracy than has heretofore been reported
in the literature. The model selected for analysis consists of a base-
driven monopole of arbitrary dimensions (length and radius) protruding
perpendicularly from an infinite ground plane, The transmission line
providing the excitation is a coaxial cable with outer sheath truncated at

ground level,

The problem is solved by obtaining the admittance of the monopole
of finite length for TEM excitation alone from an integral equation for the
current that has a solution, The requisite information needed to modify
this admittance to incorporate the localized cable-monopole junction or
feedpoint effect is obtained from the solution of two ancillary problems,
One of these problems consists of deriving an expression for the apparent
admittance of an infinite monopole considering the TEM and higher order
modes of type TMon (n=1, 2, ...) set up in the coaxial cable by the
sheath discontinuity, In essence, this involves solving an integral equa-
tion for a function equal to the integral of the electric field across the
feedpoint gap. The other supplementary problem requires finding the
admittance of an infinite monopole for TEM excitation alone., This is
achieved by suitably modifying the integral equation for determining the

admittance (for TEM excitation) of the finite structure.



Extensive numerical results in tabular and graphical form are
provided in the paper, TMOn modes in the coaxial cable to n = 400 are

included in the admittance data.



Introduction

The tubular monopole considered in this paper consists of a protru-
sion of the inner conductor of a coaxial cable, The sheath is terminated
in an infinite flange which serves as the ground plane, There is no dis-
continuity in radii of the inner conductor of the coaxial cable and the mono-
pole at any elevation. The composite model is assumed to be perfectly
conducting, The truncation of the cable sheath sets up evanescent modes
of the TMon type (n =1, 2, ...) in the line which couple to the monopole
at its base. In the admittance data reported in the form of curves, the

TMOo = TEM model plus 400 higher order modes are included.
To solve the problem the following steps are taken:

1. The apparent admittance Yaoo of an infinitely long mono-
pole is determined, This involves principally solving
by numerical methods an integral equation for a smooth
varying function equal to the integral of the electric
field from inner conductor of the coaxial cable to the

sheath at ground-plane level.

2, The approximate admittance Y of the monopole of

TEM
finite length is obtained by solving numerically an inte-
gral equation for the distribution of current along the

radiator, assuming that the monopole is driven only by



the TEM mode in the coaxial line, The current has
no logarithmic singularity at the point of excitation,
hence the input admittance is finite and can be

obtained to the desired precision,

3. The admittance YTEMoo of an infinite monopole for
TEM mode excitation is obtained by appropriate manip-
ulation of the integral equation used for determining
YTEM for the finite structure. The final expression

is not an integral equation, but some of the integrals

that occur are conveniently evaluated using a computer,

4, Having determined Yaw, YTEM’ and YTEMOO as
described briefly above, the admittance of the mono-
pole of finite length may be written Y = YTEM + Yaoo
" Y TEM
The writers are of the opinion that the analysis presented here is on

a solid footing, even though infinite antenna theory is employed to evalu-

ate monopole-cable junction effects because these effects are confined to

a small region near the point of excitation (see Appendix A)., But implicit

in the derivation is the fact that the length of the antenna must be consider-

ably greater than the inner radius of the sheath of the coaxial cable., In

certain ranges of the parameters (such as monopole and cable sheath radii)

correlation with other theoretical work based on purely analytical



procedures as opposed to a synthesis of analytical methods and numerical
techniques is possible., In these instances it is found that the cable-
monopole junction effect--expressed as a lumped capacitance--agree

perfectly.

Integral Equation for the Radial Electric Field
at the Feedpoint of a Tubular
Monopole of Infinite Liength
Consider a monopole consisting of an infinite extension of the inner
conductor of a coaxial cable of radius a, and outer sheath radius b, as
illustrated by Figure 1, The sheath of the transmission line terminates
in an infinite plane, The antenna is normal to the ground plane. The radi-
ator, coaxial line, and ground plane are assumed to be perfectly conduct-
ing, Let the incident current on the inner conductor of the coaxial line be

inc _ ikoZ
(1] 1" 7(z) = e .

The assumed but suppressed time dependence is of the form e_lwt.

