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ABSTRACT 

The purpose of this paper is to  obtain the admittance of a monopole 

antenna to  a higher degree of accuracy than has heretofore been reported 

in the literature. The model selected for analysis consists of a base- 

driven monopole of arbi t rary dimensions (length and radius) protruding 

perpendicularly from an infinite ground plane. 

providing the excitation is a coaxial cable with outer sheath truncated at 

ground level. 

The transmission line 

The problem is solved by obtaining the admittance of the monopole 

of finite length for TEM excitation alone from an  integral equation for the 

current that has a solution. 

this admittance to  incorporate the localized cable-monopole junction or 

feedpoint effect is obtained from the solution of two ancillary problems. 

One of these problems consists of deriving an expression for the apparent 

admittance of an  infinite monopole considering the TEM and higher order  

modes of type TM on 

sheath discontinuity. In essence, this involves solving an integral equa- 

tion for  a function equal to the integral of the electric field across  the 

feedpoint gap. The other supplementary problem requires finding the 

admittance of an infinite monopole for TEM excitation alone. This is 

achieved by suitably modifying the integral equation for determining the 

admittance (for TEM excitation) of the finite structure. 

The requisite information needed to modify 

(n = 1, 2, . . .) set up in the coaxial cable by the 

Grs 
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Extensive numerical results in tabular and graphical form a r e  

provided in the paper. T M  

included in the admittance data. 

modes in the coaxial cable to n = 400 a r e  on 
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Introduction 

The tubular monopole considered in this paper consists of a protru- 

sion of the inner conductor of a coaxial cable. 

in an infinite flange which serves  as the ground plane. 

continuity in radii of the inner conductor of the coaxial cable and the mono- 

The sheath is terminated 

There is no dis- 

pole a t  any elevation. 

conducting. The truncation of the cable sheath se t s  up evanescent modes 

of the TM type (n = 1, 2, . . .) in the line which couple to the monopole 

at its base. In the admittance data reported in the form of curves, the 

TM 

The composite model is assumed to be perfectly 

on 

= TEM model plus 400 higher order modes are included. 

To solve the problem the following steps a r e  taken: 

1. The apparent admittance Y of an infinitely long mono- 

00 

a m  

pole is determined. This involves principally solving 

by numerical methods an integral equation for a smooth 

varying function equal to the integral of the electric 

field from inner conductor of the coaxial cable to the 

sheath at ground-plane level. 

of the monopole of TEM 2. The approximate admittance Y 

finite length is obtained by solving numerically an inte- 

gral equation for the distribution of current along the 

radiator, assuming that the monopole is driven only by 
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the TEM mode in the coaxial line. The current has 

no logarithmic singularity at the point of excitation, 

hence the input admittance is finite and can be 

obtained to the desired precision. 

of an infinite monopole for TEMm 3. The admittance Y 

TEM mode excitation is obtained by appropriate manip- 

ulation of the integral equation used for determining 

for the finite structure. The final expression 

is not an integral equation, but some of the integrals 

that occur a r e  conveniently evaluated using a computer. 

Y~~~ 

a s  
am, Y ~ ~ ~ ,  a n d Y ~ ~ ~ m  

4. Having determined Y 

described briefly above, the admittance of the mono- 

TEM + a m  
pole of finite length may be written Y = Y 

The w r i t e r s  are of the opinion that the analysis presented here is on 

a solid footing, even though infinite antenna theory is employed to evalu- 

ate monopole-cable junction effects because these effects are confined to 

a small  region near the point of excitation (see Appendix A). 

in the derivation is the fact that the length of the antenna must be consider- 

But implicit 

ably greater  than the inner radius of the sheath of the coaxial cable. In 

certain ranges of the parameters (such as monopole and cable sheath radii) 

correlation with other theoretical work based on purely analytical 
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procedures as opposed to  a synthesis of analytical methods and numerical 

techniques is possible. In these instances it is found that the cable- 

monopole junction effect--expressed as a lumped capacitance--agree 

perfectly. 

