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SIMPLIFIED CALCULATIONS FOR SMALL DEFLECTIONS 
IN WALLS OF RADIO FREQUENCY CAVITIES 

Abstract 

The elastic behavior of two types of radio frequency 
cavities considered for a separated orbit cyclotron was 
analyzed to determine whether or not the magnitude and 
distribution of the deflections in the walls of the cavi­
ties caused by atmospheric loading can be predicted and 
controlled. Expressions were derived for the elastic 
curves that describe the deflections in the walls, and 
methods were devised to study the structural parameters; 
the size, shape, wall thickness, and size and spacing of 
the s.tiffeners. Computer programs were written to per­
form the numerical calculations, and these methods of 
analysis were applie<l to different design conditions. 
It was concluded that flexural rigidities can be made to 
vary as required to obtain specific deflection patterns, 
but this principle is difficult to apply to any degree 
for the conditions and purpose considered. 

1. INTRODUCTION 

Several types of radio frequency cavities have been considered for 

use in a separated orbit cyclotron. Radio frequency cavities produce the 

electric fields that accelerate ion beams in particle accelerators such as 

a separated orbit cyclotron. These cavities are vessels that are specially 

shaped to resonate at a certain radio frequency, and any dimensional devi­

ation from the optimum size and shape of the cavity changes the resonant 

frequency. The cavities or vessels are evacuated during operation, and 

dimensional changes may result from atmospheric pressure loading caused 

''by this evacuation and from heating caused by radio frequency currents. 

Maximum effic.:iancy is achieved when the cavity, by virtue of its size 

and shape, resonates with the precisely controlled frequency of the radio 

frequency input. A shift in resonant frequency resulting from a dimen­

sional deviation is a function of the distribution, magnitude, and direc­

tion of the deviation, and frequency shifts must be corrected with tuners. 
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This requires an increase in power input and results in a decrease in 

efficiency. It is theretore important tb be able co preui<.:L auu l:u1'1Ll."ul 

both the magnitude and distribution of the deflections in the walls of 

the cavities that are caused by atmospheric loading. 

Of the several types of radio frequency cavitie~ considered for a 

separated orbit cyclotron, two were studied in detail with respect to 

their elastic behavior. These two are the single-gap cavity with either 

tapered sides, as shown in Fig. 1, or parallel sides, as shown in Fig. 2, 

for the energy region above 100 Mev and the double-gap (coaxial) cavity, 

as shown in Fig. 3, for the energy region below 100 Mev. In analyzing 

their elastic behavior, the essential difference between these two eypes 

of cavities is that the single-gap cavity has side stays and the double­

gap cavity does not. The side stays of the single-gap cavity are the 

result of economic ·considerations and space requirements, whereas the 

size of the cavity and the space available in the accelerator permit the 

walls of the double-gap cavity to be designed without stays. 

ORNL Owg. 67-9058 

/ATTACHMENT 
POINT ron 
SIDE STAYS 

LOADS 

Fig. 1. Single-Gap Cavity With Flat Tapered Sides, Flat Parallel Top 
and Bottom, Flat Ends, and Side Stays for.the Energy Region Above 100 Mev. 
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ORNL Owg. 67-9059 

Fig. 2. Single-Gap Cavity With Flat Parallel Sides, Shaped Top and 
Bottom, Flat Ends, and Side Stays for the Energy Region Above 100 Mev. 

ORNL Owg. 67-9060 

Fig. 3. Double-Gap Cavity With Flat Tapered Sides, Flat Parallel 
Top and Bottom, Cylindrical Ends, and No Side Stays for the Energy Region 
Below 100 Mev. 
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The methods of mathematical analysis of the elastic behavior of the 

two types of radio frequency cavities studied were developed, and these 

are discussed in Chapter 2. Equations for the elastic curves, bending 

moments, and end slopes for both types of cavity were derived. A multi­

parameter study of plate thickness, stiffener size, and stiffener spacing 

had to be made to choose the combination desired for the cavity. This 

choice is based upon permissible deflections, moments, and stresses with­

in the plate panels of the cavity walls, and two computer programs were 

written to aid in the selection of the desired combination. One program 

was designed to compute the characteristics of the composite structure 

as a function of stiffener size and spacing and plate thickness. The 

second program was designed to study deflections, moments, and stresses 

of flat plates. 

Four numerical examples of different approaches to the application 

of these methods of mathematical analysis to the design of radio frequency 

cavities are presented in Chapter 3, and the conclusions drawn from these 

examples are given in Chapter 4. 
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2. METHODS OF MATHEMATICAL ANALYSIS 

Two types of radio frequency cavities were studied in detail with 

respect to their elastic behavior. These two types are the single-gap 

cavity with either tapered or parallel sides for the energy region above 

100 Mev and the double-gap (coaxial) cavity for the energy region below 

100 Mev. A thorough and complete analysis of the elastic behavior of 

the walls of these cavities would involve very complicated and tedious 

mathematics. Therefore, assumptions were made to simplify the mathe­

matics. In spite of this , the simplified analysis appears to be ade­

quate and the numerical evaluations are sufficiently accurate to be 

used for design purposes. 

Assumptions 

The type construction to be used for the walls of the cavities was 

assumed to be as shown in Fig. 4. Both the single- and double-gap cav­

ities were assumed to be made of copper-lined carbon-steel plate, and 

the numerical calculations were based on the use of 0.1-in.-thick OFHC 

copper on 0.40-in.-thick carbon steel. However, the prototype cavity 

BEAM SPACING ORNL Dwg. 67-9061 
---~~----- s . 

T- BEAM 

--- ----

- - -zTE DEFLECTION 

STEEL BETWEEN STIFFENERS 

Fig. 4. Type Conntruction Assumed for Cavity Walls. 
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for a 50-Mev separated orbit cyclotron shown in Figs. 5 and 6 was 

fabricated from 0.05-in.-thick copper on 0.45-in.-thick steel. The 

walls of both the single- and double-gap cavities have external stiffen­

ing members assumed to be in the form of T-beamsJ as shown in Fig. 4. 

The flexural rigidity of a composite structure made by welding T-beam 

stiffeners on steel plate was assumed to be equivalent to that of a 

solid steel plate with an equal second moment of area. The equation 

for the equivalent thickness of this solid steel plate is derived in 

Appendix A. 

Fig. 5. Prototype of Radio Frequency Cavity for a 50-Mev Separated 
Orbit Cyclotron During Construction. 
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ORNL Photo 86695 

Fig. 6. Prototype of Radio Frequency Cavity for a 50-Mev Separated 
Orbit Cyclotron After Addition of Stiffeners. 

The single-gap cavity was assumP.d to have side stays, while the 

double-gap cavity was assumed to have no side stays. It was also assumed 

that there are no openings in the walls of the cavities. The effects of 

the ends of the cavities were neglected. The ettect of local deflections 

in the panels of flat plate between the stiffeners was neglected in the 

derivation of the elastic curve for the composite structure. Local 

panel deflections were considered separately, and in calculating them, 

the copper-clad steel plate was regarded as a solid steel plate of 

equivalent thickness. The equation for the equivalent thickness of a 

solid steel plate is derived in Appendix B. 

The effects of adjacent steel panels upon each other caused by 

gradual changes in the shape of the cavity were neglected. This assump­

tion will hold for the single-gap rectangular cavity with shaped top and 

bottom and parallel sides if the change in shape occurs gradually. It 
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will also hold for the single-gap cavity with flat tapered sides and the 

double-gap cavity with flat tapered sides if the angle of taper between 

the sides is small. 

Equations Derived for Cavity Without Side Stays 

The expressions for the elastic curves that describe the deflections 

in the walls of the double-gap cavity and the expressions for the bending 

moments and end slopes are derived in Appendix C. For these derivations, 

a cross-sectional slice of unit thickness is taken through the cavity 

without side stays, and the hejght of this slirP is denoted by the letter 

a and the width by the letter b. The desired expressions are derived for 

two cases: (1) the cai;;e where th~ flpx1ir;il risii:l i ty of the cidco, EI , 
a 

is different from the flexural rigidity of the top and bottom, Eib' and 

(2) the case where the flexural rigidity of the sides is the same as 

that of the top and bottom. 

Case 1 

In the first case, Ela f EIL' the elastic curve (JeflecLion) of the 

sides, span a, 

The deflection of 

The moment, 

The end slope, 

1 (~ y = EI -2 a 
a 

span b across the 

Yb 
1 

Ell.> 

M 
1 

(M2 x2 

w 
12 

wab 
24E 

+ 

wax3 
_ wx 4

) + 12 24 - BAX . (1) 

top and bottom, 

wbx3 wx4 

)+ BAx • 12 24 
(2) 

C\) 

(4) 
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Case 2 

In the second case, EI 
a E1i, = EI, the moment, 

and the end slope, 

M 
J. 

w (a2 - ab+ b2), 
12 

e = wab (a - b) 
A 24EI 

The deflection of the sides, _span a, 

wx[c2 2 2 3 ] Ya= 24EI - a - ab+ b )x + 2ax - x - ab(a - b) 

and the deflection of the top and bottom, span b, 

wx [ ( 2 ab b2
) 2b 2 3 b ( b)] Yb = 24EI - a - + x + x - x + a a - . 

The maximum deflection of span a (the sides) occurs at 

x = a/'l., and 

Ya max 
wa2 

384EI (a2 + 4ab - 4b2). 

The maximum deflection of span b (the top and bottom) occurs at 

x = b/2, and 
wb 2 

384EI (2a - b) (6a - Sb). 