It can be demonstrated that the integral equation for the radial component

of the electric field Er(r, 0) is

b
[2] r'dr'Er(r', 0)[Go(r, r';0) + Gc(r, r';O):l =

a
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o

2nk v’
o




where §O is the free-space characteristic impedance and ko is the free-
space wave number. Go(r, r';z) and Gc(r, r';z) are the Green's functions
in free space and in the coaxial line, respectively. Expressions for these
Green's functions can be written down only in terms of their Fourier
transforms (Wu 1962). As z — -,
-ik =z
- o}
i e

1
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(3] G (r, r';z)

With [2] and [3], the apparent terminal input admittance Yaco of the infinite
monopole can be expressed in terms of the integration of Er(r', 0) across

the gap at the driving point z = 0, It is

-1

. b
(4] y = 12" .4 dr'E (r', 0) .
aw b r

£ In— a
[e) a

A more detailed derivation appears in the above mentioned Reference.

In order to solve for Er(r, 0) in [2] numerically, the unknown radial
electric field appearing in the integrand must be a smooth varying function.
Thus, any singularity involved in the expression for Er(r, 0) must be first
subtracted out from the integrand before any approximations are attempted
(Chang, 1967). In the present case, the singularity in Er(r, 0) actually
comes from the edge condition at r = b. However, no detailed knowledge

of the singularity can be obtained without carrying out an involved



investigation, Evidently, in order to obtain Yaw from [4], only the inte-

gration of Er(r, 0) across the gap at z = 0 is needed. Define

r
(5] f(r) = f E (r,0)dr ,

a

so that Yaoo is expressed in terms of f(r) explicitly, Moreover, because
the singularity of Er(r, 0) near any edge behaves at most like (r - b)—1/3,

f(r) is indeed a smooth function over the entire range a < r < b, If use is

made of the definition for f(r), [2] may be integrated by parts to yield

bﬂb%?buybﬁni-Gc&;bmﬂ

b d
- L drtf(r?) aF I"[GO(I', r';0) + Gc(r; I";O)]

ig
o

(61 " %7k r °
O

Introducing the definitions

(o) (c)

(7] K(r,r") =K (r,r") +K “(r,r") ,

and

d (p) n-4t 4 .
[8] a—r‘K (r;r ) r' dr' r Gp(r: r :0) »



(where p stands for either the superscript o or ¢), the substitution of [7]
into [6] and integration with respect to r results in the new integral
equation
B
go R
(9 f(RVYK(R, RYR'JR! = — {n &+ - {(B)M(R)
A 2m A ’

where R = kor, R = kor', A = koa, and B = kob. Expressions for K(R, R')

and M(R) can be obtained in terms of their Fourier transforms as

-1
K(O)(R,Rl)= —i—f dA[H(l)(§A)] H(l)(§R>)
C

O o

&) (1)
[0} [H (§A)_(§R)) - J_(EAVH <§R<)] ,

o]

kR, R - % f aA[p] 7}
C

' -

(1) (1)
LHO (€B)J (£R.) - J (EB)H (§R>)J

(1) ]
. (§R<)d ,

[, (1)
(11] H(§A)T (ERY) - J_((A)H

=9




M(o)(R)=—§’f d)\[fH(l)(«fA)] (1)(§B)
C :

(12] [J emrMer) - BV ) («fR)]

. -1
M \(R) - “2'177‘J d)\[sz(vf)}
C

(13) [J (emmuer) - 5 Em (fR)] ,

and

(1) (1)

D(A) = J (§A)H (¢B) - (EA)T _(€B) ;

(c)

[14] M®R) = MO ®) + M (R) ,

where R> = 2?‘;(1{, RY) and £ = Vl - )\2. The contour c and the chosen

<
branch cuts at A = 1 are indicated in Figure 2. Notice that both K(O)

(R, R")
and K(c)(r, R') have logarithmic singularities at R = R!', These are integra-
ble singularities, Also, the integrands in [11] and [13] have no branch cuts
at A = £1. In other words, they are single-valued everywhere in the

A-plane, With K(R, R') and M(R) defined as above, [9] is then the integral

equation to be solved.,

10



Numerical Solution

To solve the integral equation [9] numerically, let the integral on

the left-hand side be divided into N intervals, so that each interval has a

B-A
2N

length of 2A where A = As mentioned earlier, f(R) is indeed a
smooth function, Therefore, a simple step-function approximation of f(R)
should be satisfactory, although a more sophisticated method like a higher-
order approximate product integration (Chang 1967) or a piecewise

linear or parabolic zoning technique (Taylor, Aronson 1967; Harrington

1967) is possible, With this approximation [9] is reduced to:

