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Abstract 
Radar imaging and detection of objects buried in soil has potentially 
important applications in the areas of nonproliferation of weapons, 
environmental monitoring, hazardous-waste site location and assessment, 
and even archeology. In order to understand and exploit this potential, it is 
first necessary to understand how the soil responds to an electromagnetic 
wave, and how targets buried within the soil scatter the electromagnetic 
wave. We examine the response of the soil to a short pulse, and illustrate 
the roll of the complex dielectric permittivity of the soil in determining 
radar range resolution. This leads to a concept of an optimum frequency 
and bandwidth for imaging in a particular soil. We then propose a new 
definition for radar cross section which is consistent with the modified 
radar equation for use with buried targets. This radar cross section plays 
the same roll in the modified radar equation as the traditional radar cross 
section does in the free-space radar equation, and is directly comparable to 
it. The radar cross section of several canonical objects in lossy media is 
derived, and examples are given for several objecdsoil combinations. 
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1. Introduction and Summary 
The imaging of objects buried in soil has potentially valuable applications in several diverse areas, 
such as nonproliferation of weapons, environmental monitoring, hazardous-waste site location 
and assessment, and even archeology. In order to understand and exploit this potential, it is first 
necessary to understand how the soil responds to an electromagnetic wave, and how targets 
buried within the soil scatter the electromagnetic wave. A previous study [ 13 addressed the issue 
of imaging buried objects in the presence of surface clutter. It showed that an optimum frequency 
exists, which depends on soil characteristics, burial depth, clutter characteristics, and target type. 
Although the frequency dependence of the dielectric permittivity of the soil was included at the 
synthetic-aperture radar ( S A R )  center frequency, dispersion of the frequency components within 
the compressed pulse was not included in the analysis. 

The two-way impulse response of the soil is important in determining the best operating frequency 
and bandwidth for a subsurface-imaging SAR. Because of dispersion and loss in the soil, the 
impulse response is distorted from the free-space impulse response. The following conclusions 
can be drawn from examination of the soil's impulse response: 

0 an optimum bandwidth exists; 
0 

0 

0 

0 

0 

loss increases as bandwidth increases; 
very large bandwidths are not usefbl for imaging objects at large depths; 
in the absence of additional processing, contrast is reduced as depth increases; 
vertical polarization is best for large angles of incidence; 
in the absence of surface clutter, lower frequencies seem best. 

In addition to understanding the impulse response of the soil, it is necessary to compute the radar 
cross section for simple objects buried in lossy media. For convenience, the radar cross section is 
defined to have a meaning similar to, and consistent with, the free-space radar cross section used 
with conventional radar analysis. In [ 11, the radar cross section of buried objects was modeled as 
the radar cross section in free space, but scaled according to the wavelength in the soil. Here, a 
more precise model is given. It is shown that, to first order, the scaled model used in [ 11 is 
reasonable. 

For buried objects, a modified form of the radar equation will be used 

where P, is the transmitted power, G,, G, are the gains of the transmitting and receiving antennas 
respectively, &, I$ are the total ranges (including both the fiee-space and underground paths) to 
the target object from the transmitter and receiver respectively, o, is the object's radar cross 
section in the lossy media, h is the signal wavelength,, To,, and T,o are power-transmission 
coefficients from one media to the other, and L( &,,), L( &,,) are the power-propagation-loss 
coefficients along the respective paths, 42, q2 from the surface to the object. Here, the radar 
cross section is designated CT, to distinguish it from the free-space radar cross section o. 

7 



A new definition of radar cross section is required to properly account for the loss in the media, 
and to allow the losses to be factored as shown in the modified radar equation. The new 
definition for radar cross section is 

where k is the complex wave number, a is the distance from the coordinate origin to the dominant 
specular point of the target, and E, is the scattered electric field vector. This definition is 
independent of the object's depth, is consistent with the usual definition for the free-space radar 
cross section, and can be directly compared with the free-space cross section. Note, however, 
that while the definition is independent of the object's depth, the scattered field, Es, may not be. 
We argue that, for many cases of interest, the scattered field can be computed independently of 
the depth and retain very good accuracy. 