Equations Derived for Cavities With Side Stays 

(5) 

(6) 

(7) 

"(8) 

(9) 

(10) 

The expressions for the elastic curves that describe the deflections 

in the walls of the single-gap cavities and the expressions for the bend­

ing moments and end slopes are derived in Appendix D. For these deriva­

tions, a cross-sectional slice of unit thickness is taken through the cav­

ity with side stays, and the overall height of the section, £, is broken 

by two stays. The distance between the stays is denoted by the letter a, 

the distance from a stay to either the top or bottom of the cavity is 

denoted by the letter b, and the width of the cross-sectional slice by 

the letter c. The desired expressions are derived for three cases: 
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(1) the case where spans a, b, and c and the flexural rigidi,t;:i,es Ela' 

Eib' and Elc may be different from each other, (2) the case where span 

a = span b but spans a and b may be different from span c and the plane 

moments of inertia I = lb but I and lb may be different from I , and 
. a . a c 

(3) the case where Ia = ~ = le = I and a = b but a and b may be 

different from c. 

Case 1 

In the firot ca::ie, Ia I- lb :f Ic and a I b t= c, the elast:i.c curve 

(deflection) of span a, 

the deflection of span b, 

1 (_ 
Yb = EI I b \ 

wx 4 

24 + 

wax 3 

12 

R x 2 

-3.,_ 

6 

and the deflection of span c, 

l 
y = 

c EI 

The react;:i,011p 

R 
3 

The moment 

M 
3 

The end slopes 

and 

c (-
wx'1 

24 + 
wcx:.J 

12 

w(a3~ - b 3 Ia) + 4b2 IaR
3 

12 (alb + bI:a) 

- 3wb 3 

12aM - wa3 

24EI 
a 

(11) 

(12) 

(13) 

(15) 

(16) 

(17) 
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The moment 

M 

The stay load, 

11 

24EiceA + wc3 

12c 

p = R 
3 

+ wa 
2 . 

For span a, the mid-span deflection that occurs at x a/2, 

1 wa4 a 2 M 

' 
aeG 

Y.a mid-span = 
~ I + EI 128 8 1 2 a 

For span b, the mid~span deflection that occurs at x = b/2, 

1 wb 4 b3R b>) b8G 
+ 3 

Yb mid-span = Elb 384 48 2 

For span c, the mid-span deflection that occurs at x = c/2, 

1 WC 4 M c 2 ceA 
l + y c mid-span = EI 128 8 2 c 

(18) 

(19) 

(20) 

( 21) 

( 22) 

All of the expressions for this first case are also applicable in 

the second and third cases. However, the expressions for the deflections 

at mid-span and the elastic curves are not simpler in cases 2 and 3 than 

they are in case 1, and they therefore will not be repeated for the last 

two cases. 

Case 2 

In the second case, a 

The moment 

R 
3 

b and Ia = lb' the reaction 

M 
3 

2a(3al + Scl ) 
c a 

= ~ R 
6 ~ 

(23) 

(24) 



The end slope, 

and 

The moment 

The stay load 

Case 3 

12 

a2 
AA ~ 8EI (2R • W.'.l). 

a 3 

a2 

24EI 
a 

M 
1 

p 

(2R - wa) 
3 

24EI eA wc 3 
c + 
12c 

R + w~ • 
,<>, 

In the third case, a b and Ia = ~ I 
c 

I, the reaction, 

The moment 

The end slopes 

and 

The moment 

The stay load 

R = w(3a 3 + 6a2 c - c 3) 
3 2a (Ja + Sc) 

= ~R w (3a. 3 + 6a2 c - c3) 
M 

3 6 3 12 (3a + Sc) 

a.:;i acw (a.2 - c·==) 
eA (2R - wa) = 8EI 3 8EI (3a + Sc) 

<'12 
24EI (2R3 - wa) 

.::icw (a 2 - c 2 ) 

24EI (3a + Sc) 

M 
1 

24EIB A+ wc3 

12c 
w(3a3 + Sc 3

) 

12 (3a + Sc) 

w 6a3 + lla2 c - c3 

2 3a + Sc 

(2.)) 

(26) 

(27) 

(28) 

' (29) 

(30) 

(31) 

(32) 

(33) 

(34) 
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Panel Deflections, Moments, and Stresses 

In a composite wall structure, it is necessary to consider the 

deflections and stresses within the flat plate panels between stiffeners 

a·s well as the deflections of the whole composite wall. The problem 

boils down to one of choosing a suitable combination of stiffener size 

and spacing and plate thickness that will satisfy the criteria for both 

the composite wall and the plate panels between the stiffeners. While 

it must meet specific design criteria, the choice is usually also influ­

enced by economics and local situation factors such as the material 

already on hand. 

With deflection criteria established, values for the flexural 

rigtdi.ty, EI, of the composite walls may be determined from expressions 

that are derived in Appendices C and D. Values for the second moment of 

area,. I, follow when the materials of construction are known o~ selected. 

With the value of the second moment of area known, a multi-parameter 

study of plate thickness and stiffener size and spacing must be made 

with the choice of the combination based upon the permissible deflec­

tions, moments, and stresses within the plate panels. After the combi­

nation is chosen on this basis, it must be confirmed by checking the 

stresses in the composite structure. 

Two computer programs were written to aid in the sel~ction of a 

suitable combination of plate thickness and stiffener size and spacing. 

One of the programs, called TBEAM, is used to solve the equations of 

Appendix A. The characteristics of the composite structure are com­

puted as a function of the T-beam stiffener size and spacing and the 

plate thickness. The properties of 77 "standard" T-beams are read into 

the computer memory. These properties include weight (lb/ft), area 

(in. 2
), depth of beam (in.), width of flange (in.), thickness of flange 

(in.), thickness of stern (in.), moment of inertia (in. 4 ), and a value 

representing the location of the centroidal axis (in.), as found in 

steel handbooks. Several spacings for stiffeners (12, 15, 18, ... , and 

39 in.) are also generated and stored, and a number of arbritrary plate 

thicknesses are also read into the computer, such as 0.345, 0.375, 
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0.4375, 0.461, and 0.500 in. The computer output consists of a listin~ 

of some of the characteristics of the composite structure as a function 

of the input parameters. The important output items include (1) the 

total amount of inertia (in. 4 ) of the composite structure, (2) a unit­

ized moment of inertia (in. 4 /in.) obtained by dividing the total moment 

of inertia by the spacing (in.), (3) a unitized weight (lb/ft per in.) 

obtained by dividing the weight per foot of length of the composite 

structure by the spacing in in., (4) a relative efficiency term (in. 4 / 

lb per ft) obtained by dividing Item 2 above by Item 3, and (5) a value 

for the centroidal axis (in.) of the composite structure. A listing 9f 

the properties of the 1'-beam is also included as computer output data. 

Regardless of how determined, if the required unitized moment of 

inertia is known, a combination of stiffener size and spacing and plate 

thickness can be found to meet the requirements in an approximate manner. 

Then, if the plate thickness and stiffener spacing are known, the most 

efficient T-beam of all possible ones can be determined. The character­

istics of this T-beam can then be examined to determine its suitability 

from the standpoint of depth and stress. 

A second computer program used in conjunction with TBEAM, called 

PANEL, was written to aid in the parameter study of the deflP.c.tinns, 

moments, and stresses of flat plates. The input parameters are (1) plate. 

thickness (in.), (2) panel length (in.), and (3) panel width (in.). 

The computer output lists the values for a and 13, the maximum deflection 

of the panel, y _ 0 _ 0, where the coordinate axis is as shown in 
x = J y -

Fig. 7, the moment, (M) 12 0, and the maximum stress, S . x x = s , y = max 
When the requirements of the composite structure and the panels 

1Jet.wee11 sr:iffeners are known in terms of (1) the required moment of 

inertia of the composite structure based on permissiblP. clPfl Prt-i nni;: 1 

(2) the limiting stresses in the composite structure1 and (3) the per­

missible moments, stresses and deflections in the plate panels, a suit­

able and perhaps the most economical combination o.f stiffener size and 

spacing and plate thickness can be found from the output data of the 

computer programs TBEAM and PANEL. 
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Fig. 7. Coordinate Axis for Maximum Deflection of Panel 
Determined by the Computer Program PANEL. 

The particular plate used to construct the prototype double-gap 

cavity for a 50-Mev separated orbit cyclotron was chosen because it 

was available from surplus stock. Once the thickness of the plate is 

chu:seu, Lhe sb:e of t:he T-beam stiffener will depend upon its spacing. 

Thus, in the case of the prototype, the problem became one of deter­

mining the spacing of the stiffeners, which is the same as the width 

of the panels. In the wall structure of the cavities, the panels are 

rectangular and assumed to be fixed (clampe~) on all four edges, but 
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the panels will deflect somewhat between stiffeners, as indicated in 

Figs. 4 and 7. Based on deflections or stresses, or both, the following 

five expressions1 may be used to choose the widths of the panels. The 

expressions for a and f3 are given in equation form to facilitate their 

use in FORTRAN for computer programming. 

0 
ws4 

a Et3 in. 

0.0284 
a 

1 + 1.056(~) 

(M ) 
x x s/2, y 0 

f3ws 2 in.-lb/in. 

f3 
0.0833 

. i's 
1 + 0.62312i 

' ' 

s M 6M lb/in. 2 = t2 max 2 

Computer program PANEL output data for values of deflections, 

Y 0 0
, mom~nes, (M ) 12 0

, maximum stress, S , a, 
x = , y = x x = s , y = max 

·and f3, are given in Table 1 for selected values of panel lengths, z, 

and panel widths, s. The format for Table 1 is as defined below. 

Term in Term in 
Table I Definition Eguation Unit 

z Panel length z in. 
s Panel width s in. 
A alpha a cl imens inn less 
B beta i3 dimensionless 
y Deflection y in. 