N A+2nA
Y f(A+2nA - ) f K(R, R"R'dR!
n=1 A+2(n-1)A
[15] o B £(B)M(R)
o A :

If [15] is then matched on both sides at the sample points Rn = A+ (2n - DA

n=1, 2, ... N and RN+1 = B, (N+ 1) x (N + 1) matrix equations are

obtained, These are

N+1 Co
[16] é am,nfn T gm :

where

11



fn = f(Rn)
R
= ln __m_
Em A
o N (O RS
m, n my;n m,n
and
X2n (p)
KP(®_,R)R'R'; n<N
[17] a/(p) = Xon-2 .
m, n

M(p)(R); n=N+1

Xn =nA;n=1, 2, ..., 2N and p stand for the superscript (o) or (c). Now,

since K(Rm, R') has only an integrable singularity, @ is finite for all m

and n, Thus, an inversion of [16] will then yield the solution of f(R) at these

sample points, The apparent admittance Yaoo can then be obtained by direct

substitution of f(B) into [4].

To simplify the evaluation of the matrix element @ first define

the moment functions BI({p)L and u(p) as

K, L

’

12



X
(0 _ K (1) gt
Bk~ T [C dA[fH (fA)] (€X)

[18] [J (£X )H(l)(§A) m(fx )J (fA)]

X

g <K [ [eo]” [ a By (¢x ) - g («fB)H(l)('fXK)]

1ol [ (1)(§A)J €x,) -7 (fA)H(l)(fXL)],

X
o - E f dA[fH(l)(fA] rMeex )
? c

[20] [ nOema ex) - 3 emmViex )]

X
“LC,)K - _45]; dA[éD)] |1 [ m(fB)J (€x) - 7 (EB)H(I)(fXL)]

(1), (1)
[21] [HO (fA)Jl(s‘XK) - Jo(fA)Hl (§X.K)] .

Then, with some manipulations, it is not difficult to show that for m <N

13



g® - P m<nandn< N

2m-1, 2n _ P2m-1, 2n-2 °
(p) (p) (p) (p)
- + _ ‘
Hzm—l, 2n—1 Mzm_l, zn_z Bzm-l, 2n Bzm_l’ 2n-1 '
= <
[22] a(p) = m=nand n <N
m, n
(p) (p)
- . S <
Mom-1,2n ~ M2m-1,2n-2 °’ m >nand n <N
P . Cone1

2m-1, 2N °

also, form = N+ 1, all 2m - 1 in the subscripts should be replaced by

2N,

Evaluation of the Moment Functions

. (o) (o) .
A, To evaluate the moment functions BL, K’ “L, K numerically,

first observe that, as A = «, the integrands of

B(O)
LKl o
~ K -AL-k]|A
= ————2- e ,
4

(23]
(o)

L, K
i. e., both integrands decay exponentially when L # K, and at least as
fast as 1/)\2, when L = K. Indeed, the integration path c on the real axis

is the fastest converging path in the A-plane. Therefore, no deformation



i8
of the contour is needed, Near the branch points (A = £1 + & e ), the

behaviors of the two integrands are quite different. As é - 0, the inte-

(o) (0)

grands of BL K and i g may be written
-1
. X .
[24] integrand of BS)K F Z%[(ln —%) 5 ele ¢n 8] ,
-1
: (o) ~ _i_< ie)
[25] integrand of “LK T dm de .

Therefore, the contribution from the contour integration around the

(o) (o)

L, K’ L, K" Neverthe-

branch points is zero for S but equals to -1/2 for u

less, since both [24] and [25] are independent of X_,, the contribution

around the branch points, if any, is irrelevant to the evaluation of oz(o)

L]

for n <N + 1, Moreover, in order to improve the accuracy and to speed
up the computation, it is helpful to subtract out any leading terms which
have the behaviors of [24] and [25] near the branch point, and still not

(o)

change the value of a for n <N + 1, Therefore, one rewrites [18]

as

15



A
@ _ 2K : W, 217 ()
BL,K= - A dx[fHo (§A)] H1 (fXK)

(1)

o]

(1)

(1 €xpaen -5 ennMex )]

2
ql'ﬁ

+ dx[-fH(l)

-1
(1)
o ()\A)] H W OX)