The radar cross section for several types of buried objects is derived: flat plates, cylinders, and 
spheres. These models for radar cross section will find considerable utility in estimating target 
brightness using the radar equation. However, the complex scattered field is required if the phase 
history for a SAR image is to be computed. In addition to the radar cross section, expressions for 
the complex scattered field are also included. Thus, a consistent set of models are derive:d which 
can be used with the simple radar equation, or used to generate a complex phase history of buried 
objects. 

Several conclusions can be drawn from the new definition of radar cross section and the models 
derived for buried objects: 

0 

0 

0 

0 

the appropriate depth for computing losses is the depth to the dominant speciilar 
scattering point on the object; 
free-space radar cross sections scaled by the wavelength in the lossy media provide 
reasonable estimates of the object's buried radar cross section; 
multiple scatterer interactions are less significant for objects buried in lossy media; 
with the new definition, the radar cross section of a buried object behaves much like 
intuition would predict. 

2. Band-limited impulse response of lossy media 
The band-limited two-way impulse response described here includes both dispersion (phase) and 
frequency-dependent loss, which are characteristics of soils. The two-way impulse response 
includes the Fresnel transmission coefficient at the air-soil interface (into and out of the soil) as 
well as two-way propagation to a given depth in the soil. 

The band-limited impulse response is obtained by a Fourier transform of the frequency-dlomain 
response of the soil over the appropriate bandwidth, when illuminated by a plane wave. Fig. 1 
shows the geometry in which the response is referenced. The half space above the 2 - S plane is 
free space (eo,  po), and the lossy, dispersive half space below is homogeneous soil (es, p,). 
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(XIY,Z) = (OIOld) ! 
Fig. 1 Geometry illustrating a plane wave incident upon a planar air-soil interface. 

Wave numbers are defined in each medium 
0 

C 
k,, = - = 2nf ,/=, 

and 

wherefis the instantaneous frequency. The complex angle of refraction, e,, is related to the 
incident angle, 6, , through Snell's law 

k0 
kS 

sin 0, = -sin 0,. (3) 

The real angle of refraction, wT , is the angle between the normal to the constant-phase planes and 
the z-axis [2], and is given by 

1- Re( ko ) sin 8 
Re(k,)Re(cose,) - Im(ks)Im(cos8,) 

wr = Tan-' (4) 

The free-space path to the point of refraction is shorter than the reference free-space path to the 
coordinate system origin by an amount 

Ar = d tan w, sin 8, 
The two-way band-limited impulse response (referenced to the origin) is 
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and 

I 

(7) 

(9) 

The impulse response (6) accounts for both the dispersive and frequency-dependent loss 
characteristics of the soil, and is normalized so its peak is unity when k, = k,, . 

The quantity plotted in the examples, called the magnitude of the impulse response, is 

I,(d = 20log(ll(t)l). (10) 

Thus, the peak value of I J t )  corresponds to the two-way loss in dB to a point scatterer buried 
at depth d in  the soil. Four different soil types will be examined in the examples that follciw. The 
model for the soil dielectric constant is described in Appendix A and in [l]. The soils are listed in 
Table 1. 

Table I 
Soil Models 

Soil Model Number Description Relative Loss 
1 Dry Sand Very Low 
2 San Antonio Clay Loam Moderate 

5% Water by Weight 
3 San Antonio Clay Loam High 

10% Water by Weight 
4 San Antonio Clay Loam Very High 

20% Water by Weight 
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2.1. Impulse Response of Dry Sand 
Fig. 1 illustrates the magnitude of the impulse response ( I d B ( t ) )  for the dry-sand model contained 
in 113. Note that the pulse width, as well as the attenuation, increases as the target depth 
increases. The 3-dB and 10-dB pulse widths are plotted in Fig. 2. The increase in width is not 
linear with depth for shallow depths, but becomes essentially linear for larger depths. 

Fig. 1 

Fig. 2 

0 100 200 300 400 
Time (nsec) 

Magnitude of the band-limited (1 KHz 5 f 2 1 GHz) impulse response for dry 
sand for several depths. 