\ 

Integral Equation for the Radial Electric Field 
at the Feedpoint of a Tubular 

Monopole of Infinite Length 

Consider a monopole consisting of an infinite extension of the inner 

conductor of a coaxial cable of radius a, and outer sheath radius b, as 

illustrated by Figure 1. 

in an infinite plane. 

ator, coaxial line, and ground plane a r e  assumed to  be perfectly conduct- 

ing. Let the incident current on the inner conductor of the coaxial line be 

The sheath of the transmission line terminates 

The antenna is normal to  the ground plane. The radi- 

ik z Iinc 0 
(z) = e 

- io t  The assumed but suppressed t ime dependence is of the form e 

It can be demonstrated that the integral equation for the radial  component 

of the electric field E (r, 0) is 

. 

r 
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where C' is the free-space characterist ic impedance and k is the free- 

space wave number. G (r, r';z) and G (r, r';z) are the Green's functions 

in f ree  space and in the coaxial line, respectively. 

Green's functions can be written down only in t e r m s  of their  Fourier  

t ransforms (Wu 1962) .  A s  z +  - ~ n ,  

0 0 

0 C 

Expressions for these 

With [2] and [31, the apparent terminal input admittance Y of the infinite 

monopole can be expressed in t e rms  of the integration of E (r', 0) across  

the gap at the driving point z = 0. 

a m  

r 

It is 

-1 

Y =  a m  i2n b + 2 [lb drlEr ( r l ,  0 1  . 
E Bn- o a  

A more  detailed derivation appears in the above mentioned Reference. 

In o rde r  to solve for  E (r, 0) in [2] numerically, the unknown radial  r 

electric field appearing in the integrand must be a smooth varying function. 

Thus, any singularity involved in the expression for  Er ( r ,  0) must be first 

subtracted out from the integrand before any approximations a r e  attempted 

(Chang, 1967).  r 
comes from the edge condition at r = b. However, no detailed knowledge 

of the singularity can be obtained without carrying out an involved 

In the present case, the singularity in E (r, 0) actually 
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investigation. 

gration of E (r, 0) across  the gap at z = 0 is needed. 

Evidently, in order to  obtain Y from 141, only the inte- 
am 

Define r 

so that Y is expressed in t e rms  of f ( r )  explicitly. Moreover, because 
a m  

the singularity of E (r, 0) near any edge behaves at most like (r - b) -113  , 
r 

f ( r )  is indeed a smooth function over the entire range a < r < b. If use is 

made of the definition for f ( r ) ,  I21 may be integrated by parts to yield 

- -  

bf(b)[G (r, b;O) + Gc(r, b;O) 
0 I 

Introducing the definitions 

and 

d (p) i d  -K 
d r  r1 dr' p (r,rl)= - - r l G  (r,rl;O) , 
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(where p stands for either the superscript o or  c), the substitution of [71 

into [SI and integration with respect to r results in the new integral 

equation 

[ 91 
' 0  R f(Rl)K(R, R1)RtdR1 = 5 dn - f(B)M(R) , 

where R = k r, R' = k rl, A = k a, and B = k b. Expressions for K(R, R') 

and M(R) can be obtained in t e rms  of their  Fourier transforms as 

0 0 0 0 



[133 

and 

2 where R, = 

branch cuts at A = f l  are indicated in Figure 2. Notice that both K(O)(R, R1) 

and K(')(r, R') have logarithmic singularities a t  R = R'. These a r e  integra- 

ble singularities. Also, the integrands in [ll] and [13] have no branch cuts 

at A = f l .  In other words,  they a r e  single-valued everywhere in the 

A-plane. 

equation to be solved. 

(R, R') and f = 41 - X . The contour c and the chosen rnax 
min < 

With K(R, R1) and M!R) defined as above, [9] is then the integral 
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Numerical Solution 

To solve the integral equation [9] numerically, let the integral on 

the left-hand side be divided into N intervals, so  that each interval has a 

. A s  mentioned earlier,  f(R) is indeed a length of 2 A  where A = - 
smooth function. Therefore, a simple step-function approximation of f(R) 

should be satisfactory, although a more sophisticated method like a higher- 

order  approximate product integration (Chang 1967)  o r  a piecewise 

l inear o r  parabolic zoning technique (Taylor, Aronson 1 967; Harrington 

1967) is possible. With this approximation [9 ]  is reduced to: 