(1)

o

(1)

[JO(AXL)H (MA) - J_(A)H (AXL)]

© -1
i2 2
+ = ) d/\[ 14+ X KO(AA)] KI(AXK)

-
[26] (AKX K (A) - IO()\A)KO()\XL)] ,

where )\1 is a convenient number such that 0 < Kl <1, but not too close

to either 0 or 1, If a term

A
2 -1 -1
f E{[!ln—}-\-}—§+u-yl] +[£néE +u] },
2 2
o
where 0 < AZ < )\1 <1, A2A <<'1, and v is the Euler's constant (v = 0,5772)

is added and subtracted from [26], the convergence of the integration near

the branch point A = 1 will be improved
16



(o) _
BL,-K B

[27]

M
Xk 1) (1)
- [fH (s‘A)] (§X )

(o]

(1)

[J (ex HNER) - 3 (fA)H(l)(fXL)]

+ [fH(l)()\A)] (1)()\X )

A
2

(1) - (1)
[JO()\XL)HO (AA) - J (AAH ()\XL)]

A
3
-1
i2 ‘} 2
+ = [ dx[ 1+ A KO(AA):] KI(AXK)

2

[KO(/\A)IO()\XL) - IO(AA)KO()\XL):I +C 0 XX

17



n [27], AN, >>1, (A

3 1 XK) is a correction term that arises by

3’

integrating from )\3 to w, Its value is given in Appendix B, Equation [27]
is then in final form for computation, As mentioned earlier, the second

bracket in [27] is independent of X, and therefore contributes only to

a(O)
m, N+1°

(o)

Similarly, the expression for “L K can be obtained as

A
x 1
ulo - K [fH(l)(fA)] ‘1’(£x D)

-1
(1) (1)
+ [fH ()\A):] Ho ()\XL)

[ (1)()\A)J (X ) - (AA)H(I)()\XK)]

A
3

-1
i2 ‘/ 2
- = d)\[ 1+ X KO(AA)] KO(AXL)

Ay

[Ko(/\A)I LX)+ IO()\A)KI()\XK)]

(28] + Cz()\3, X XK) + {functlons independent of XK} .

L,

18



The value of CZ()\3, XL’ XK) is given in Appendix B,

(c) (c)
L. K and “L,K can be

done directly from [19] and {21]. This is because the contour integration

B. Evaluation of the moment functions S

enclosing the lower half-plane contains only simple poles, which corre-
spond to all TMon—modes of the coaxial line. At A = %1, instead of hav-
ing a pair of branch points, the integrands in [19] and [21] have only two
simple poles which correspond exactly to the fundamental TEM-mode
of the line, Thus, if the roots of the equation D(A) = 0 are )\p and

gp = Vl - )\p, then the use of the residue theorem yields direct results
(c) (c)

L, K PH g

large zeros of D(A) (high-order modes) can readily be obtained from the

for both B in terms of these poles., Furthermore, the

asymptotic expansion as

2
P . Pr
[29] fp = B -ﬂA or )\p = -1[<B - A> - 1] .

Accordingly,

19



-1

1 0x N

(@ _ 1i[,_ B L » d
BL-K"'z[mA] In 5= +3 X E_ [fdADm]_
? p_]_ : )\—Ap

[Yo(pr)Jl(prK) - Jo(pr)Yl(prK)]

[Fol6 2036 %)) - T EMY (6 X, ]

. XK 1/2 x 1 XK - A XL - A
(30] + -—IZ—(B - A) E —5 cos = — sin
p-N P

97 XL A B-A

and
-1 N
(c) _ 1 B L = _g_
“L,K"E[’Znﬁ] 7 *3% Z[fde()‘)]

[Yo(6,BII (€ X 1) - TolEBIY (€ X )]
] y
Yo (6,7, ¢ X0 T &R (€ X))

. i \M2 o

[31] + -LZ(B S L 1
27 X, p

p=N

where N is a large integer, such that §NA >>1. Equations [30] and [31]

are then the computation forms. Again, the first term in [30] contributes

(c)

only to am, N+1°
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Integral Equation for the Distribution of Current
Along a Tubular Monopole of Finite Length
for TEM-Mode Excitation
In a recently published paper (Chang 1968) an integral equation for
the current distribution along a perfectly conducting tubular monopole
driven at its base by a coaxial transmission line is derived, which

includes a term for the feedpoint correction so that no singularity exists

in the current. The equation is

h
fo It(z')[Ka(z -z +Ka(z + z')}dz’

i4 p] 7!
=—-—1{C cos k z+ V sink z+V[.Qn——]
L o o a

(o]