XM Moment Mx in. -lb/in. 
ST Maximum stress s psi max 

1 R. J. Roark, p. 205 in Formulas for Stress and Strain, 3rd ed., 
McGraw-Hill Book Company,, Inc._, 1954. 



Table 1. PANEL Computer Program Output Data for Panel Deflections, Moments, and Stresses for 
Selected Val~es of Panel Lengths and Widths 

z = :06.0 
s = :..5. 0 18.0 21. 0 24.0 27.0 30.0 33.0 36.0 
A= o. 02.803 . 02749 • 02651 . 02493 . 02271 .01994 . 01687 • 01381 
B = o. 03303 . 08250 • 08130 . 07898 • 07499 • 06892 • 06082 • 05132 
y = 0.00734 • 01493 . 02667 .04280 .06244 .08356 . 10351 .12004 

XM = 274.6 392. 9 527.1 668.7 803.6 911. 8 973.6 977. 8 
ST = 7753.2 11093. 0 14880.5 18880.2 22686.7 25742.9 27487.8 27605.7 

z = 42.0 
s = 15. 0 18.0 21. 0 24.0 27.0 30. 0 33.0 36.0 
A = • 02823 . 02 797 .02749 . 02668 .02545 . 02374 . 02158 . 01908 . 
B = . 08319 .08298 . 08250 . 08153 .07979 . 07693 . 07265 . 06680 
y = • )0739 .01519 . 02766 .04580 . 06998 . 09949 • 13239 .16580 

XM = 2 75. 2 395.2 534.8 690.3 855.1 1017.8 1163. 0 12 72. 6· 
ST = 7768.4 11157. 9 15098.8 19490.1 24140.7 28736.2 32834.9 35927.6 :--' 

-...J 

z = 48.0 
s = 15.0 18.0 21. 0 24.0 27.0 30.0 33.0 36.0 
A = . 02831 • 02818 . 02793 • 02 749 • 02681 . 02580 .02444 • 022 71 
B = .. 08325 • 08316 • 08294 .08250 .08169 • 08032 .07816 .07499 
y = .00742 . 01531 . 02810 . 04719 . 07371 . 10831 .14994 . 19735 

XM = 275.4 396.1 537.7 698.5 875.4 1062.6 1251. 2 1428.6 
ST = 7774. 0 11181. 6 15179. 5 19720. 9 24714.5 29999.9 35324.0 40332.0 

z = 54.0 
s = 15. 0 18.0 21. 0 24.0 27.0 30.0 33.0 36.0 
A = • 02835 . 02828 . 02814 • 02 789 .02749 • 02690 . 02605 • 02493 
B = .08328 . 08323 . 08312 . 08290 . 08250 .08180 .08068 .07898 
y = . 00743 .01536 . 02831 . 04787 . 07559 .11272 . 15987 .21667 

XM = 275.4 396.4 538.8 701. 9 884.1 1082.2 12 91. 6 1504. 7 
ST = 7776. 2 11191. 4 15213. 0 19817.7 24959.3 30554. 2 36464.5 42480.6 
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The computer calculations for the values given in Table 1 are based 

on a panel plate thickness~ t~ o:I; 0.461 in., a ntuuulus of elasticity, E, 

of 29~000,000 psi, and an atmospheric pressure load, w, .of 14.7 psi. 

The beam spacing on the prototype cavity is 21.35 in., and the approxi­

mate maximum deflections arid stresses to be expected in the .various 

panels of the cavity can be deduced from the values given in the third 

column of Table 1. Observe the lengths of the panels, z, have little 

influence on the magnitude of the deflections and stresses for the 

range of ratios of s/z tabulated. 

.I 

'·· 
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3. NUMERICAL EXAMPLES 

The expressions for the elastic curves, bending moments, and end 

slopes that are presented in the previous chapter cover a variety of 

possible design conditions. The form of these expressions suggests 

that they may be applied in several ways. Four numerical examples of 

different approaches, of which some have no clear or definite possibil­

ities for design application, are described in the following material. 

In all of the examples, the atmospheric pressure loading, w, is assumed 

to be 14.7 psi and the modulus of elasticity, E, is assumed to be 29 X 

106 psi. 

Example 1 

For the first example, consider the double-gap cavity without side 

stays illustrated in Fig. 3. The dimensions of the cavity for this 

example are shown in Fig. 8. 

ORNL Owg. 67- 9070 

l. = 192.17 In. 

- ' 
STATION I 2 3 4 5 6 7 8 '-+ --

( - -
i 

I 
-

I'" b •

1 

VARIES FROM 20.81 TO 54.01 in. 

;...--~-+~~;-~...-

0 

TYPICAL SECTION 

Fig. 8. Dimensions of Double-Gap Cavity Without Side Stays for 
Numerical EJcamplc 1. 
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In this example, the flexural ~igidity, EI, and consequently the 

second moment of area, I, of the walls arc specified to be constant all 

over; that is I = I = I at each station. 
· ' a b 

The value of I is to be 

bas~d upon a specified maximum deflection of side a at the small end of 

the cavity. Arbitrarily, y = 0.019 in. at Station 1, which is at a max 
the small end of the cavity. 

From Eq. 9, the second moment of area, I= 2.856 in. 4 /in. From Eq. 

C.2, given in Appendix C, R = 504.4 lb per inch of cavity length at 
2 

each of the 10 stations. Values for Ri (Eq. C.l), M
1 

(Eq. 5), and eA 
(Eq. 6) may be obtained at each of the 10 stations equally spaced aJong 

che cavity, and the deflection curves at each of the 10 stations are 

obtained from Eqs. 1 and 2. 

These computations were made by using a simple computer program 

called COAXCAV-5. The input for the program in this example c.on.sists 

of a deflection condition, y - 0.019 in. at Station 1, and dimen-a max -
sions to define the size of the cavity. The widths at each station, 

indicated by the letter b in Fig. 8, are computed, and these widths and 

the height, a, are divided into 10 equal spaces for computing the deflec­

tion curves. The computer program COAxCAV-5 values for b, Ri' Mi, eA' 

I, and R are given in Table 2. The units for RJ. and R , lb/in., and I, 
2. 

4 02 in. /in., are the result of taking a 1-in.-thick (measured in the direc-

tion of £) sectional slice of the cavity. 

Table 2. Computer Program COAXCAV-5 Output for 
RP~~tions, Momenta, and End 3lupe8 for widths at lU Sta­
tions of the Double-Gap Cavity in Numerical Example 1 

Statio11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 

b RJ. 
(in.) (lb/ in. ) 

20.81 152.92 
24.49 180.04 
28.18 207.15 
31.87 234.27 
35.56 261.39 
39.25 288.51 
42.94 315.63 
46.63 342.74 
50.32 369.86 
54.01 396.98 

2.8559 in. 4 /in. R 
2 

M 
]. 

(in.-lb/in.) (radians) 

4550.3 0.000505 
4444.8 0.000549 
4372.8 0.000578 
4334.0 0.000594 
4328,7 0.000597 
4356.7 0.000585 
4418.0 0.000560 
4512.7 0.000520 
4640.7 0.000467 
4802.l 0.000401 
504. li lb/in. 
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We may observe in Table 2 that the end slope eA increases from 

Station 1 to a maximum value at Station 5 and then continously decreases 

to Station 10. The mid-span deflections given in Table 3 also follow 

this pattern. The elastic curves are symmetrical about a horizontal 

plane passing through a/2 and a vertical plane passing through b/2. The 

deflection patterns at Stations 1, 5, and 10 are illustrated in Figs. 9, 

10, and 11, respectively, and the data for these graphs were taken from 

Table 3. 
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Table 3. ComFuter Frogram CCP_XCAV-5 Output for Defle~tions at 10 Stations of Double-Gap 
Cavity in Nume~ical ExamEle 1 

~::>EMALIZED DISTANCE ALONG SPAN 

STATION 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 0 

1 y = 0 -.0044 -.0097 -.OJ.45 -.0178 -.0189 -.0178 -.0145 -.0097 -.0044 -.0000 a 0 .0009 • 0016 • 0021 • 0024 . 0025 . 0024 . 0021 .0016 .0009 0 y = b 

2 y = 0 -.0047 -.0102 - • 0151 -.0185 -.0197 -.0185 -.0151 -.0102 -.0047 -0 a 0 . 0012 • 0021 . 0027 • 0031 • 0032 • 0031 . 0027 • 0021 . 0012 -0 y = 
b 

3 y = 0 -. 0049· -.0106 -. 0156 -.0190 -. 0202 -.0190 -.0156 -.0106 -.0049 -.OOO:J a 0 • 0014 . 0025 • 0032 . 0036 . 0038 . 0036 • 0032 • 0025 .0014 -J yb= 

4 y = 0 -.0050 -.0107 ·-.0158 -.0192 -. 0205 -. 0192 -.0158 -.0107 -. 0050 -) a 0 . 0016 • 0028 .0036 .0041 . 0043 . 0041 .0036 • 0028 .0016 ) y = 
b 

N 
5 y = 0 -.0050 -.0108 -.0158 -.0193 -. 0205 -. 0193 -.0158 -.0108 -. 0050 -•) N 

a 0 . 0018 . 0031 ·.0039 .0044 . 0046 .0044 .. 0039 .0031 .0018 •) y = b 

6 y = 0 -.0049 -.0106 -.0157 - .. 0191 -.0203 -.0191 -.0157 -. 0106 -.0049 -1) a 
0 .0019 • 0032 . 0040 . 0045 . 0046 . 0045 • 0040 . 0032 . 0019 0 y = b 

7 y = 0 -.0048 -.0103 -.J153 -.0187 -.0199 -.0187 -.0153 -.0103 -.0048 -0 a o. . 0020 • 0032 . ·)039 . 0043 .0044 . 0043 .0039 .• 0032 • 0020 0 y = b 

8 y = 0 -.0045 -.0099 -. 1)147 -. 0180 -.0192 -.0180 -.{)147 -.0099 -.0045 -.0000 a 0 • 0019 . 0030 .1)036 • 0038 . 0039 .• 0038 .0036 • 0030 .0019 Q y = b 

9 y = 0 -.0042 -.0093 - . 0140 - • 0171 -.0183 -.0171 -.0140 -.0093 -.0042 -.0000 a 0 . 0017 .0025 • 0028 .0029 .0029 . 0029 .0028 • 0025 • 0017 -0 y = 
b 

" 10 y = 0 -.0038 -.0086 - • 0130 -.0160 -. 0171 -.0160 -.0130 -.0086 -. 0038 -0 a 0 • 0014 • 001.9 . 0018 .0016 . 0015 . 0016 . 0018 • 0019 . 0014 -(I y = 
b 
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Fig. 11. Deflection Pattern at Station 10 
of Double-Gap Cavity of Numerical Example 1. 