5 10 15 20 25 30 0 
Depth (meter) 

Width of the band-limited (1 KHz 5 f 5 1 GHZ) impulse response in dry sand 
as a function of depth. 
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2.2. Impulse Response of San Antonio Clay Loam With 5% Water 
The effects of dispersion and loss are much more pronounced in the San Antonio clay loaim with 
5% water by weight. The two-way impulse response is illustrated in Fig. 3 for several depths. 
The 3-dB and 10-dB widths are plotted in Fig. 4. Note that the maximum depth shown is 5 m 
rather than 30 m shown for the sand. Again, the pulse widths show a nonlinear increase ars depth 
increases. 

-20 

-30 

-40 

-50 

-60 

-70 

-80 
10 20 30 40 50 60 70 80 90 100 0 

Time (nsec) 

Fig. 3 Two-way impulse response of San Antonio clay loam with 5% water for 
various depths. 

Fig. 4 Width of the impulse response in San Antonio clay loam with 5% water as a 
fbnction of depth. 
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2.3. Effect of Increased Water Content 
As the water content is increased, both the losses and dispersion increase. Fig. 5 shows the 
impulse response for a depth of 1 m in San Antonio clay loam with 5%, lo%, and 20% water by 
weight. The increased broadening of the pulse, and the reduced contrast are very apparent as the 
water content increases. The 3-dB and 10-dB pulse widths are shown in Fig. 6 as a function of 
water content. 

160 

140 

CI 120 

c 100 

0 
Q) 
u) - 
8 60 

t~ 40 
- 
=I 

20 

0 
4 6 8 10 12 14 16 18 20 

Water Content by Weight (percent) 

Fig. 6 Impulse response width for San Antonio clay loam at a depth of 1 meter for 
various water contents. 
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2.4. Comparison of Different Bandwidths 
Because the loss increases significantly with frequency, the soil is effectively a low-pass filter. 
Very little advantage is gained from very large bandwidths. Fig. 7 presents the band-limited 
impulse responses for four different bandwidths (from about 50 MHz to 1 GHz) at a depth of 5 m 
in San Antonio clay loam with 5% water. There is little difference in the pulse shape for 1 GHz, 
500 MHz, and 100 MHz bandwidths. The response with 50 M H z  bandwidth is beginning to 
show significant pulse broadening due to insufficient bandwidth. Thus, it appears that a 
bandwidth which minimizes loss without sacrificing resolution is probably around 50 to 100 MHz 
in this soil. 

Fig. 7 

Fig. 8 
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Band-limited impulse response for several bandwidths at depth of 5 m in Sari 
Antonio clay loam. 
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Band-limited impulse response for three bandwidths at a depth of 10 m in San 
Antonio clay loam with 5% water. 
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As the depth is increased, usefil bandwidths become smaller, and the usefil spectrum is shifted to 
the lower fiequencies. Fig. 8 shows the band-limited impulse response for three different 
bandwidths at a depth of 10 m in San Antonio clay loam with 5% water by weight. Here, the 
incident angle has been changed from normal incidence (0, = 0") to 0, = 60°, causing a difference 
between the polarization responses. Vertical polarization shows nearly 5 dB advantage over 
horizontal polarization. More than 15 dB additional loss is suffered with the 5-15 MHz impulse 
when compared to the 1-10 MHz impulse, even though the bandwidth is almost the same. This is 
due mainly to the higher center frequency, 10 MHz, as compared to 5.5 MHz. Increasing both 
the center frequency and bandwidth to 3-30 MHz improves the resolution with surprisingly little 
additional loss (<2 dB) compared to the 5- 15 MHz impulse. 
2.5. Additional Comments 
The results reported here illustrate the band-limited impulse response of the soil alone. The 
effects of surface clutter are not included. As shown in [3], in the presence of surface clutter, the 
return from a buried object may be difficult to separate from sidelobes of the surface-clutter 
return. The need for low loss favors low frequencies and small bandwidths, while the need to 
reduce surface clutter favors large bandwidths and thus higher frequencies [ 11. Additional insight 
and understanding could be obtained by including the clutter return, including loss-compensated 
window fhctions (such as described in [3]), and then searching for optimal bandwidths and 
center frequencies as in [ 11. 

