
LAVR-73 ~#fJ

TITLE: Algorithmic Languages and Machine-Oriented Tasks

AUTHOR (S): Mark B. Wells

SUBMITTED TO: IFIP/TC-2 Working Conference on Machine-Oriented
Higher Level Languages, Trondheim, Norway

By acceptance of this article for publication, the publisher
recognizes the Government's (license) rights in any copyright
and the Government and its authorized representatives have
unrestricted right to reproduce in whole or in part said article
under any copyright secured by the publisher.

The Los Alamos Scientific Laboratory requests that the
publisher identify this article as work performed under the
auspices of the U. S. Atomic Energy Commission.

losV^Valamos
scientific laboratory

of the University of California
LOS ALAMOS, NEW MEXICO 8 7 5 4 4

- N O T I C E
' This report was prepared as an account of work
J sponsored by the United States Government, Neither i

the United States nor the United States Atomic Energy ,
I Commission, nor any of their employees, nor any of |

their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any

[legal liability or responsibility for the accuracy, com­
pleteness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use ,

I would not infringe privately owned rights.

\lfiffl
Form No. 836
St. No. 2629
1/73

UNITED STATUS
ATOMIC (N I R G V COMMISSION

CONTRACT W-740S-I "WSTBIBU Tr!:S .Aj:.«^.M l b UNLlMJTfcL

file:///lfiffl

Algorithmic Languages and Machine-Oriented Tasks

by

Mark B. Wells

This paper presents the point of view that very high level languages

can and should be applied for the specification and programming of machine-

oriented tasks. The essential concept is that the language and a compiler

for the language must not be confused. Features that such a language should

have are discussed.

*This work supported in part by the United States Atonic Energy Coaaission
and in part by the National Science Foundation.

1. Introduction

The thesis of this paper is that the use of a very high level, general

purpose, machine-independent programing language for machine-oriented tasks

is both feasible and desirable. (These languages are called here algoHthmio

languages. No attempt is made to define precisely what an algorithmic lan­

guage is, but the ensueing discussion, especially Section S, does, indicate

some properties that the author feels such languages should possess.) The

contention is that significant short term as well as long term gains can

result from more effort being spent on both the development and the use of

very high level languages for systems programing. Jean Sammet is probably

right when she says [8] "... i* is futile to try to develop a 'universal

programming language* for all applications." Nevertheless it is probably

also true that one of the better ways to uncover general underlying princi­

ples of programming and programming language design is to attempt such

development. Furthermore, this author believes that there is much less that

is peculiar to systems programming than many people believe.

To begin to appreciate the point of view of this paper one must first

brush aside the myth that "high level" necessarily implies "massiveness".

The most general language, in the sense of being able to express precisely

the details of execution of any algorithm, is absolute machine code. As we

move progressively through assembly languages Fortran, Algol, etc. towards

•ore and more machine-independent higher level languages (i.e. toward pro­

blem oriented languages) we yield more and more of the details of implemen­

tation to the compiler. It is only when we try simultaneously to incorpor­

ate high level constructs and maintain control over implementation details

that complexity, massiveness, and baroqueness of the language enter the

picture. A well designed algorithmic language, while being general purpose

and having considerable expressive power, may greatly restrict the program­

mer relative to many precise details of algorithmic execution in order for

itself to remain simple and elegant. The basic question is how much control

are we willing to abdicate in order to reap the significant benefits of the

-1-

use of a high level language. In this author's opinion, simplicity, or

aachine-independence, or soae other important characteristic of an algo­

rithaic language has all too often been sacrificed merely to siaplify com­

piler writing or to allow the user control over execution detail, sonetiaes

unnecessarily.

The basic conclusion is that there is a great deal to be gained by

studying the application of high level languages—PI/l, Algol 68, Madcap—

to machine-oriented tasks, we aight do better by investigating the proper

design of compilers for algorithaic languages rather than by designing new

aachine-oriented languages.

Apart froa this introduction there are four sections to this paper.