B - A  
2N 

N A+2nA 

n=l (n- 1)A 
f(A + 2nA - A) K(R, R1)RfdR1 

If [151 A then matched on both sides at the sample points R 

n = l ,  2, ... N a n d R  N+l = B, (N + 1) x (N  + 1) matrix equations a r e  

obtained. These a r e  

= A + (2n - l ) A  n 

where 

11 



f = f(Rn) n 

(c) CY = C Y  ( O )  + CY 
m,n  m,n m,n 

. 

and 

ti 71 

X = nA; n = 1, 2, . . , 2N and p stand for the superscript (0) or (c). Now, n 

since K(Rm, R') has only an integrable singularity, CY is finite for all m 
m, n 

and n. Thus, an inversion of [161 wi l l  then yield the solution of f(R) at these 

sample points. 

substitution of f(B) into [4]. 

The apparent admittance Y can then be obtained by direct  
a m  

To sim2lify the evaluation of the matrix element CY first define m, n' 

and p (P) as 
K, L 

the moment functions /3 
K, L 

1 2  
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m < n a n d n <  - N 

m = n a n d n < N  - 

m > n  and n < N - 

n = N + l ,  

also, for  m = N + 1, all 2m - 1 in the subscripts should be replaced by 

2N. 

Evaluation of the Moment Functions 

A. To evaluate the moment functions /3 (0 )  (o)  numerically, L , K '  'L,K 

first observe that, as A d a ,  the integrands of 

- A /  L-K I A  -aK 
e 2 4nA 

, 

i. e., both integrands decay exponentially when L # K, and at least as 

fast as 1 / X  , when L = K. 

is the fastest converging path in the A-plane. 

2 Indeed, the integration path c on the real axis 

Therefore, no deformation 



i€l 

A s  6 -+ 0, the inte- 

of the contour is needed. 

behaviors of the two integrands a r e  quite different. 

(O) and p (O) may be written 
L, K L, K 

grands of p 

Near the branch points (A = f l  + 6 e ), the 

t241 

t2 51 integrand of p L,K 4n . 

Therefore, the contribution from the contour integration around the 

branch points is zero for /3 (O) but equals to - 1 / 2  for pL, (O) K. Neverthe- L, K’ 

less ,  since both [24] and [25] a r e  independent of X the contribution K’ 
around the branch points, i f  any, is irrelevant to  the evaluation of CY (0 )  

m,n  
for  n < N + 1. Moreover, in order  to improve the accuracy and to speed 

up the computation, it is helpful to subtract out any leading t e r m s  which 

have the behaviors of [24] and [25] near the branch point, and still not 

change the value of CY (O) for n < N  + 1. Therefore, one rewrites [18] 
m, n 

as 
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where A As a convenient number such that 0 < 

to either 0 or 1. If a te rm 

< 1, but not too close 1 1 

where 0 < A < A < 1, A A << 1, and u is the Euler's constant (u = 0.5772) 

is added and subtracted from 1261, the convergence of the integration near 

the branch point A = 1 wil l  be improved 

2 -  1 2 

1 6  



1 

B n - + u - -  AX i n  
2 2 

0 
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In [ 271 , AX3 >> 1. C (A X X ) is a correction te rm that arises by 1 3, L’ K 

[2 81 

integrating from h to 00. I ts  value is given in Appendix B. Equation 3 2 71 

is then in final form for computation. A s  mentioned earlier,  the second 

bracket in [27] is independent of X and therefore contributes only to K’ 
( 0) 
m, N+1’ CY 

Similarly, the expression for p (O) can be obtained as L, -K 



The value of C2(h3, XLj XK) is given in Appendix B. 

B. Evaluation of the moment functions and p can be 
L, K L, K 

done directly from [19] and [21]. This is because the contour integration 

enclosing the lower half-plane contains only simple poles, which corre-  

spond to all T M  -modes of the coaxial line. At  A = f l ,  instead of hav- on 

ing a pair of branch points, the integrands in [19] and [21] have only two 

simple poles which correspond exactly to  the fundamental TEM-mode 

of the line. Thus, if the roots of the equation D(X) = 0 are A and 

4 = 4 3 ,  then the use of the residue theorem yields direct resul ts  
P 

P P 
(') 
L,-K in  t e rms  of these poles. Furthermore, the for both 8") and p 

L, K 
large zeros of D(A) (high-order modes) can readily be obtained from the 

asymptotic expansion as 

Accordingly, 

1 9  



[3 01 

and 

[3 11 

XK - A 
cos Sin 

XL - A 

P B - A  B - A '  
p= N 

i 

2n 
-I- ?(B - A) 