Particularly notice the elastic curve of span b at Station 10 shown 

in Fig. 11. The deflection is zero at zero distance, reaches a maximum 

at about a normalized distance of 0.2, passes through a minimum at mid­

span, reaches a second maximum at normalized distance 0.8, and falls off 

to zero at normalized distance 1.0. Notice also that in this particular 

example, the deflections of span a are always inward (negative) and the 

deflections of span b are always outward (positive). We would suggest 

that the deflections of span b would become negative in the region near 

mid-span if the cavity were lengthened a sufficient amount and the same 

side taper were kept. 

The data for the cavity used in this example are that of the proto­

type for a 50-Mev separated orbit cyclotron. The dimensions given are 
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those of the prototype as it was fabricated. The cavity is stiffened 

by T-beams (~T bH x 9.5) spaced 21.35 in. tenter co cencer. Based on an 

equivalent plate thickness, t , of 0.461 in., the actual value of I e 
obtained is 2.727 in. 4 /in. This compares favorably with the computed 

required value of 2.856 in. 4 /in. given in Table 2. 

Example 2 

For the second example, consider the doublc=gap cavity without side 

stays illustrated in Fig. 3. The dimensions of the cavity for this 

example are shown in Fig. 12. 
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Fig. 12. Dimensions of Double-Gap Cavity Without 
Side Stays for Numerical Example 2. 
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In this example, the flexural rigidity, EI, and consequently the 

second moment of area, I, of the walls are allowed to vary along the 

length of the cavity while Ia = lb = I at any section taken normal to £. 

The values of I are to be determined at each of the 11 equally spaced 

stations shown in Fig. 12, and they are to be based upon a series of 

specified maximum deflections of side a y at each of the 11 sta-
' a max' 

tions. Beginning at Station 1, these values increase nearly linearly 

along the length of the cavity to the maximum value at Station 11. 

Following the specification of the 11 values of y and the a max 
computation of I at each station, values for R

1
, M

1
, eA' and the deflec-

tion curves were obtained in the same manner as they were for Example 1. 

The computations were performed by using a computer program called 

COAXCAV-3, which is essentially the same as COAXCAV-5 except for the 

deflection condition input, the calculation of 11 values of I instead 

of one, and the resulting changes in the output format. The computer 

program COAXCAV-3 output for widths, second moments of area, reactions, 

moments, and end slopes for the maximum deflections specified are given 

in Table 4, and the output for the deflection data at the 11 stations 

are given in Table 5. 



Table 4. Computer Pi:ogram CO.\XCAV-3 C•utput for Widths, Second Moments of Area, Reactions, Moments, and Enc 
Slopes for the Maxi:nL'1tl Deflections Specified a:t 11 Stations of Double-.;ap Cavity :iin Numerical Example 2 

STATION b 
Ya max I Spacing R M eA 

J. J. 

~in.l {in.) ~in. 4£in.) {in.} {lbLin.} {in. -lb£in.) {radians} 

1 17.44 -0.0:.7 !1..472 12. 0 - 128. 21 3075.9 o. 000552 
2 19.68 -0.0:.9 L.305 12. 0 144.65 3022.8 0.000663 
3 21. 91 -0.0~l L.172 15.0 161. 10 2 982. 0 o. 000772 
4 24.16 -0.·0~.3 l.063 15.0 177. 55 2953.4 o. 000077 
5 26.39 -0.0~6 I), 973 18.0 193.99 2937. 1 0.000975 
6 28.63 -o. o~ 8 0.897 18.0 210.44 2 933. 1 o. 00Hl62 

N 
7 30.8:' -o.o::.o 0.832 21. 0 226.89 2941..3 o. 001135 0\ 

8 33.11 -0.0:;2 0. 776 24.0 243.34 2961.8 o. 00lil92 
9 35.3L -0.0:;4 o. 727 24.0 259.78 2994.5 o. 001228 

10 37.58 -0. ;)36 0.683 27.0 276.23 3039. 6 0.001.242 
11 39.8~ -o. J39 0.645 30.0 292. 68 3096. 9 0.001229 

R = 415.3 lb/in .. 
2 



Table 5. Computer Program COAXCAV-3 Output for Deflections at 11 Stations of Double-Gap 
Cavity in Numerical ExamEle 2 

NORMALIZED DISTANCE ALONG SPAN 

STAT IOU 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 0 

1 v = 0 -.0040 -.0087 -. 0130 -.0159 -.0169 -.0159 -. 0130 -.0087 -.0040 0 ·a 
0 .0009 -.0015 -. 0020 -.0022 -.0023 -. 0020 -.0015 -.0009 0 v = -.0022 -b 

2 v = 0 -.0047 -.0102 -. 0151 -.01~5 -.0197 -.0185 -. 0151 -.0102 -.0047 0 . a 
0 . 0012 . 0020 . 0026 . 0030 • 0031 . 0030 . 0026 .0020 • 0012 -0 "7 = . b 

3 ., = 0 -.0054 -. 0117 -. 0173 -. 0211 -.0224 -. 0211 -.0173 -.0117 -.0054 0 ·a 
0 . 0015 • 0026 .003L .0038 . 0040 .0038 .0034 • 0026 . 0015 0 :Jb= 

4 "I a= 0 -.0061 -.0131 -. 0193 -.0236 -.0250 -.0236 -.0193 -.0131 -.0061 0 
yb= 0 .0019 . 0032 . 0042 • 0047 .0049 . 0047 .0042 . 0032 .0019 0 

5 ya= 0 -.0067 -.0145 -. 0213 -.0260 -.2076 -.0260 -. 0213 -.0145 -.0067 0 N 

yb= 0 . 0022 .0038 .0049 .·0056 .0058 .0056 .0049 • 0038 . 0022 0 ---i 

6 'I = 0 -.0037 -.0157 -.0232 -. 0282 -. 0300 -.0282 -.0232 -.0157 -.0073 0 a 
0 • 0026 .0045 • 0057 .0064 • 0066 .0064 .0057 . 0045 . 0026 0 'j = b 

7 'Y = 0 -.0079 -.0169 -.0249 -. 0303 -.0322 -. 0303 -. 0249 -.0169 -.0079 0 a 0 .0030 .0050 . 0063 .0071 .0073 . 0071 • 0063 .0050 .0030 -0 'Y = b 

8 y = 0 -.0083 -.0179 -.0264 -.0321 -. 0342 -.0321 -. 0264 -.0179 -.0083 0 a 
0 • 0033 • 0055 .0068 • 0076 • 0078 .0076 . 0068 .0055 • 0033 0 y = b 

9 y = 0 -.0086 -.0187 -.027-5 -. 033 7 -.0359 -.0337 -.0276 -.0187 -.0086 0 a 0 • 0035 • 0058 .0071 .0078 .0080 • 0078 .0071 .0058 . 0035 -0 y = b 

10 ·ya= 0 -.0089 -. 0193 -. 0286 -. 0350 -. 0372 -. 0350 -.0286 -.0193 -.0089 .0000 
y = 0 • 0037 . 0059 . 0071 . 0076 • 0078 . 0076 .0071 .0059 . 0037 0 b 

11 y = 0 -.0090 -.0197 - . 02 93 -. 0359 -.3082 -.0359 -. 02 93 -.0197 -.0090 0 a 
0 . 0037 .0057 .0066 .0070 .0071 .0070 .0066 • 0057 • 0037 0 y = 

b 
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Again, we find that the elastic curves 8!.e symmetrical as they were 

in Example 1. The deflection patterns at Stations 6 and 11 are shown 

graphically in Figs. 13 and 14, respectively, and the data for these 

graphs were taken from Table 5. Because of the varying flexural rigidity, 

the deflection pattern is somewhat different from that in Example 1. 

The end slope eA increases continuously from Station 1 through Station 11. 

The mid-span deflections of span b (the top and bottom of the cavity) 

increase continuously from Station 1 through Station 9 and then decrease 

slightly at Stations 10 and 11. There are no points of inflection in 

the elastic curves, as previously noted. 
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Fig. 13. Deflection Pattern at Station 6 of Double-Gap Cavity 
of Numerical Example 2. 
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Fig. 14. Deflection Patterns at Station ll of Double-Gap Cavity 
of Numerical Example 2. 

The variable second moment of area, I, may be satisfactorily 

approximated for the values computed by using T-beams (ST 4B X 6.5 on a 

plate with an equivalent thickness of 0.461 in.) on a variable spacing. 

The approximate spacing required is given in column 5 of Table 4. 

Example 3 

Again consider the cavity in Example 2 dimensioned in Fig. 12. For 

this example, the series of maximum deflections on span a are imposed as 

they were in Example 2, and in addition, the condition that yb = 0.080 max 
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in. at each of the 11 stations is imposed. therefore, I will not nec­
a 

essarily be equal to Ih at any sectiQn triken normal Lu .i, and both Ia 

and Ib will vary along £, The values for Ia and lb to be determined at 

each of the 11 stations are to be based on the imposed deflection require-

ments. 

The values of Ia and ·lb cannot be determined directly from Eqs. 1 

and 2 because the expression for M given in Eq. 3 and the expression 
l 

for the end slope eA given in Eq. 4 are functions of both Ia and lb. 

They are found by using the iterative procedure described in the follow­

ing material. 

At each of the 11 stat:i.9ns 1 ,9n initial ei;limaee was made for the 

values of I and lb from expressions for the miu--i:;pan. deflection of a 
a 

uniformly loaded beam with fully constrained ends. For the first esti-

mate, 

and 

I 
a 

wa 4 

384.0E6. 
a 

wb 4 
I = 

b 384.0E~ ' 

whPr'ii ~a and 6i, represent the imposed deflection conditions stated above. 