Section 2 gives a general view of the role of algorithaic languages. It

briefly discusses advantages and disadvantages to their use, the importance

of the separation of the concepts of a language and its compiler, and, what

aight be considered as a fundamental function of algorithaic languages to­

day, their use in the design of large systems. Section 3 discusses inter-

algorithm communication and suggests that storage allocation is not a con­

cern at the level of algoritha generation. Section 4 is concerned with

data structures and their implementation as storage structures. It is

pointed out, for instance, how the way in which a data structure is used

can help the compiler choose a proper internal representation for it. In

the concluding Section S, the author summarizes the features of algorithmic

languages which he feels are necessary and desirable for aachine-oriented

tasks as well as for more general application.

The ideas presented in this paper are primarily based on the author's

experience with the Madcap 5 and Madcap 6 languages iapleaented on the

Htniac XI computer at Los Alamos. Madcap S [9,12] has been in continuous

use as a general purpose programming language since 1964. Its chief rele­

vant features are the availability of a specific set-theoretic data

structure—sets of natural numbers implemented as bit patterns—and the

capability of embedding assembler language in a source program. It has

been used to write a procursive time sharing operating system for the

-2-

Maniac and a compiler for Madcap 6. Maticap 6 is an interactive language and

systea currently available on the Maniac; work is underway to write compilers

for it on the IBM 360/91 at UCLA (University of California at Los Angeles),

the R-2' computer at Rice University in Houston, Texas, and the CDC 7600 at

Los Alamos. Its chief relevant features are powerful control structures {6],

a unified data structuring capability including arbitrary (unordered) sets

[13], recursion, and an effective block structure-filing system scheme. No

assembler language embedding is allowed. It has been used as s. specifica­

tion language for major parts of its Maniac compiler and is currently being

used as a design tool for a new Maniac time sharing operating system.

The author makes no claim to originality or profoundness of the ideas

put forth in this paper; however, perhaps the point of view expressed here

by these ideas is more radical (idealistic?) than has been expounded

•lsewhere.

2. The role of algorithmic languages

An excellent discussion of the advantages and disadvantages of the use

of high level languages for systems programming is given by Samaet [8]. In

summary, the advantages are

(a) the efficiency of program preparation;

(b) the ease of program documentation, maintenance, and understanding;

and

(c) the potential for program portability.

The chief disadvantage is

(d) the possible time and space inefficiency of object code.

The advantages stmt of course from the expressive power, naturalness, and

machine independence of the language, while the disadvantage occurs because

of the increased difficulty of producing an adequate compiler for the lan­

guage. As a language becomes more and more algorithmic its advantages be­

come more and more pronounced, yet so apparently does the difficulty of

compiler construction. To this author, this does not suggest that we lower

our sights on high level language design. On the contrary, this suggests

•3-

(1) that we attack the basic problems of compiler and hardware design and

(2) that we restrict ourselves to algorithmic language subsets that are

useful for systems programming and for which effective compilers can be

written.

Now, it is very important from the outset to appreciate the difference

between a language and one of its compilers. To achieve true machine inde­

pendence in a language, the concept of using the language to express algo­

rithms must be kept quite separate from that of executing an algorithm

written in that language in the environment of a particular computer sys- .

tern. (Further, properties of programs written in a language must not be

confused with properties of the language itself. A machine independent

language can of course be used to write a highly machine dependent piece

of software.) A language is concerned wit!, the specification of algorithms,

a compiler with its computer is concerned with the efficient execution of

these algorithms. Of course, during language design there is always give

and take between incorporation in the language of various facilities and

development of P practical compiler. In fact, it often happens that par­

ticular language features are suggested or discarded on the basis of the

ease or difficulty of their implementation. Furthermore, in practice,

choosing a particular compiler oftentimes effectively selects a language

subset. Nevertheless it is still important to keep the concepts independ­

ent. By so doing one obtains a clearer view of the problems and how they

can be attacked. For instance, the problem of packing data for efficient

memory utilization is chiefly a compiler and hardware problem and is of no

concern at the algorithm level since at that level referencing of the data

depends only on its inherent ordering (or its values) and not on its pre­

cise representation. An appreciation of this greatly enhances a program­

mer's ability to organize his programs in a systematic top-down manner

(e.g. see [IS]).