i XK - A XL - A 
B - A '  513 

f -(B 277 2 - A)($T2 2 -$ P cos B - A  
p= N 

where N is a large integer, such that SNA >> 1. Equations [30] and [31] 

a r e  then the computation forms. Again, the first te rm in [30] contributes 

(C) only to CY m, N+1* 
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Integral Equation for  the Distribution of Current  
Along a Tubular Monopole of Finite Length 

for TEM-Mode Excitation 

In a recently published paper (Chang 1968) an integral equation for 

the current  distribution along a perfectly conducting tubular monopole 

driven at its base by a coaxial transmission line is derived, which 

includes a t e r m  for the feedpoint correction so that no singularity exists 

in the current.  The equation is 

= ' 4 " ( C c o s k  0 z + V s i n k  0 

( 0  

where k (z) and f(z) are defined by [ 9 ]  and [18] of the above-mentioned 

reference. Equation [32] has been solved by inversion of a matrix 

obtained by assuming that the current is a continuous piecewise l inear 

function. Evidently, for unit driving voltage V, the input admittance 

a 

is simply I (0). This important quantity has been tabulatedtfor a 
Y~~~ t 

* 
range of the parameters  h/h,  a b ,  and b / a .  I' 

11 *E. A, Aronson and C. W. Harrison, Jr., The Distribution of 
Current Along a Base-Driven Tubular Monopole of Arbi t rary Dimensions 
Oriented Perpendicular t o  a Highly Conducting Ground Screen, 
Laboratories Technical Report SC-R-68-1706, April 1968 (unpublished). 

11 Sandia 
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The Admittance of an Infinite Monopole 
for TEM -Mode Excitation 

A s  h-m, the Fourier transform of I ( z )  can be solved readily by 
t 

the convolution theorem. Thus , 

[3 31 

A derivation s imilar  to that leading to  [27] w i l l  then yield 

+ /*" d A ( A ~ ~ ) - l { ~ o ( A A ) l - l K  0 (AB) - 1 

h2 

22 



An expression for C ( A  ) is given in Appendix B. 3 3  

from [321, and YTEMm from 

[34], one is in a position to write down an expression for the admittance 

Y of a tubular monopole of finite length driven at its base by a coaxial 

cable. This expression is 

TEM 
Having obtained Yam from [4], Y 

+ Y  - TEM a m  Y ~ ~ ~ m *  
Y = Y  

It is apparent to the reader that the admittances comprising [35] 

are obtained from a synthesis of analytical methods and numerical tech- 

niques (see Appendix A). A s  a check, it can be shown that whenever 

(b - a)/a << 1 and (b - a) << A that (Chang, Wu 1968) 

[3 61 
4k a 
0 

0 
Qn I 

= i -  
5 Y -  

a m  Y ~ ~ ~ m  

I n  ; = 0.24153).  Numerical results based on the present theory have 

been compared with those obtained from [361 when the above inequalities 

are satisfied, and perfect agreement obtains (Chang 1968).  

( 4  

Numerical Results 

In Table I the function f(r) given by [9]  is tabulated against (r - a)/ 

(b - a), a < r < b, for b / a  = 2 and a/X = 0 . 1 5 9  where X now represents the 

free-space wavelength. The data indicate that f(r) var ies  smoothly with r, 

although E (r, 0) is singular at r = b. 

- -  

r 
2 3  



tabular form for selected values of a /h  and b/a. From this table i t  is 

clear that the rea l  part of (Y 

than the imaginary part. Thus the feedpoint correction is predominantly 

susceptive in character. The rule of thumb is that Y a m r  Y ~ ~ ~ a  (i. e., 

no correction is needed for the coupling between the transmission line 

and the monopole) provided a/A < 0.01 and b / a  < 10. The wri ters  a r e  of 

the opinion that the rea l  part  of (Y ) is due to  direct radiation 

from the open end of the coaxial line. The la rger  (b - a) the greater  the 

conductance correction. 