In the second step of this procedure, values for Ml and eA were calculated 

from Eqs. 3 and 4 by using the vnlue8 ~::i ttmil ted for Id i:md Tb. The thi.a.:u 

stPp of the p1·ui.:etlure consisted of computing ya from Eq. 1 by setting max 
x = a/2 af).d using the values obtained.in the first two steps of this 

procedure and of computing yb from Eq. 2 by setting x ,.., b/2. These 
.max 

cakulaLetl values will in all probablltty differ from the stated imposed 

deflection conditions. Therefore, Ia and lb must be adjusted. 

I (new) I (old) 
ya max 

a A. 6. 
A. 

and 

Ib(new) I (old) 
Yb max 

a ~ 
With new values for Ia and lb' the fifth step of this procedure consisted 

of returning to the second step and calculating new values for Ml and eA. 

The procedure was continued until 



a~ 

31 

Ya max 
6 a 

< I k! . I 

where k = some specified convergence condition. 

The values for b, Ia, lb, Rl, Ml, and eA were computed at each of 

the 11 stations by using a computer program called COAXCAV-2. Values 

for R and the deflection curves were also computed by using the program. 
2 

The important difference between program COAXCAV-2 and the COAXCAV-3 

program used for Example 2 is that COAXCAV-2 performs the iterative 

procedure just described. It also has a different deflection condition 

input and a different output format. The values computed for the widths, 

second moments of area, reactions, moments, and end slopes for the 

specifi~d maximum deflections at the 11 stations of the double-gap 

cavity in Example 3 are given in Table 6, and the computed deflection 

data are given in Table 7. 



Table 6. Computer Program C)P>i<..CAV-2 Output for Widths, Second Moments of 'Area, Reactions, Moments, and End Slopes 
for the Maximum Deflections SpeciEi.ed at 11 S-:ations of Double-Gap Cavity in Numerical Example 3. 

b Ya max Yb max I I R M eA a b l l 

STATION (in.). (in.) (in.) (in. 4 /in.) (in. 4 /in.) (lb/in.) (in.-lb/in.) (radianE) 

i 17.44 -0.017 -o. 080 3.664 0.001 128.21 377.3 0.00093S 
2 19.68 -0.019 ·O. 080 3. 173 0.002 144.65 481. 7 o. 00105'.: 
3 21. 92 -0.021 ··O. 080 2. 773 0.004 161. 10 599.4 o. 00116'.: 
4 24. 16 -0.023 -0'. 080 2.439 0.005 177. 55 730.4 0.00127( 
5 26. 39 -0. 026 -0.080 2.154 0.007- 193.99 875.1 0. 001372 
6 28.63 -0.028 -0.080 1. 908 0.010 210.44 1033.4 0.00146S ., 30.87 -0. 030 -0.080 1. 690 0. 013 226.89 1205. 5 0.001555 ' 8 33.11 -0. 032 -0.080 1.497 0.017 243.34 1391. 4 0.00164C VJ 

9 35.34 -0.034 -0.080 1. 322 0.022 259. 78 1591. 1 0.001709 N 

10 37 .58 -0. 036 -0.080 1. 163 0. 027 276.23 1804.5 0.001765 
11 39.82 -0.039 -0.080 1. 017 0.034 292. 68 2031. 3 0.001801 

R = 415.3 lb/in. 
2 



Table 7. Computer Program COAXCAV-2 Output for Deflections at 11 Stations of Double-Gap 
Cavity in Numerical Example 3 

NORMALIZED DISTANCE ALONG SPAN 

STATIJN o.o 0.1 0.2 0.3 0.4 0.5 0.6 o. 7 0.8 0 .. 9 1. 0 

1 y = 0 -.0053 -.0100 - . 013 7 -.0161 -.0169 -.0161 -. 0137 -.0100 -.0053 0 a 0 -.0094 -. 0318 -.0559 -. 0736 -.0800 -.0736 -.0559 -. 0318 -.0094 .0000 y = b 

2 y = 0 -.0059 -. 0113 -.0155 -.0182 -. 0191 -.0182 -.0155 -. 0113 -.0059 0 a 0 -.0092 -. 0316 -.0558 -.0735 -.0800 -.0735 -.0558 -; 0316 -.0092 0 y = b 

3 y = 0 -.0065 -.0125 -. 0172 -. 0202 -. 0213 -. 0202 -. 0172 -. 0125 -.0065 0 a 0 -.0089 -. 0313 -. 0556 -.0735 -.0800 -.0735 -.0556 -. 0313 -.0089 -.0000 y = b 

4 y = 0 -. 0072 -.0137 -.0190 -.0223 -.0235 -.0223 -.0190 -.0137 -. 0072 0 a 0 -.0086 -.0310 -.0554 -. 0734 -.0800 -.0734 -.0554 -.0310 -.0086 .0000 y = b 

5 y = 0 ~.0078 -.0150 -.0207 -.0244 -.0256 -. 0244 -. 0207 -.0150 -.0078 0 v..> a 0 -.0083 -.0307 -.0552 -.0734 -.0800 -.0734 -.0552 -. 0307 -.0083 .0000 v..> Yb= 

6 y = 0 -.0084 -.0162 -.0224 -. 0264 -. 0278 -.0264 -.0224 -.0162 -.0084 0 a 0 -.0079 -. 0303 -.0550 -.0733 -.0800 -.0733 -.0550 -. 0303 -.0079 0 y = b 

7 y = 0 -.0090 -.0174 -.0241 -.0285 -. 0300 -. 0285 -. 2041 -.0174 -.0090 0 a 0 -.0076 -. 0300 -.0548 -.0733 -.0800 -.0733 -.0548 -. 0300 -.0076 -.0000 y = b 

8 y = 0 -.0095 -.0185 -.0258 -. 0305 -. 0321 -. 0305 -.0258 -.0185 -.0095 0 a 0 -.0072 -. 0296 -.0546 -. 0732 -.0800 -.0732 -.0546 -. 0296 -. 0072 .0000 y = b 

9 y = 0 -.0100 -. 0196 -. 0275 -. 0326 -.0343 -. 0326 -. 0275 -. 0196 -.0100 0 a 0 -.0069 - . 02 93 -.0544 -. 0731 -.0800 - . 0731 -.0544 - . 02 93 -.0069 .0000 y = b 

10 y = 0 -. 0105 -. 0207 -.0291 -.0346 -.0365 -.0346 -. 02 91 -.0207 -.0105 .0000 a 0 -.0065 -.0289 . -. 0542 -.0731 -.0800 -.0731 -.0542 -. 0289 -.0065 .0000 y = b 

11 y = 0 -.0109 -.0217 -.0307 -. 0366 -. 0387 -.0366 -. 0307 -. 0217 -.0109 0 a 0 -.0062 -.0286 -. 0540 -.0730 -.0800 -.0730 -.0540 -.0286 -.0062 .0000 y = b 
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As in Example 2, we again find that the elastic cu:r:ves are 

symmetrical. The deflection patterns at Stations l ~md 11. R.rf'\ i l lr.is .. 

trated graphically in Figs. 15 and 16, respectively, and the data for 

these graphs were taken from Table 7. 

Judging from the range of values of Ia a~d lb given in Table 6, it 

might be concluded that this approach has no practical application in 

the design of radio frequency cavities, and it might also be suspected 

that the range of validity of the assumptions made has been exceeded, 

That is, if a cavity structure were built with the variable flexural 

rigidity indicated, it is not certain that the deflection behavior 

would be similar to that indicated by th~ nnmput~tions. 
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Fig. 15. Deflection Pattern at Station 1 of the Double-Gap Cavity 
of Numerical Example 3. 
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Fig. 16. Deflection Pattern at Station 11 of the Double-Gap Cavity 
of Numerical Example 3. 

Example 4 

The single-gap cavity with flat tapered sides, flat parallel top 

and bottom, flat ends, and side stays illustrated in Fig. 2 is considered 

in this example. If the curvature of the top and bottom of the cavity is 

slight, the sides may be considered as being rectangular. For this 

example, it was assumed that all .sections normal to the lengthwise direc­

tion are the same, and the dimensional designations for these sections 

are illustrated in Fig. D.l of Appendix D. For this example, a= 44.5 

in., b = 44.5 in., and c = 85.0 in. The derivations for this example are 

given in Appendix D, and the rea.ct:i.ons and moments are shown in Fig. D.2. 
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The following deflection condition was imposed for this example. 

Ya(x = a/2) ~ yb(x = b/2)~ Yc(x = c/2) ~ 6 = 0.030 in. 

The second moments of area Ia, lb, and le will be made to take on 

values that satisfy the imposed deflection condition. Values for I , 
a 

lb, and le cannot be determined directly from expressions. already 

derived, but they·were determined by using the iterative procedure 

described in the following material. 

The first step in the iterative procedure·was to make an initial 

estimate of the values of I , lb, and I by using expressions for the 
a c 

mid-span deflection of a uniformly loaded beam with fully constrained 

ends. For this first estimate, 

and 

I a 

I 
c 

:::: 

wa4 

384.0E6 , 

384.0E6 ' 

wc 4 

384.0E6' 

Using these estimated values, the second step involved computing the 

values for R , M , eA, eG' and M by using Eqs. 14, 15, 16, 17, and 18 
3 3 1 

derived in Appendix C. The third step then consisted of using these 

values to obtain values for y y and y · 
a rnid•SJJ<m~ b mid-span' r. micl-sp;m 

from Eqs. 32, 33, and 34. In all probability, the values obtained will 

differ from the deflection conditions imposed. Therefore, the fourth 

step in.the procedure involves adjusting the values for Ia, \• and le' 

and 

I (new) = I (old) a a 

Tb(new) 

ya mid-span 
6 

I (new) = I (old) ye mid-span 
c c 6 

With new values of Ia, \• and le, the second, third, fourth, and fifth 

steps of the procedure were repeated until 
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Ya mid-span< 
6 

Yb mid-span < 
6 

I i 
1k\ , 

ye mid-span < 
1
. I 

6 k, , 

where k = some specified convergence criterion. 