A language itself may be machine independent but of course its com­

piler and the system in which it is embedded is not. Thus, while algo­

rithms written in the language are portable between systems, one system

-4

or another may be more effective for a certain class of algorithms. In

actuality, any particular system not only effectively defines a subset of

the language, but also provides new capabilities such as a filing system,

editing facilities, and debugging tools which greatly facilitate the prep­

aration and execution of algorithms.

The aspect of a system which most closely interacts with language and

compiler design and use is perhaps the filing system (with which we include

libraries of debugged subroutines). To be truly effective for machine-

oriented tasks (or any other particular area for that matter), an algo­

rithmic language requires access to a library of appropriate existing algo­

rithms. Perhaps, as in Algol, this is a block global to every running

program. Two generalizations of this Algol concept of an "environment"

are worth considering. One is to allow more structure in the environment,

i.e. more levels of nesting external to a running program. This allows a

more precise taxonomy of library programs. The second is to allow data

other than executable procedures (constants of data type "expression") in­

to this environment. The concept of having real numbers, Boolean quanti­

ties, sequences, sets, and other language constants accessible from a run­

ning program but not specifically declared within it has considerable

merit. With this concept the filing system is much like the activation

record of a partially executed supra-program. An application of this idea

to a machine-oriented task is given in Section 3.

Now, one of the points being made in this paper is that a good algo­

rithmic language should be useful at all stages of design of a large system.

This of course implies that the language be very high level (recall the

earlier remarks that high level need not imply massiveness). Realistically,

it may also imply that the language is not a programming language at all in

the sense that algorithms written in it can be directly compiled for execu­

tion on a computer; that is, it may be necessary to have a "human compiler"

perform a translation. Nevertheless, the clarity, uniformity, and disci­

pline allowed and imposed by an algorithmic language make its use invaluable

at all levels of design. The existence of a compiler is an extremely worth­

while convenience but is certainly not a prerequisite.

S-

Thus, perhaps the chief role of algorithmic languages today is in the

specification of large systems. Properly designed itself, an algorithmic

language can serve as an important quide to well structured design and pro­

gramming of systems. Furthermore, once compiler and machine design do

catch up, we will have made & truly giant step towards solving the "software

crisis". Even until they do though, the translation from algorithmic lan­

guage to programming language by humans is probably less burdensome than

programming as it exists today. It is only during this part of the develop­

ment process, the translation phase, that detailed efficiency considerations

come into play. In addition and more importantly, performing this transla­

tion gives us insight into how compilers and machines should be designed

themselves. A very real danger in concentrating on the development of

machine dependent languages with primary emphasis on efficiency of the

object code is that we learn very little about the "proper" way to design

a computer. It seems to this author that proper hardware and compiler

design must follow an understanding of computational processes and their

expression as algorithms. The development of the Burroughs 5000/6C00

series of computers [7] is one of the few commercial examples where this

top-down philosophy has been pursued in practice.

3. Processes and their intercommunication

A large program (the words "program", "algorithm", "process", "proce­

dure", "subroutine", etc. are essentially interchangeable in this discus­

sion) is subdivided into smaller programs themselves subdivided, and so

forth, until manageable units appear. There are many questions concerning

these processes, their calling and sequencing, their intercommunication,

storage allocation of their variables, etc. of relevance to system program­

ming as well as general purpose programming. It is not the aim here to

give a thorough account of these questions, only to point out how various

machine-oriented tasks can fit under the general algorithmic language

framework being advocated.

Consider first the communication question. Algorithmic languages

essentially allow two types of communication between procedures: an actual

.6-

dynamic passing of parameters and a static referencing of global or external

variable values. Except possibly for the extent and sufficiency of its use,

there is really very little controversy surrounding parameter passing as a

legitimate means of interalgorithm communication. Most language designers

agree that by one means or another passing arguments by value, by reference

(pointer), and by name are all important. Oa the other hand, there is more

active debate concerning static communication [16], or as it might better

be called, environmental oonrnumaation.