- ) is consistently much smaller  
a m  Y ~ ~ ~ w  

- 
aoc Y ~ ~ ~ m  

Figures 3-5  give the corrected driving point admittance Y = G - iB 

against h/h for the same values of a/A and b /a  used in Table 11. An 

examination of these figures shows that the input susceptance of a mono- 

pole of finite length is influenced by the ratio b/a.  

In Figures 6 - 8  the normalized magnitude of the modal current dis- 

tribution along an  infinite monopole is given for three values of k a and 

selected values of b/a. F o r  example, from Figure 8, when b / a  = 1.25  

0 

a n d k  z =  0.8, 11 ( z ) (  = 0.002(1 1. H e r e  IIt(z)I is the TM current at 
0 t 02 0 2  

the specified distance from the driving point. The feedpoint current for 

this mode has the value 11 Evidently, the higher the mode the more 

rapid the attenuation of current along the antenna re fer red  to  the input 

I . 02 

value (see Appendix A). Thus, the data presented in these figures justify 

the use  of infinite antenna theory to  obtain the feedpoint correction for  a 

finite monopole. 24 



Conclusions 

In this paper a procedure has been presented for obtaining the 

admittance of a tubular monopole antenna for the ranges of dimensions 

currently in  use. Heretofore the inequalities (b - a)/a << 1 and 

(b - a) << A had to  be imposed. In the present theory the restriction 

(b - a) /a  << 1 is not introduced in the solution of the problem, 

more, it is shown in Appendix A and accompanying curves that the 

restriction (b - a) << h (i. e., (b - a) < A/100) can be relaxed to (b - a) 

< All0 and the feedpoint correction still be based on infinite antenna 

theory. 

ficantly by propagating TM 

matter  antenna designers probably would not want to construct an 

antenna system violating the condition (b - a) < A/10. 

Further- 

- 

This condition precludes the monopole from being driven signi- 

modes in the coaxial line. A s  a practical on 
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TABLE I 

Varia t ion  of f(r) as a function of (r - a ) / ( b  - a); 
a/A = 0.01590, b / a  = 2.00 

0.000 0.00 + i 0.00 

0.083 10.61 + i 1.64 

0.250 27.52 + i 4.25 

0.417 39.49 + i 6.10 

0.583 48.16 + i 7.44 

0.750 54.61 + i 8.46 

0. 917 5 9 . 3 9 + i 9 . 2 3  

1.000 62.19 + i 9.70 
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TABLE I1 

C o r r e c t i o n  to the TEM-mode exci ta t ion 
for a n  infinitely long antenna 

Y -  a m  Y ~ ~ ~ m  
a m  Y ~ ~ ~ m  

Y 

a /A b/a (mil l imhos)  (mi l l imhos)  (mi l l imhos)  

1.71 6.102 - i 4.023 6.103 - i 4.077 -0.001 + i 0.054 

2 .28  6.101 - i 3.670 6.102 - i 3.691 -0.001 + i 0.021 

3.43 6.097 - i 3.237 6.099 - i 3.241 -0.002 + i 0.004 

1.33 7.354 - i 6.056 7.355 - i 6.283 -0.001 + i 0.227 

0.0159 2.00 7.349 - i 4.898 7.352 - i 5.068 -0.003 + i 0.170 

4.72 7.275 - i 3.231 7.314 - i 3.431 -0.039 + i 0.200 

1.20 12.138 - i 13.430 12.142 - i14.297 -0.004 + i 0.867 

I 
2.00 11 .999-  i 7.819 1 2 . 0 8 5 - i  8.737 -0.086 + i  0.918 

3.00 1 1 . 5 7 6 -  i 5.036 1 1 . 9 0 5 - i  6 .063  - 0 . 3 2 9 f - i  1 .027  

27 



APPENDIX A 

Following a study of this paper many readers  wi l l  be of the opinion 

This involves demonstra- that proof must be exhibited that [35] is valid. 

ting that the modal currents TM (n = 1,2, . . .) in the vicinity of the 

feedpoint of an infinite monopole a r e  evanescent; these currents must 

attenuate rapidly with increasing k z especially when k a is small. If 

this turns out to be true, then the feedpoint correction for the monopole 

of finite length may be based on infinite cylindrical antenna theory. 