The procedure just described would be rather tedious if performed 

manually; however, it is handled quickly with a computer. The iterative 

procedure was applied to computer values of Ia' Ib' IC, R3, M3, eA, eG, 

and M through the use of a computer program called CAVSAG. Values for 
l 

R , R , R , P, and the deflection curves were also computed by using this 
l 2 4 

program. The input for the program consists of sets of deflection condi-

tions. that the walls of the cavity must meet under the imposed loads and 

the dimensions of the cavity. The output consists of one set of data for 

each set of deflection conditions. Computer output data for the cavity 

dimensions and deflection conditions of this example are given in Table 8. 

The deflection data given in Table 8 are illustrated in Fig. 17, 

and we again find that the elastic curves are symmetricaL. In this 

example, the mid-span deflections of spans a, b, and c have arbitrarily 

been required to equal each other. However, the mid-span deflect1on8 may 

differ from each other in any manner as long as the values chosen permit 

a real solution. If the sides of such a cavity were made from flat steel 

plate, the values of Ia' Ib, and Ic given in Table 8 could be attained 

approximately by using pl~te thickness of 

and 

t 1 3/8 in., a 
tb 1 1/4 in. , 

t 
c 

4 3/4 in. 

While such an arrangement might be unusual, it is quite possible. From 

an economical consideration, the design for such a structure would likely 

result in a composite wall structure such as that illustrated in Figs. 4 

and A. 1. even though the transition from one value of I to one of a greater 

nr lAlilier. value might be difficult from a design stanclpoint. 



Table 8. · Comp.iter Prc•gram CAVSAG Outpu-:: Data for the Single-Gap Cavity of Numerical Example 4 

Ya max= -0.030 in. R = 318. 2 lb/in. 
3 

Yb max= -0.030 in. R = 327.1 lb/in. 
4 

ye = -o. 030 in. M = 2744.3 in. -lb/in. max 1 
I 0.194 in. '""/in. M = 2348.7 in.-lb/in. 

a 3 

~ = o. 138 in. 4/in. e = 0.001036 radians 
A 

I 8. 636 . 41. e = o. 000304 radians in. in. 
c G 

R 336.0 lb/in. p 645.3 lb/in. 
l w 

R = 624.8 lb/in. 00 
2 

[)eflection Jata at Normalized Distance Along Span 

o.o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 0 

Ya 0 -0.0047 -0. 0131 -0.0216 -0. 02 7t -0.0300 --0.0278 -0. 0216 -0. 0131 --0.0047 -0 

Yb 0 -0.00'.;J -0. 0121 -0. 0215 ·-0. 028] -o. 0300 --0. 0266 -0.0188 -0.0090 -0.0010 -0 

ye 0 -0.0090 -0.0174 -o. 0241 -0.0285 -o. 0300 --0.0285 -D.0241 -0.0174 -0.0090 -0 
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40 

4. CONCLUSIONS 

It may be concluded from. the analysis methods developed and the 

numerical examples illustrating the application of the methods that 

flexural rigidities can be made to vary as required to obtain specified 

deflection'patterns in radio frequency cavities. However, application 

of this principle to actual designs for cavities is sometimes difficult. 

The numerical results obtained in Examples 3 and 4 of Chapter 3 suggest 

the difficulty of applying this principle to any great degree in the 

applications considered here. In the particular case of the prototype 

cavity for the 50-Mev separated orbit cyclotron, consideration of the 

available material, the probable increase in cost, the difficulty nf 

fabrication, and the problems in the design of the cavity resulted in 

the decision to use plate of the same size, stiffeners of the same size, 

and the same stiffener spacing all around the cavity. 

Even with conscientious effort exerted in the shop to keep deviations 

to a minimum, experience has shown that dimensional deviations that result 

during fabrication may be several times g~eater than thns~ ceuserl by 

elastic behavior. Strong stiffeners are very helpful in controlling 

fabrication deviations, particularly in correcting warping of the flat 

plate caused by welding, 

However, the principle of varying flexural rigidity and the associated 

derivations may be useful in certain special applications. The necessary 

calculating with mathematical expressions such as those derived in this 

report can be done with simple computer programs. Perhaps the greatest 

benefit derived from using computer programs in this application is the 

abiiity to use wider ranges of variability in multi-parameter calculations. 

Greater accuracy and closer spaced data are usually obtained by using 

computer programs, and while the calculatory portions of the programs are 

usually simple and straightforward, the output may be tedious. 
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Appendix A 

COMPOSITE WALL STRUCTURE CONSIDERED AS AN EQUIVALENT SOLID PLATE 

~n the analyses described in this report, tpe flexural rigidity of a 

composite structure made by welding T-beam stiffeners on steel plate is 

considered to be equivalent to that of a solid steel plate with an equal 

second moment of area. The equivalent thickness of the solid plate is 

derived in the following material, and cross sections through the composite 

structure and an _equivalent plate are illustrated in Fig. A.l. 
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Fig. A.l. Cross Sections Through A Composite Wall Structure and A 
Steel Plate of Equivalent Thickness. 

The terms used to derive the equivalent thickness of a solid steel 

plate are defined by referring to Fig. A.l where 

Ab = the area of the T-beam, . 2 in. , 

A 
s the area of the steel plate, . 2 in. , 

st s' and 
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A 
c 

the equivalent area of copper cladding, . 2 in. , 

F. 
= -E st 

E c' 
s 

where 

E = Young's modulus for steel, psi, and 
s 

E Young's modulus for copper, psi. c 
The location of the centroidal axis of the composite structure 

by the equation, 

Abyb + A y + A y s s c c 

is expressed 

The second moment of area or moment of inertia of the composite structure, 

I = T + Ab. db~ + I + A d 2 + I + A d 2 • 
C-C ·!Js-3 82-2 S S CJ.-1 C C 

The RPrond moment of area of a solid plate equivalent in flexural rigidity 

to the composite structure, 

st 3 

I --·~-=I 
e4 _ 4 12 c-c 

Therefore, the equivalent thickness of a solid steel plAte, 

/121 ,1/3 
te = l SC-CJ 
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Appendix B 

COPPER-CLAD STEEL PLATE CONSIDERED AS SOLID STEEL PLATE 

In the calculations for panel deflections, copper-clad steel plate 

is regarded as solid steel plate with an equivalent thickness. The equi­

valent thickness of the solid steel plate is derived in the following 

material, and cross sections through the copper-clad plate and a solid 

steel plate of equivalent thickness are illustrated in Fig. B.l. 

ORNL Owg. 67-9068 

COPPER-CLAD STEEL 

EQUIVALENT PLATE 

Fig. B.l. Cruss Sectionc Through A Copper-Clad Steel Plate an<l a 
Solid Steel Plate With An Equivalent Thickness. 

The terms used to derive the equivalent thickness of a solid steel 

plate are defined by referring to Fig. B.l where 

A . s the area of the· steel plate, 

= st , and 
s 

. 2 in. , 

A the equivalent area of the copper cladding, 
c 

where 

E Young's modulus for steel, psi, and 
s 

E Young's modulus for copper, psi. 
c 

. 2 in. , 
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The location of the centroidal axis of ~he clad plate is given by the 

t,!4u~tion 

A y +A y 
s s c c 

y = A +A 
s c 

The second moment of area or the moment of inertia of the clad plate, 

I =I +Ad 2 +I +Ad 2
• 

C- C ~ -2 S S C1 -1 C C 

The second moment of area of a solid plate equivalent in flexural rigidity 

to the clad plate, 

st 3 

c 
= -12 =I c-c 

Therefore, the equivalent thickness of the solid steel plate, 

(

121 p/3 

c-c! 
te = 3 J 



47 

Appendix C 

MATHEMATICAL DERIVATION OF ELASTIC CURVES, 
BENDING MOMENTS, AND END SLOPES FOR CAVITY WITHOUT SIDE STAYS 

A cross-sectional slice of unit thickness taken through the cavity 

without side stays is shown in Fig. C.l. The height of this cross­

sectional slice is denoted by the letter a, the width by b, and the end 

slopes by BA' BB' BC, and e0 at points A, B, c, and D, respectively. 

The loading, w lb/in., is the atmospheric pressure all around the outside 

surface of the cavity that results when the cavity is evacuated during 

operation. The plane moments of inertia of the beams with spans a and b 

are Ia and Ib' respectively. The corners at points A, B, c, and D were 

assumed to be rigid but subject to rotation. Therefore, by symmetry, 

ORNL Dwg. 67-9063 
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Fig, C.l. Cross-Sectional Slice of Unit Thickness Through Cavity 
Without Side Stays. 
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To obtaiu expressions for the bending moments and reactions, free 

body diagrams of sp"!ns o and l> were drawn, as shown in Fig. C.2, and a 

sign convention was adopted. Positive deflection is upward, as shown for 

span b in Fig. C.2. If the tangent to the elastic curve rotates counter­

clockwise, the angle of rotation is positive, and those moments acting in 

a clockwise direction on joints are positive. If deflections are small, 

bending moments caused by axial end reactions are small when compared with 

bending moments caused by transverse loads and reactions. Since the amount 

of deflection in the cavity must be limited to small values, we may neglect 

axial end reactions and simplify the mathematics greatly. 

a 

I 
I 
I 

. I 
I 

\ 
I 
I 
I 
I 
I w/in. 

~'l----!--1 --- ALL SPANS 

I 
I 
I 
I 
I 
I 
I 
j..-y(x) 

. I a 

I 
I 
I 
I 
I 
I 

+y -~~--<---R2 
~ 

M1 

Fig. C.2. Free Body Diagrams of Spans A and B in Cavity Without Side 
Stays (Axial End Reactions Not Shown). 
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From the free body diagrams shown in Fig. C.2, the following 

equations were obtained. 