To illustrate an application of environmental communication to systems

programming, consider the buddy storage allocation scheme given in the Appen­

dix. (This algorithm is written in the Madcap 6 language. A manual and/or

formal definition of this language does not yet exist. However, since the

object here is to discuss concepts and not notation it is felt that very lit­

tle will be lost by not describing Madcap, or for that matter the buddy pro­

gram itself, in detail.) The routines that do the work are get and free,

which respectively find an available block of storage or return a block to

the free storage pool. These routines exist and are executed in an environ­

ment which presumably is part of an operating system. That part of the en­

vironment which is referenced from within get and free appears in Figure 1.

It contains definitions of the special data types and operations used in the

scheme (see later discussion), the assignment of appropriate expression

values to the identifiers get and free themselves, the initialization of the

basic data structure Ablocks which is to be a sequence with KHL component

the set of available blocks of length 2" whose buddy is unavailable, and

finally the calls to the routines themselves.

The ability to establish such an environment for executing algorithms

is extremely useful for systems work. Such an environment is very much like

the outer system library block of an Algol 60 program, although values other

than procedures are accessible here. More involved examples show the need

for a hierarchy of environments. This seems to suggest a block structured-

like filing system wherein the outer blocks are essentially activation

records for load time evaluated programs. Such a filing system is in use

with Madcap.

-7-

It is possible for various machine resources to be made available in

this environment. Identifiers such as keyboard and time, when not declared

locally, can reference a terminal or the machine real time clock. Even hard­

ware (index) registers can be made available in this manner by utilizing a

friendly filing system and compiler. Of course in a sense this makes the

language machine dependent, but only as used in a particular necessarily

machine dependent environment. For instance, it never makes sense to write

a program to ask what time it is unless facilities for answering that ques­

tion actually exist within the particular system in which the program is to

be executed.

It is natural to ask the question about storing into, i.e. changing, the

environment. As the reader is certainly well aware, allowing programs arbi­

trarily to change the environment of other programs only invites disaster.

The question is part of the general question of side effects. This author

now feels that whereas using val?-.es of global variables is harmless and nat­

urally beneficial, assigning of values to global variables can be dangerous

and must be controlled. Strongly impinging on this issue are the questions

of pointers, call-by-reference, etc. In Madcap, primitive parameters—reals,

Booleans, etc.—are always passed by value, while structures—sets and

sequences—are passed by codeword (there is no "pointer data type") [13].

Furthermore, global stores are not allowed. (This involves compile time

"global attribute" checking which is quite similar to data type checking—

see Section 4.) Thus it is impossible for a nested procedure to change the

environment unless it is specifically allowed to do so. Note, for example,

in the buddy program that Ablocks is passed as a parameter to get and free

so that they may modify the component sets within that structure. This is

just one of the many possible solutions of course, but it does illustrate

the author's philosophy that system's programmers should have no more free­

dom to abuse good programming practice than anyone else. The algorithmic

language should encourage good habits and disallow bad habits and the com­

piler should be smart enough so as to pacify the programmer for his result­

ing loss of control.

-8-

A closely related subject is the matter of storage allocation. To

this author, storage allocation matters ideally belong solely in the pro­

vince of the compiler. Unfortunately, practical considerations of today

seem to require compromise. For instance, the need for independent pro­

cedure compilation seems to call for some form of compiler assisting lan­

guage such as a declaration of the use of a procedure as recursive or

reentrant. This information, which would not be difficult to gather by

the compiler had the compiler knowledge of the total program, is of course

useful in determining whether storage must be allocated dynamically at run

time (the recursive case) or could be allocated statically at compile time

(the non-recursive case).

In some cases, the systems programmer is called on to utilize his

intimate knowledge of the system and of the computational model of the lan­

guage in order to regain some measure of control over storage allocation.

In Madcap for instance, it is possible to allocate a large sequence, call

it M, whose components are of arbitrary type:

M - < 0 @ UNIVERSE : 1000 Hems >.

This sequence can then be used to store arbitrary values, even other se­

quence values, provided the user is aware of the implementation scheme for

those values. (A cell based computational model [4] is used for Madcap.

A cell containing a "value"—this is a pointer for a sequence—occupies at

aost one word of the target machine.) For instance, the assignments

M10to i5<-<2.1, 7.6. 3.8, 1.9)

M9 *" M10 to 15

will embed the given sequence of reals within the M sequence and store its

codeword in Mg. Of course to make use of this technique the programmer

must know that a sequence has two words of header information attached to

it and also generally must know the exact form and type of this information

(see later discussion on packing of storage structures).