need for a driving point correction a r i s e s  mainly because of susceptive 

coupling of the coaxial line to the monopole at their  junction. 

on 

0 0 

The 

The distribution of the electric field across  the gap of an infinite 

monopole is assumed to be 

where E 

modal equation: 

is an arbi t rary constant and k is the nth zero of the following no n 

[A -21 J (k a)H(')(k b) - J (k b)H (1) (k a) = 0 . 
o n  o n o n  o n 

Observe that [A-1] gives the E 

the TM mode. on 

field in the coaxial cable associated with r 

28 



The electric field directed tangential to the surface of the antenna 

is given by 

[A - 31 

where I 

tion of a TM -mode and G is the Green's function defined elsewhere 

(Chang 1968). Imposing the boundary condition E (a, z) = 0, the integral 

equation for I (z) is obtained. Its solution is readily effected in t e rms  of t 
its Fourier  transform, i. e., 

is the current induced on the antenna surface due to the excita- tn 

on 

Z 

[A - 41 

Here 

In [A-4] and [A-51, 4 = 4- 0 and the branch cuts associated with 

h = fko  a r e  so chosen that 0 - < a r g  5 - < n. Substitution of [A-11 into 

[A-5] yields 2 9  



[A - 61 

In deriving [A-51, the recurrence formula and the Wronskian of the 

Bessel functions, together with [A-2], have been used. Consequently, 

the current distribution may now be expressed as 

Notice that there  a r e  no poles at 6 = f k  

integration path from the rea l  axis in the A-plane onto the upper branch 

cut is possible: 

For z # 0, deformation of the no 

30 



In tA-71, 

and 

-1 2 
Q(x) = [J2(ax) 0 + Y 0 (ax)] [. 0 (ax)J 0 (bx) - Y 0 (bx)J 0 (ax)] . 

Equation [A-71 now can be evaluated numerically. 

large A to ~0 may be carr ied out analytically by using the asymptotic 

expression of Q(x). Fo r  small  z (i. e . ,  k z - l),  the contribution to  I (2) 
0 t 

comes mainly from A - k Since the second 

integrand also decays exponentially for large A ,  it is not difficult to under- 

stand why the current distribution resulting from the higher order  mode 

excitation decays faster as it moves away from the excitation gap. 

the other hand, for TEM-mode excitation (k = O ) ,  the contribution to I (z) 

The integration from 

in the second integration. n 

On 

n t 

comes mainly from X - k 
ikoz 

te rm behaving like e , as k z >> 1. 

in the f i r s t  integration which has an exponential 
0 

0 

Based on [A-7], the normalized current distribution I ( z ) / I  which t on 

-mode excitations, is plotted against the is driven by the first three T M  on 

distance k z in Figures  6 through 8 for various antenna radii  and gap 

ratios. Fo r  example from Figure 6 i f  k h > n / 5  (h > A/10) and b / a  = 3,  

reflection of the current associated with the TM 

0 

0 

to  TMO3 modes would 01 

31 



be negligibly small, thus verifying the applicability of [35j in the practi- 

cal range of coaxial cable characteristic impedances, i. e.,  Z N 50 ohms. 

For thicker monopoles, end reflections increase for the same gap ratios 

(Figures  7 and 8). 

feedpoint correction based on infinite antenna theory is justified. 

when k a > 1, the gap ratio has to be very small  (i. e., [(b - a) /a  << 13). 

In this case the feedpoint correction can be obtained analytically (Chang, 

Wu 1968). 

C 

Even then when k a < 1 and k b < 1, the use of the 

But 

0 0 

0 -  
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APPENDIX B 

Define the exponential integral E (x) as 
S 

-xt s 
E S (x) = e t d t ;  

w h e r e  s is an integer. 

of E (x) which is a tabulated function. 

sion is made for the integrand in [26], then 

Then all E (x) for  s > 1 can be expressed in t e r m s  

Thus, if the large argument expan- 

S 

1 

(AA)I (AX,) - I (AA)K (AX,) 
0 0 0 0 1 

R -(&+sx, 1 
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where  R+ = (XL + XK - 2A)A and R = IX, - X I. In  t h e  above expres s ion ,  - K 

not ice  tha t  AR -1 even if A A >> 1. Similarly - 3 
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