[32] [f(z) - £(0) cos koz]} : z < h

where ka(z) and f(z) are defined by [9] and [18] of the above-mentioned
reference. Equation [32] has been solved by inversion of a matrix
obtained by assuming that the current is a continuous piecewise linear
function. Evidently, for unit driving voltage V, the input admittance

Y is simply It(O). This important quantity has been tabulated for a

TEM

range of the parameters h/A, a/A, and b/a.™

*E, A, Aronson and C, W, Harrison, Jr., '"The Distribution of
Current Along a Base-Driven Tubular Monopole of Arbitrary Dimensions
Oriented Perpendicular to a Highly Conducting Ground Screen, " Sandia
Laboratories Technical Report SC-R-68-1706, April 1968 (unpublished).
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The Admittance of an Infinite Monopole
for TEM-Mode Excitation

As h -, the Fourier transform of It(z) can be solved readily by

the convolution theorem, Thus,

-1 -1
(33] Y rEMeo - -}[ﬂn%] / dx«f'z{ [ m(Aé‘)] Hf)l)(B@} .
o c ‘

A derivation similar to that leading to [27] will then yield

M

. -1 -1
pO—— 35—[!“1 —f—} dxf‘z{ [ (”(Aa} él)(Bf)}
o [0}

5
1-)2
+ dNAE) { [ (1)(A)\)] (1)(B)\)}
Ay
N .
+ d <AJ1 + )\2> {[K ()\A)] K (AB) - 1} +C.(\)
)\2
A

. Ar
(34] + (1 - 1 5 | 4n -AE)-\-"'U + In 1-%(v+£n—2—2)
V1+)\



v

An expression for C3(7\3) is given in Appendix B.

from (32}, and Y ., from

Having obtained Yaoo from [4], Y

TEM TEM

[34], one is in a position to write down an expression for the admittance
Y of a tubular monopole of finite length driven at its base by a coaxial

cable., This expression is

= + -
(35] Y YTEM Yaoo YTEM°° .

It is apparent to the reader that the admittances comprising [35]
are obtained from a synthesis of analytical methods and numerical tech-
niques (see Appen.dbi A). As a check, it can be shown that whenever
(b - a)/a<<1 and (b - a) <<\ that (Chang, Wu 1968)

4koa
i—— In

4

(0]

SRR

[36] Yoo " YTEMe
(ln

been compared with those obtained from [36] when the above inequalities

Al

= 0,241 53). Numerical results based on the present theory have
are satisfied, and perfect agreement obtains (Chang 1968).

Numerical Results

In Table I the function f(r) given by [9] is tabulated against (r - a)/

(b-a), a<r<hb, for b/a =2 and a/A = 0,159 where A now represents the

free-space wavelength, The data indicate that f(r) varies smoothly with

although Er(r, 0) is singular at r = b.

r,

23



In Table II, Yaoo, Y and (Yaw -Y Moo) are presented in

TEM»’ THE
tabular form for selected values of a/A and b/a. From this table it is

clear that the real part of (Yaoo -Y oo) is consistently much smaller

TEM
than the imaginary part, Thus the feedpoint correction is predominantly
susceptive in character. The rule of thumb is that Y = YTEM°° (i.e.,
no correction is needed for the coupling between the transmission line
and the monopole) provided a/x <0,01 and b/a <10, The writers are of
the opinion that the real part of (Yaoc - YTEMoo) is due to direct radiation
from the open end of the coaxial line., The larger (b - a) the greater the

conductance correction,

Figures 3-5 give the corrected driving point admittance Y = G - iB
against h/\ for the same values of a/\ and b/a used in Table II. An
examination of these figures shows that the input susceptance of a mono-

pole of finite length is influenced by the ratio b/a.