-9-

The symbolism and technique of this last example represent even :r.">re

of an undesirable concession to practicality than that of the compiler

assisting declaration of a recursive procedure. In both cases, however,

the inelegance arises because we are trying to put into the language capa­

bilities which properly belong in the compiler. Surely computer science

Will eventually develop general and efficient storage allocation schemes

that on the average will be better than what the typical systems program-

ner can devise for himself,.

4, Data structures and their implementation as storage structures

Part of the distinction between a language and its compilers is the

distinction between "data structures"—complex numbers, graphs, queues,

efe.—at the algorithmic level and "storage structures"—pointers and

memory blocks, bit patterns, floating and fixed point numbers (not neces­

sarily respectively), etc.—at the hardware representation level. The

programmer is concerned with and chooses the data structures according

%o the requirements of the algorithm, while the compiler selects storage

structures to represent those data structures whi£h are consistent witu

the capabilities of the target computer. (In practice, the storage struc­

tures associated with many machine-oriented tasks are often predetermined

by specific object code requirements such as an established control word

format. In these cases the data structures are chosen so that the compiler

will translate them into the existing form. This does imply that the com­

piler was especially designed for the machine-oriented tasks and that the

systems programmer understands the translation algorithm, but does not

affect our view of language-compiler separation.) In order properly to

select these storage structures the compiler needs to know the domains of

possible values for the variables of the program and the operations that

are to be applied to those variables. This information is customarily

contained in the source program declarations of data type. For instance,

when we say a variable b is of type BOOLEAN, we are saying that the domain

-10-

of possible values for b is {true* false} and that the operations—i(not),

A (and), and v(or), at least, are defined upon values in that space.

The allowable form of declarations in many high level languages does

not impart type information sufficiently precise for the compiler to uti­

lize straightaway. For instance, merely knowing that a variable is inte­

gral does not immediately determine whether or not the compiler can have

it stored in an index register. The variable may assume values too large

for index registers of the particular target machine or the variable may

be involved in multiplication or division operations for which it is incon­

veniently accessible from a register. Thus, effective compilers for these

(insufficiently) high level languages must scan a source program for more

precise type information. Certain scans are not difficult. In fact, in a

compiler which does type checking, e.g. the compiler for the language of

project Sue [3] or in Madcap, there is little additional overhead involved.

For type checking, one must see if an operation is consistent with the

types of the operands, while for the information gathering scan one records

the fact, for possible later analysis, that the variables appearing as

operands have had the given operation applied to them.

Scanning to discover the domain of a variable is more difficult. This

author believes that the answer to this problem lies with extensible lan­

guages whereby precise algorithm-oriented data types (value spaces) can

easily be defined where needed. Again, consider the buddy system storage

allocation scheme. Three new data types are defined for the scheme. First

is ADDRESS.SPACE which is the set of natural numbers less than 2*, the size

of the memory. This is a subdomain of the base language space REAL, the

set of all rational approximations representable in one word of the target

machine. Permissible real number operations are allowed on ADDRESS.SPACE

elements although the composition of the restricted set that are actually

applied (here only {+}) can be used to influence the compiler's decision on

a representing storage type. The second is Ablocks.COMPONENT.SPACE which

is the set of subsets of ADDRESS.SPACE. These are the possible component

values for the (k+1)-tuple I which exists inside the procedures get and

-11-

free. The tuple (i.e. sequence) I is the basic data structure for the en­

tire scheme. At any point in tine during execution, ij, (or Ablock^) is the

set of addresses of available blocks of length 2 where buddy is unavailable.

It is important to note that in this set-theoretic formulation, the storage

structure of II. is not specified. It may be a linked list, as implied hy

Khuth's scheme [5], or possibly a bit pattern, often an efficient represen­

tation for a set of natural numbers [12]. (In actuality, our specification

of Ablocks.COMPONENT.SPACE is still not sufficiently precise; the' allowable

values of each component should be made to depend on h). The final new data

type is INDICATOR. This is just the set (-1, +1} and presumably only the

equality operation is applied to its elements. Thus, an intelligent compiler

could determine that only one bit is required to implement variables of this

type.