For span a, 

For span b, 

M(x) 

wa 
&3 - 2 

-Mi + 
wax 

2 

wbx wi3 
M(x) = -Mi + -2- - -2-

(C .1) 

(C.2) 

(C. 3) 

(C.4) 

The differential equation for the elastic curves has the following 

general form ... 

b. EI .dx2 = M(x) 

Two or more of the conditions listed below will be needed to solve for 

the constants of integration. These conditions are 

1. y = 0 at A, B, c, and D; 

2. dy/dx = 0 at a/2 and b/2; 

3. for span a at D, dy/dx = -eA at x O; and 

4. ~] -~1 dx L - dx_R ' 

The fourth condition is an expression of continuity between two beams 

connected at a joint. The condition is that at the joint of the ueams, 

the slope of the beam on one side of the joint is equal to the slope of 

the beam on the other side of the joint. This follows from the assumption 

that the corners (joints) are rigid but that they may rotate. 

For span a, 

Integrating once, 

E.l 
dx 

1 
EI 

a 

1 
EI 

a 

wax +--
2 - w;). 

[ wax2 w0) 
,-Mix +--4- - 6 +Ci 

Condition 3 given above is applied to evaluate S. 

(C.5) 

(C. 6) 

(C.7) 



so 

Combining Eqs. C.6 and C.7, 

dv 1 ( wax2 wx.,,} dx =EI -Mix +-z:-- - -6- ~ 9A' 
a· 

and integrating again, 

Condition l,Y 0 at x = 0, is applied to evaluate ~. 

~ = 0 

Combining Eqs. C.9 and C.10, 

=-1 (- Mi x2 wai3 _ wx
4

' 9Ax ya -2- +12 21,. i -
Ela 

By analogy, .for span b, 

~ 1 
(-Mix 

wbx2 wi31 
+ eA =-- +-- - -6-1 dx Eib 4 

and 

' 

To obtain the equation for the moment Mi_, the second condition, 

dy/dx = 0 at a/2 and b/2, is applied to Eq. r..R, 

and to Eq. c.12, 

Rewriting Eqs. C.14 

and 

l (- Mi. a wa3 \ e = o -2-+241 -EI A a. 

l ! Mi b wb3 1 
= 0 +--1 + eA Eib 

;- -2- 24 i 

and C.15, 

wa3 
24EI 

a 

b wb3 

- 2E~l Mi + e = - -~ . b A 24Rib 

Adding Eqs. C.16 and C.17, changing signs, and rearranging, the moment 

(C.8) 

(C.9) 

(C.10) 

(1) 

(C.12) 

(2) 

(C.14) 

(C. 15) 

(C .16) 

(C.,17) 

(3) 
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Substituting the expression for M1 given in Eq. 3 into Eq. C.16, the 

end slope 

b ( 
2 L_::! \ e =~a -r:r-

A 24E \alb + blal 

By Substituting the expressions for M1 and 9 A given in Eqs. 3 and 4 

into Eqs. 1 and 2, the more customary type of expressions for ya and yb 

without the terms Mi_ and 8A may be obtained. However, it is simpler to 

use Eqs. 1 and 2 in their present forms than in the more customary form 

when one wishes to express them in FORTRAN for computer programming. 

Since ther.e seems to be no compelling reason to obtain the more customary 

expressions, we will avoid the algebra and leave Eqs. 1 and 2 in their 

present form. 

At this point it may be worth observing that Eqs. 1 and 2 permit l 
a 

(4) 

to be different from lb. We may have been even more general and permitted 

l to vary along the span and to be different at each side and at the top 
I 

and bottom. Consideration of the available material, costs, and problems 

of design and fabrication have led to the belief that it is more practical 

in at least the case of the prototype of the 50-Mev "coaxial" radio 

frequency cavity to use the same size plate and the same size and spacing 

for the stiffeners all around. This is to say that the flexural rigidity 

of the walls will be constant all around. 

Letting l a 

and the end slope 

l, the moment 

_
9 

= wab(a - b) 
A 24El 

Substituting Eq. 5 into Eq. 1 and simplifying, 

Ya= 2: 1 [- (if - ab+ b2 )x + 2ax2 - -i3 - ab(a - b)J , 

and substituting Eq. 6 into Eq. 2 and simplifying, 

Yb= 2:~1 [- (if - ab+ b3 )x + 2bx2 - i3 + a.b(a - b)J • 

Equations 7 and 8 are expressed in the customary form. 

(5) 

(6) 

(7) 

(8) 
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Expressions of the maximum deflections will be useful, For $pan a; 

y ma.x nr.curc at x Subsd.tuting a/2 for x in Eq. 7 and simplifying, 

wa2 2 
= - 384EI(a2 + 4ab - 4b ) . (9) 

For span b, y occurs at x = b/2. Substituting b/2 for x in Eq. 8 and max 
s imp 1 i fying, 

wb2 
384EI(2a - b)(6a - Sb) . (10) 

An easy check on these derivations may be obtained by letting I = 
a 

Ib = I and a = b = £. Making these substitution1;> in Eq1i;, 3, 4, 1, and 2 

and performing the appropriate algebriac operatione 1 

w,P,":3 
M1 = 12 I 

and 

8 A 
0 

(C.26) 

(C. 27) 

(C. 28) 

These are the familiar expressions for the end moments and deflections of 

a uniformly loaded beam with fully conRtraincd end~. 
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Appendix D 

MATHEMATICAL DERIVATION OF ELASTIC CURVES, 
BENDING MOMENTS, AND END SLOPES FOR CAVITY WITH SIDE STAYS 

A cross-sectional slice of unit thickness taken through 'the cavity 

with side stays is shown in Fig. D. 1. .The overall height of the cross­

sectional slice is denoted by the letter £, the distance between stays 

located at points C and H and G and D as a, the distance from the stays 

to either the top or bottom of the cavity as b, and the width of the 

cross-sectional slice as c. The slopes at points A, B, C, D, E, F, G, 

and Hare designated as eA, eB, eC,eD eE' eF' eG, and eH. The loading 
' w lb/in., is the atmospheric pressure all around the outside surface of 

·ORNL Dwg, 67-9065 

Fig. D.l. Cross-Sectional Slice of Unit Thickness Through Cavity 
With Eide Stay~. 
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the cavity that results when the cavity is evacuated during operation. 

The plane moments· of inertia of the beams with spans a, b, and c are 

Ia' Ib, and Ic, respectively. 

The corners at points A, B, E, and F were assumed to be rigid but 

able to rotate, and the points, A, B, C, D, E, F, G, and H were assumed 

to remain stationary except for rotations. Therefore, 

y (deflection) = 0 at A, B, C, D, E, F, G, and H, 

and by synunetry 

and -$ c 
To obtain expressions for the bending moments and reactions, free 

body diagrams of spans a, b, and c and the load point between spans a 

and. b ·were drawn, as shown in Fig. D. 2. The i;;ign conVFrnti.on, previously 

adopted for the derivations in Appendix C was also applied in this case. 

From the free ~ody diagrams shown in Fig. D.2, for span c the DJ = 0 and 

For span b, l:H 0, and 

~~ -' 0 + ). ~md 
1 M 

1 

For span a, l:H 0, and 

For joint H, L:H 0, and 

wb 

WC - 2R = 0 
2 

R 
WC 

2 2 

- 1<. - R 
l. 3 

wbc 
Rb 2 + -

3 

wa - 2R = 0 
4 

R 
wa 

-4' 2 

0 

R +R -P,,,0 
3 4 

. 

M = 0 . 
3 

Substituting the expression for R given in Eq. D.6 into Eq. D.7, 
4 

wa 
Rs+ 2 = p • 

(D. 1) 

(n. 2) 

(D. 3) 

(D. 4) 

(D. 5) 

(D. fi) 

(D. 7) 

(D. 8) 

We may observe from Fig. D.2 that the loadings of spans a, b, and 

c are similar. They each have axial and transverse end reactions, end 
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ORNL Dwg 67-9066 

j
+y -Fx -c 

M10 --- ----
R2 LYc<xl 

R3 
p~=== 

~ R3 
M3 

M3 
rti' 

r1 
a I 

lI 
Ly<x> 
I a 

!!___ '. --'~ 
~ R4 

w lb/in. 
ALL SPANS 

Fig. D.2. Free Body Diagrams of Spans a, b, and c for Cavity With 
Side Stays. (Axial End Reactions not Shown.) 

moments and uniform span loading. We need only to solve one general 

problem to obtain expressions for the bending moments, end slopes, and 

the elastic curves that apply to all three spans in general terms. If 

deflections are small, the bending moments caused by axial end reactions 

are small when compared with the bending moments caused by transverse 

loads and reactions. Since the deflections in the cavity must be limited 

to small ones, we may neglect axial end reactions and simplify the mathe­

matics greatly. The free body diagram of a span labeled in general terms 

applicable to spans a, b, and c is illustrated in Fig. D.3. 
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~x .i 

Mo ( ) M;_ 

Ro 
80 R..t 

Fig. D.3. Free Body Diagram of a Span Labeled in General Terms. 

and 

The differential equation of the elastic curve, 

EI d
2

y = M(x), 
dx2 

M(x) = -M 
0 

wx2 

2 
+ Rx • 

0 

(D.9) 

(D. 10) 

Substituting the expression for M(x) given in Eq. D.10 into Eq. D.9, 

d2y = ....!. ( -
wx2 

R x - M - + 
dx~ EI 2 I) u 

Integrating once, 

~= 1 ( - wx::>. R x 2 

) I) 
- M x c + + dx EI 6 2 0 J. 

To evaluate c • we apply the condition 
J. 

(~i = e ,dxi x .,, 0 0 

and 
c eo 

J. 

Combing Eqs.· D.13 and D.12, 

(~)= 1 wx3 R x2 
0 - M x e - -- + + dx EI 6 2 0 0 

Integrating again, 

1 ( ·wx4 y=- --- + EI 24 

R x 3 
0 

6 -
M2ox2 ) 

+ ex+ c 
0 . 2· 

(D. 11) 

(D. 12) 

(D. 13) 

(D. ·14) 

(D. 15) 
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To evaluate C , we apply the condition y 
2 

Combining Eqs. D. 15 and D. 14, 

1 f wx 4 

y = - l - 24 EI \ 

c = 0 
2 

+ 
R x 3 

0 

6 

0 at x 0, ·and 

(D. 16) 

(D. 17) 

By making simple substitutions in Eqs. D.14 and D.17, expressions 

for the end slopes and elastic curves of spans a, b, and c may be 

R 
0 

= R = wa/2. 
4 

.9.Y 1 
dx EI 

I wx 3 
I -
\ 6 a 

Ya = Eia (- ;~4 + 

For span b, p, b, e 
0 

.9.Y = 
dx 

For span c, p, - c, e 
0 

wc/2. 