In Figures 6-8 the normalized magnitude of the modal current dis-
tribution along an infinite monopole is given for three values of koa and
selected values of b/a, For example, from Figure 8, when b/a = 1,25
and koz = 0,8, lIt(z)I = 0.002|IO2|. Here IIt(Z)I is the TM02 current at

the specified distance from the driving point. The feedpoint current for

this mode has the value IIO2 . Evidently, the higher the mode the more
rapid the attenuation of current along the antenna referred to the input
value (see Appendix A). Thus, the data presented in these figures justify

the use of infinite antenna theory to obtain the feedpoint correction for a

finite monopole, 24



Conclusions

In this paper a procedure has been presented for obtaining the
admittance of a tubular monopole antenna for the ranges of dimensions
currently in use. Heretofore the inequalities (b - a)/a << 1 and
(b - a) << A had to be imposed. In the present theory the restriction
(b - a)/a << 1 is not introduced in the solution of the problem, Further-
more, it is shown in Appendix A and accompanying curves that the
restriction (b - a) << A (i.e., (b - a) < A\/100) can be relaxed to (b - a)
< A/10 and the feedpoint correction still be based on infinite antenna
theory. This condition precludes the monopole from being driven signi-
ficantly by propagating TMon modes in the coaxial line, As a practical
matter antenna designers probably would not want to construct an

antenna system violating the condition (b - a) < A/10,
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Variation of f(r) as a function of (r - a)/(b - a);

TABLE I

a/x = 0.01590, b/a = 2,00

(r - a)/(b - a)

f(r)

0.000

0,083

0,250

0,417

0,583

0,750

0,917

1.000

0.00+ 10,00
10,61 +i 1,64
27,52 +1 4,25
39,49+16.10
48,16 +1 7,44
54.61 +1i 8,46
59,39+ 19,23

62,19+ 1 9,70
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TABLE 1I

Correction to the TEM-mode excitation
for an infinitely long antenna

Yo e Y rEMeo Yoo YTEMo
al\ b/a (millimhos) (millimhos) (millimhos)
1.71 6,102 - i4,023 6,103 -i4.077 -0,001 +1i 0,054
0.00926 (2,28 6,101 -i3,670 6,102 -1i3,691 -0.001 +1i 0,021
3.43 6,097 -1i3.237 6,099 -1i3.241 -0,002 +1i 0,004
1.33 17,354-i6,056 7.355-1i6,283 -0.001+1i0,227
0.0159 2.00 7,349-1i4,898 7.352-i5.068 -0,003+1i0.,170
4,72 7,275-1i3,231 7.314-1i3.431 -0,039+1i 0,200
1.20 12.138-113.430 12.142-i14.297 -0.004 +i 0.867
0.0500 2,00 11,999- i7.819 12.085-i 8.737 -0.086+1i 0.918
3.00 11.576- 15,036 11.905-i 6.063 -0.329+1 1.027
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APPENDIX A

Following a study of this paper many readers will be of the opinion
that proof must be exhibited that {35] is valid. This involves demonstra-
ting that the modal currents TMOn (n=1,2, ...) in the vicinity of the
feedpoint of an infinite monopole are evanescent; these currents must
attenuate rapidly with increasing koz especially when koa is small, If
this turns out to be true, then the feedpoint correction for the monopole
of finite length may be based on infinite cylindrical antenna theory. The
need for a driving point correction arises mainly because of susceptive

coupling of the coaxial line to the monopole at their junction.

The distribution of the electric field across the gap of an infinite

monopole is assumed to be

(1)

)
e r) - J G _r)HC (kna)] ,

(A-1] E_(r,0) - Eno[Jo(kna)Hl

where Eno is an arbitrary constant and kn is the nth zero of the following

modal equation:

(1)

o

(1)

{A-2] J (k a)H
on (0}

(k b) -J (k b)H "(k a) =0 ,
n o' n n

Observe that [A;l] gives the Er field in the coaxial cable associated with

the TM mode,
on
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The electric field directed tangential to the surface of the antenna

is given by

o0
E (r,2z) = 10 r[— 1 / (z") <= r'G(r, r';z, z'") dz!
r dr a
0 r'=a
b
[A-3] + ZNf ieowEr(r', 0)G(r, r';z, 0)r'dr!' 0<z<x,

where Itn is the current induced on the antenna surface due to the excita-~
tion of a TMon—mode and G is the Green's function defined elsewhere
(Chang 1968), Imposing the boundary condition Ez(a, z) = 0, the integral

equation for It(z) is obtained. Its solution is readily effected in terms of

its Fourier transform, i.e,,

i2k o0 -1 .
L, = ° ] [(ki ) 1) cays (fa)] N e PZan
o]

[A-4] 0< z <>

Here

b
[A-5] N(A) = ianO(af) f r'Er(r', O)H

a

(1 )(r'f)dr' .