Two other data structure-storage structure distinctions pertinent to

machine-oriented tasks are procedures versus macros and sequential structures

implemented as packed strings of data. Consider the macro question. From

the high level viewpoint there is only the concept of procedure—an algorithm

which accepts certain input values and produces specified output values.

Whether or not such a procedure is implemented as an "in line macro", a set

of instructions inserted directly into the code at the point used, or as a

"closed subroutine", a separate package called (jumped to) when needed, is

really a matter of implementation and does not affect the correct functioning

of the master algorithm. This-., in a truly algorithmic language the macro

concept does not exist; the choice of implementation schemes is the compil­

er's. This choice will depend on whether or not the procedure is used as a

constant, the number of times it is used, its length, whether or not it con­

tains only local references, etc. In the buddy example, the constant proce­

dure defined in the extended language for calculating the buddy (c.f.

e e e s « - >) , most likely qualifies as a macro. By the way, the algorithm

used here for this calculation is but one of many reasonable possibilities.

A general bitwise exclusive-or of two addresses could even be expressed in

set-theoretic terms, e.g.

-12-

*fi!»J£): tddress

S -

{b : 1et{2,-x»b-0) «txt(z*-i.z/c>jtb*-b4l)» t m4 t * I until z • 0>

I {This is the set-theoretic symmetric differenced

{b: ?et{*-y,b*0) fltxt{3t-U/2J»b*-b*U* t mi Z « 1 until z « 0}

so that the compiler (perhaps a human in this case) could know to take

advantage of m exelusive-or Machine instruction, if one exists. (Of

ccurs*„ examples such as this where the high level specification of an oper­

ation is Many tines nore Ions-winded than the equivalent Machine instruction

have been used to argue against tha us* of high level languages. These argu-

Ments are unfair. The precise, possibly long-winded definition of every

operation Must exist somewhere. If its definition is well known enough to

be taken for granted, than it probably belongs as a base operation in the

high tava! language.)

How consider the question of sequential structures. An example taken

fro* the Madcap 6 compiler itself is tha sequence

< (c.Jt.S.,1): • 800UAN; Operator: » OPERATORS;

ttedtnofnttr: • NODE.LIST; Operands: # COOE.IIST)

which is the data structure for an operator of the intermediate language.

This sequence has seven fields nested c, t, $, £, Operator, Nodepointer, and

Operands. The precise Meaning of these fields t* of no concern here, but

the way this sequence can be represented in the Machine is. The data type

environment for this structure is

BOOLEAN • {true, false}

OPERATORS • (f : 0 < I < 256}

NODE.LIST • ft<(some sequence form))

COOE.LIST M Q<(some sequence form))

-13-

This information is sufficient for the compiler to deduce that the struc­

ture can be packed in one forty-eight bit Maniac word. Specifically, for

instance, C, t, S, and A being Boolean quantities can each be represented

in one bit; the Operator field has a universe of 256 natural numbers hence

can occupy eight bits; and Nodepolnt/er and Operands are each sequences

whose codewords can be eighteen bit pointers. Of course, it is true that

the choice of this data structure was guided by an intimate knowledge of

the Maniac computer and its compiler for Madcap. However, the fact remains

that the data structure is independent of both the particular hardware and

particular coapiler. The Madcap program containing this data structure can

be executed under any system which has a faithful Madcap compiler. Once

again it is the concept of language-compiler separation which makes this

possible.

5. Conclusion

The primary conclusion of this paper is that an algorithmic language of

"sufficiently high level" can be of good use in accomplishing (perhaps, for

now, only specifying) machine-oriented tasks. Now, what features should such

a language possess? (This question is also discussed in Bergeron, et al [1]

at a more detailed and less idealistic level.)

First, a data structuring mechanism which allows tree-like or, more

generally, graph-like structures is needed because this apparently is the

natural form of the language-related data processed by compilers, editors,

and the like. Facilities for either copying or merely referencing all or

part of a structure also seem to be essential. (We have been very happy

with our decision to keep pointers per se out of Madcap [13].) Recursive

procedures are a very convenient tool for processing such graph-like data.