.9.Y 
dx 

eH -eG, 

1 
Elb 

1 

wx3 

6 

wx 4 

24 

wx3 

( 
wx 4 

. - 24 

6 

+ 

wax2 

+ 4 

wax 3 

12 

e = p, eA, 

R x2 

+ --3..,._ 

2 

R x 3 

+ .....:i_,_ 
6 

wcx2 

+ 4 

wcx3 

12 

' + 
- M x eG . 

3 I 
I 

M x2 • 
--3..,._ l 

2 J 
+ eGx . 

I lb, 

Mx 
3 

M x 2 

--3..,._ 

2 

' - M x I 

l } 

M x 2 

_i_ 

2 

M M, 
0 3 

) - eG . 

M and R 
i' 0 

M , ·and 
3 

and 

(D.18) 

(11) 

R R • 
0 3 

(D. 20) 

(12) 

R = 
2 

(D.22) 

(13) 

To find expressions for M , M , R , eG, and eA in terms of a, b, 
l 3 3 

c, I , L , I , E, and w, five equations in these terms will be needed. a o c 
Applying the condition 

setting x a in Eq. D.18, and noting that eH 
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1 
EI 

a 
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wa 3 wa 3 

- -G- + , - M a 
4 3 

and 

- e . 
G 

(D.24) 

are expressions of continuity between two beams connected at a joint. 

They state that at the .joint of the beams, the tangent to the beam on 

one side of the joint is equal to the tangent to the beam on the other 

side of the joint. This follows from the assumption that the corners 

and stay points are rigid but may rotate. The subscript H of the 

expression eH refers to joint H and the subscript A of the expression 

eA refers to joint A. Applying the condition 

and setting x = b in Eq. D.20, 

1 ( wb 3 
i EI I 6 b \ 

Applying th~ condition y cJx = 

1 ( - wb 4 

Elb 24 

Applying the condition yclx = 

1 wc 4 

h 

+ 

c 

R b2 

+ ___a__ - M b 2 3 

~ 0 to Eq. 

R b 3 M b 2 

2- - _3_ 

Q 

0 

WC 4 

2 

to Eq. 

M c 2 
l 

12, 

13, 

EI 
c 

- 24 + 12 2 

\ - eG eA . (D. 25) i 
I 

- er;b 0 (D.29) . 

(D. 2 7) 

Equation D.4 containing the terms M , M , and R will be used as the 
l 3 3 

fifth equation. Simultaneous solution of Eqs. D.4, D.24, D.25, D.26, 

and D.27 yields Eqs. 14, D.29, D.30, D.3)., an.d D.32. These equations 

give expressions for R:'I' M
3

, eA, eG, and Ml in terms of a, b, c, Ia, 

lb, Ic, E, and w, and these expressions may be checked by substituting 

them into the original equations from which they were derived. 

R w _(a 3 Ib - b 3 Ia) (b\ + clb) - (alb + bla) (c 3 Ib - 6b2 c!b - 3b 3 Ic)J 

3 4b : (2bl + 3clb) (aL + bl ) - bl (bl + clb) i (l4 ) 
:_ c o a a c J 
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w 
M 

3 

(a3 Ib - b3 Ia) (blc + clb) - (alb +. bla) (c3 Ib - '6b 2 clb - 3b 3 Ic)l 

(2blc + 3clb)(aib + bla) - bla(blc + clb) ~0 . 29 ) 

bw e = --­
A 24Elb 

bl 1 
alb +abl 

a I 

M 
l 

(<a3 Ib - b3 Ia)(blc + clb) - (alb+ bla)(c3 Ib - 6b 2 clb - 3b 3 Ic) \ 

(2blc + 3clb)(alb + bla) bla(blc + clb) 

"l 
a 3 I - b3 I 

b a 
alb + bl a 

- 3b 2 ! 
J 

(D. 30) 

a 3 I - b 3 I 
aw b a 

24EI j alb + bl 
a ' a '~- . 

I bl 'i 
a \ 

+ 
\alb bl 

l 
+ ' I a• 

I ' 

·(a3 Ib - b 3 Ia)(blc + clb) - (alb+ bla)(c3 Ib - 6b 2 clb - 3b 3 Ic)\ 

\ (2bl + 3clb)(alb +bl ) - bl (bl + clb) · 
1 c a a c j 

bl 
w , c 

'· --

(D. 31) 

bl \ 
a I 

' 12c i lb alb + bl I 
a I 

I ( 3 I a.rb 

\ 
- b3 Ia)(blc + clb) - (alb+ bla)(c3 Ib - 6b 2 clb -

(2blc + 3clb)(alb + bla) - bla(blc + clb) 

l 
3b

2J + c 31 (D.32) 

J 
The expressions for R

3
, M

3
, BA, BG' and M 

D.31, and D.32 may be substituted into Eqs. 11, 

expressions for y , yb, and y in the customary 
. a c 

in Eqs. 14, D. 29, D.30, 

12, and 13 to obtain 

fnr.m, However, it is 

simpler to use Eqs. 11, 12, and 13 in their present form for FORTRAN 

computer programming. It is necessary that the expression for R
3 

in 
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Eq. 14 be in terms of a, b, c, Ia' ~· le' and w, but simpler expressions 

for M
3

, eA' eG,. and M
1 

that are easier to express in FORTMN ancf to. 

hi:mi:lle in manual computations can be obtained. These expressions are 

given in Eqs. 15, 16, 17, and 18, and the expression for P derived from 

the solution of Eq. D.8 is given in Eq. 19. 

M 
3 

w(a3~ - b3 Ia) + 4b 2 IaR
3 

12 (alb + bla) 

M 

p 

- 12bM - 3wb2 

12aM. 8 - wa 

24EI 
a 

24Elc E!A + wc 3 

12c 

R + ~ 
3 2 

(16) 

(17) 

(18) 

(19) 

Expressions for the maximum deflections would be useful. However, 

these are not easily obtained because the mA~imum dcfl~~Liuns do not 

necessarily occur at the middle of the span. Expressions of the deflec­

tions at mid-span will be obtained on the as.sumption that for .s1nall 

de:flt:!<.:tions and reasonable designs, th~ maxi.mum def lee tiuu is' likely to 

occur at the mid-span of spans a and c and near the mid-span on span b. 

For span a, ya mid-span occurs at x = a/2. Substituting a/2 for x 

in Eq. 11 and simplifying 1 

Ya mid-span 
1 ( wa 4 

~E!\m 
0 . 

a
2

M \ atJ G 
- ~ j +-"I-

n : ..._ 
(?O) 

For span b y occurs at x = b/2~ Substituting b/2 4or x in 
' b mid-span 

Eq. 12 and simplifying, 

1 { wb 4 ~- _ ~) 
Yb mid-span =. Elb ; - 384 + 48 8 j 

- beG. 

2 
(21) 

For span c y occurs at x 
' c mid-span 

c/2. Substit~tirig 6/2 for x ii 

Eq. 1.3 and simplifying, 



Ye mid-span= 

In a particular 

Therefore, 

design 

R 
3 

eA 
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1 WC 4 M c2 
- .....J.__ 

EI 128 8 c 

case, a is set to 

· 2a(3al + Sc! ) 
c a 

M ~R 
3 6 3 

a2 
(2R - wa) 8EI a 3 

a2 
eG (2R - wa) 24EI 3 a 

M 
l 

and 
p R3 + ~a 

ceA 
+ --2 (22) 

equal b and I a 

(23) 

(24) 

(2S) 

eA 
3 (26) 

(2 7) 

(28) 

In another design case, a = b and I = lb = I = I. Eqs. 29 
a c 

through 34 result from these conditions, and they were obtained from 

Eqs. 23 through 28 by dropping the subscripts from the terms I and I 
a c 

giving I. They are expressed both in the form of the original equations 

and in terms of a, c, w, E, and I. In the latter form, the l's cancel 

out of the expressions for R , M , M , and P. 

M 
3 

3 3 l 

R 
3 

w(3a 3 + 6a2c - c 3
) 

2a(3a + Sc) 

= ~ R 
6 3 

a2 

8EI (2R 
3 

w (3a 3 + 6a2c - c 3 ) 

12 (3a + Sc) 

_ acw(a2 - c2) 
wa) - 8EI(3a + Sc) 

a2 
24EI (2R 3 - wa) 

acw(a2 - c2) 
24EI (3a + Sc) 

(29) 

(30) 

. (31) 

(32) 
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24EieA + wc 3 

+ w (~a3 + ~.c 3)_ M 12c (33) 
1 12 (3a + Sc) 

p R 
wa w ( 6a 3 

+ lla
2

c - c 3 
) (34) - + = 

3 2 2 3a + Sc 

These derivations may be checked easily by letting a = b = c = p, 

and Ia = ~ = Ic = I. Making these substitutions in the set of equations 

from Eq. 14 and Eqs. D. 29 through D. 32; Eq. D. 8, Eq. 11, Eq. 12, 7, 

·and Eq. 13; or the set of equations from Eq. 23 through Eq. 28 and per­

forming the appropriate algebriac operations,' Eqs. D.53 through D.S9 

are derived .. 

R '!.1. (D.5J); 
:3 2 

M 
'!.1.2 

(D. S4) 
3 12 

eA 0 (D. SS) 

eG 0 (D. S6) 

M ~p,2 = M (D. S7) 
l 12 3 

p W.J!, (D. S8) 

wx2 
(p, - x)2 (D. 59) ya = Yb = y '" 211EI 

These .are the familiar ·expressions of the e.nd moments and deflections of 

a uniformly loaded beam with fully constrained ends. 
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