In [A-4] and [A-5], &= kg - 32 and the branch cuts associated with
A = ¥k  are so chosen that 0 < arg £ < 7. Substitution of [A-1] into

[A-5] yields



2E -1 -1
_ on ,2(,2 2 i (1)
N(A) = - kn £ <§ - kn> Jo(af){ [Jo(knb)] Jo(kna.)H0 (¢b)

[A-6] - Hf)(ga)} :

In deriving [A-5], the recurrence formula and the Wronskian of the

Bessel functions, together with [A-2], have been used. Consequently,

the current distribution may now be expressed as

idk E * -1 -1
_ o on 2 2\ 2 _ (1)
I, (2) = <—-———-—€ - > [ [(ko kn> A] 1 [Jo(knb)Ho (fa)]

T & EDE) e My . 0<z<w,
o n (0] —_ —

Notice that there are no poles at ¢ = ikn. For z # 0, deformation of the

integration path from the real axis in the A-plane onto the upper branch

cut is possible:

[A-T7] <zX<
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In [A-7],

8k E _1
I =~—°—95[J(kb)} J (k_a),
on gokn o n o n

and

-1
[J2<ax> +Y2<ax)] [Y (ax)J (bx) - Y (bx)J <a.x>] :
(0] (0] O O O (@]

Q(x)

Equation [A-7] now can be evaluated numerically. The integration from
large A to » may be carried out analytically by using the asymptotic
expression of Q(x). For small z (i.e., koz ~ 1), the contribution to It(z)
comes mainly from A ~ kn in the second integration. Since the second
integrand also decays exponentially for large A\, it is not difficult to under-
stand why the current distribution resulting from the higher order mode
excitation decays faster as it moves away from the excitation gap. On

the other hand, for TEM-mode excitation (krl = 0), the contribution to It(z)
comes mainly from A ~ ko in the first integration which has a‘n exponential

ik z
term behaving like e , as koz >>1.

Based on [A-7], the normalized current distribution It(z)/Ion which
is driven by the first three TMon-mode excitations, is plotted against the
distance koz in Figures 6 through 8 for various antenna radii and gap
ratios. For example from Figure 6 if koh >nl5 (h >A/10) and b/a = 3,

reflection of the current associated with the TM01 to TMO3 modes would
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be negligibly small, thus verifying the applicability of [35] in the practi-
cal range of coaxial cable characteristic impedances, i.e., Zcz 90 ohms.
For thicker monopoles, end reflections increase for the same gap ratios
(Figures 7 and 8), Even then when koa <1 and kob <1, the use of the
feedpoint correction based on infinite antenna theory is justified. But
when k a 2> 1, the gap ratio has to be very small (i.e., [(b - a)/a << 1]).
In this case the feedpoint correction can be obtained analytically (Chang,

Wu 1968).
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APPENDIX B

Define the exponential integral Es(x) as

e}
(B-1] ES(X) = / e—xt t5dt ;
x

where s is an integer. Then all ES(X) for s > 1 can be expressed in terms

of El(X) which is a tabulated function. Thus, if the large argument expan-

sion is made for the integrand in [26], then

o]

-1
2 2
Cl(A,XL, XK) = -n—-f dx[ 1+ A KO()\A)] Kl(XXK)
A

[KOO\A)IO(XXL) - IO()\A)KO()\XL)]

T (4X

-1/2
LX) [R+E2(xR+) - R_E, (R )

R)
3 1 1 +_2
+ |+ — - ——0—+—=—]R.E_(AR))
<8XK 4A SXL 2 + 3 +
R
3 1 -1,2
[B-2] - <————— + — +—-—>R E_(AR )] s
8XK 8XL 2 -3 -



where R+ = (XL + XK - 2A)X and R_= XL - XK . In the above expression,

notice that AR_ ~1 even if 7\3A >>1, Similarly

C, (X X)) 7 (4XLXK)'1/2 R E,(AR) +R _E,(OR )
* 8?(K * 412 B 8)1§L +; R-er3(7‘R+)
[B-3] + 2; - é-)-élz - §-X3E R?ES(AR_) ;
(B-4) C (0B A) ¥ (%)1/2[512(73_) 1% - LR -1
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