An environment concept, perhaps as occurs inherently in block structured

languages, helps a user sort out natural levels of parameterization and

thereby assists the compiler in determining effective storage allocation.

Some form of extensibility (of data types at least) is almost a necessity

because in systems programming as elsewhere it is a virtual impossibility

14-

to anticiprte all of the data forms and the operations upon them that will

be needed [l]. Incidently, in a typed language as is being advocated here,

the handling of structures such as memories and stacks which can contain ele­

ments of various different types requires some form of type combination.

Algol 68 allows unions of types; Madcap has a type called UNIVERSE which is

equivalent to the set of values associated with all possible constants of

the source language.

The most important control structures are sequential execution, itera­

tion, and if-then-elee conditionals. Less used, but important is the ease

construction (in Madcap this is an indexed sequence of expressions). Al­

though this author has had little experience with them, it is quite likely

that decision tables [10], in some form, would be vary useful in certain

contexts, say in building a machine simulator. Neither go-to's nor escapes

are necessary nor desirable [6]. (This author now feels that no branch

instructions of any kind are desirable in an algorithmic language. Even

procedure returns or exits at places other than the end can too easily be

misused hence should not be made available.) Some coroutine and/or paral­

lel processing mechanism is needed, although it is this author's opinion

that associated language constructs which are sufficiently natural and

which satisfactorily hide implementation concerns do not yet exist.

Restrained use of comments and descriptive identifiers can greatly

aid the production of self-documenting programs. However, too many comments

or too long identifiers can require an excessive amount of page or line con­

tinuations and can destroy the important visible structure of a program or

expression.

Finally, while perhaps not essential, the inclusion of set-theoretic

notions in an algorithmic language seems to have considerable merit [2,11,

13,14]. This idea carries us still further in the direction of machine-

independent language. No longer is a machine imposed ordering essential to

the construction of our algorithms. For instance, at the algorithmic level,

& hashed symbol table is often merely an unordered set of symbols, to which

elements are adjoined or deleted, serving as a repository of items to be

processed later in some arbitrary order.

IS-

In scanning this list, one quickly notices that while all the itc?s

do have application to nachine oriented tasks none of then has application

only to such tasks. They indeed are worthwhile characteristics of a general

purpose language. In suanary, this author feels that we Mist begin exclu­

sively to associate algorithms with language, object code efficiency with

compilers and computers, and aachine-dependence with particular programs.

Mixing the* only produces "nod".

16.

REFERENCES

[1] Bergeron, R. D., J. D. Gannon, F. W. Tompa, D. P. Shecter, and A.

van Dam, "Systems programming languages", pp. 176-283 in Adoanoea

in Computers, Vol. 12, Academic Press, New York, 1972.

[2] Childs, D. L., "Description of a set-theoretic data structure",

pp. 557-564 (Part 1) in Proo. 1968 FJCC, Vol. 33, Thompson Books,

Washington, D.C.

[3] Clark, B. L. and J. J. Homing, "The systems language for project

SUE", pp. 79-88 in Proc. of Symposium on Languages for Systems

Implementation, SIGPLAN Notices, Vol. 3, No. 9 (October 1971).

[4] Johnston, J. B,, "The contour model of block structured processes",

pp. 55-82 in Proc. of Symposium on Data Structures in Programming

Languages, SIGPLAN Notices, Vol. 6, No. 2 (February 1971).

[5] Knuth, D. E., The Art of Computer Programing, Vol, 1: Fundamental
Algorithms, Addison-Wesley, 1968.

[6] Morris, J. B. Jr. and M. B. Wells, "The specification of program flow

in Madcap 6", pp. 28-35 in Special Issue on Control Stzuctures in

Programming Languages, SIGPLAN Notices, Vol. 7, No. 11 (November, 1972).

[7] Organick, E. I. and J. G. Cleary, "A data structure model of the B6700

computer system", pp. 83-145 in Proc. of Symposium on Data Structures

in Programming Languages, SIGPLAN Notices Vol. 6, No. 2 (February

1971).

[8] Sammet, J. E., "Brief survey of languages used in systems implementa­

tion", pp. 2-19 in Proc. of Symposium on Languages for Systems Imple­

mentation, SIGPLAN Notices, Vol. 3, No. 9 (October 1971).

[9] Sammet, J. E., "Madcap", pp. 271-281 in Programming Languages: History

and Fundamentals, Prentice-Hall, Englewood Cliffs, N.J., 1969.

[10] Silberg, B. editor, Special Issue on Decision Tables, SIGPLAN Notices,

Vol. 6, No. 8 (September 1971).

-17-

[11] Schwartz, J. T., "Set theory as a language for program specification

and programming", Courant Institute of Mathematical Sciences, New York

University, 1970.

|12] Weils, M. B., Elements of Combinatorial Computing, Pergamon, Oxford,

1971.

(15] Wells, M. B. and J. B. Jorris, "The unified data structure capability

in Kadcap 6", pp. 193-208 in International J. of Computer and Informa­
tion Soienoes, Vol. 1. No. 3 (September 1972).

[14] Wirth, N., "The programming language Pascal", pp. 35-63 in Aota Infor-
matioat Vol. 1 (1971).

[15] Woodger, M., "On semantic levels in programming", TA3 pp. 79-83 in

Proo. IFIP Congress 1971, North Holland, 1972.
[16] Wulf, W. and Mary Shaw, "Global variable considered harmful", pp. 28-

34 in SIGPLAN Notices, Vol. 8, No. 3 (February 1973).

-IS

1-

b

42 1s the memory size—k exists from a higher environment. {

ADDRESS.SPACE = {h: 0<h<2 k}

^loc^iCQMPONENT. SPACE = 2
ADDRESS,SPACE

INDICATOR" {-1, +1}

e $ e * «POWER • {2h: 0<h<k+l}; x: @ ADDRESS.SPACE; y: @ POWER;

x + (If x mod 2y • 0: y else: 0) >

{Assign expression values to get and free.I

get «- « 50823 »

free *• « §0824 >

{Initialize the Ablocks sequence.{

Ablocks « -<{ } @ Ablocks.COMPONENT.SPACE: 0 < h < k >

Ablocksk - {0 @ ADDRESS.SPACE}

{Call get.{

{n Indicates the size, 2 n, of a desired block.{

get.gutp.ut *• get(n, Ablocks, "OK")

1 +• get.outputp

If 1 - -1: "handle error"

else: "1 1s the address of the available block"

{Call free.*

{1 1s the address of the block to be freed.{

ft§§i2y$l?y$ *" freeO, n, Ablocks)
If free.outputs = -1: "handle error"

else: "the block has been freed"

Figure 1: Environment for get and free

-19-

http://get.gutp.ut

get *- «

n: G ADDRESS.SPACE; A: @ flAblocks; Message: @ STRING

1 «--l

If n < 0 : Message «- "n<0"

else: If n > k: Message <- "n>k"

else:

H «- @ ADDRESS.SPACE

for n < h < k » *h f {> until H exists:

H<- h

1f i H exists:

Message +• "no area of size 2 n allocatable"

else:

1 «- MIN J^; l^ *• lH ~ {1}

for n < j < H: A. <-A. u {1+2^}

<1, Message >

»

Figure 2: The get procedure

-20-

free «- «

(1,n): @ ADDRESS.SPACE; V. 0 nAblocks; 0ut:fi<<3 INDICATOR, @ STRING)
Out- <+l, "OK")

ff n < 0: Out - (-1 , "n<0">
else: if n > k: Out <-<-l, "n>k")
else:

for n < h < k as for t *• false until t: *-.
If 1 e *h:

Out *- <-l , "area already free"); t <- true
else:

OUT

»

£ h - £ h U { i }

mod 2h + 1

Out *• <-l , "1 $q • 2n(some q)"); t <- true
if i mod 2h + 1 * {0, 2h}:

else:
b •• 1 © 2h tf> is the buddy of 1$
if b e *h:

* h - * h ~ { i , b }

i «-MIN(1, b)
else:

t *- true

Figure 3: The free procedure

-21-