' 

3. Definition of Radar Cross Section in Lossy Media 
The scattered field used in the definition of the radar cross section, ow, will be based on uniform- 
plane-wave scattering from an object in an infinite media. In reality, the scattered field from a 
buried object depends on the interaction with the interface between the lossy media and the air. 
This interaction can be thought of as multiple reflections between the object and the interface. In 
a lossy medium, these multiple reflections quickly attenuate to insignificant levels. If they were 
included in the computation of the radar cross section, it would necessarily be dependent on the 
depth of burial. However, since it is desirable that the radar cross section, op , be independent of 
the depth of burial, and since the multiple reflections quickly attenuate to insignificant levels in the 
lossy medium, they will be ignored. 

In addition, when a uniform plane wave is incident upon the air-media interface, the transmitted 
wave becomes nonuniform. However, when the angle of incidence is not too large, the 
nonuniform plane wave below the surface is nearly uniform. To the extent that this is true, the 
scattered fields computed here are a good approximation. However, if the computation for the 
scattered electric field, Es, includes the interaction with the interface and the nonuniformity of the 
plane wave, then the definition for o, will contain no approximations. In this case, the radar 
cross section will become dependent on both the burial depth and the angle of incidence. 
3.1. The Radar Equation 
In estimating the performance of a conventional radar, the received power P, scattered from an 
object in free space is computed from the radar equation, 
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G, CT G,h2 P,=p,-----, 
4e24nR,2 471 

where P, is the transmitted power, G,, G, are the gains of the transmitting and receiving antennas 
respectively, 8,  R,. are the ranges to the target object fi-om the transmitter and receiver 
respectively, 0 is the object's radar cross section, and h is the signal wavelength. The most 
common application of this equation is for a monostatic radar where G, = G, = G and 
R, = R, = R. The radar cross section, 0, is defined in the context of the radar equation, and it 
only really has meaning in this context. It is defined to be the proportionality constant between 
the incident power density at the object and a total scattered power. This total scattered power is 
not the true total power scattered from the object, but is the total power necessary to be scattered 
from an isotropic scatterer which produces the same power density at the receiver as the actual 
object. 

When computing the radar cross section for some object, the approach is to compute the 
scattered field E, when given the incident field gi. Common practice is to let the incident field be 
a plane wave, and reference the cross section to the far field so that 

3.2. Modification of the Radar Equation for Lossy Media 
In dealing with buried objects, the definition of radar cross section is more problematic. 
Nevertheless, it is still desirable to define a radar equation similar to (1 1). Referring to Fig. 9, one 
sees that the computation of the scattered field is complicated by the interface between the two 
media. Because of the interaction between the object and the interface, the scattered field will 
contain a dependence on the burial depth, d, which is more than simply a propagation loss. 
However, if it is assumed that the object is buried deep enough in lossy media, the interaction 
between the object and the interface will be small, and it can be ignored. In this case, it makes 
sense to define a radar cross section for the object embedded in lossy media of infinite extent. 

A radar equation will be defined as follows 

where R = R, + 4, qJ and T,o are power-transmission coefficients from one media to the other, 
and L ( 4 )  is the power-propagation-loss coefficient along the path from the surface to the object. 
Here, the radar cross section is designated 0, to distinguish it from the fi-ee-space radar cross 
section CT. This radar cross section appears to have basically the same meaning in (13) as, the free- 
space cross section, o, in (1 1). In fact, it has been intentionally defined to be independent of 
depth so that it can be compared directly with the free-space radar cross section. It will, however, 
depend on the constitutive parameters, p and E for the media. It is also understood that oF is an 
approximate radar cross section in that it ignores the effects of the interface between the two 

4 
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media. This approximation is good for objects buried in lossy media at a depth where the losses 
make the interaction terms unimportant. 

Fig. 9 Arbitrary object buried in a lossy half space is illuminated by airborne radar 
3.3. New Definition of Radar Cross Section in Lossy Media 
The radar cross section, op, will be computed for an object in a lossy full space. However, when 
the radar cross section is computed fi-om the scattered field, the traditional definition (12) cannot 
be used. The losses must be carefblly factored from the definition of the cross section since they 
are explicit factors in (1 3). An additional problem arises with the plane-wave illumination, since a 
finite amplitude at the origin implies an infinite amplitude at the limit r + 00.  In fact, if the 
definition (12) is used, the radar cross section would be zero. Thus, the radar cross section must 
be normalized in such a way as to remain finite and be consistent with (13). If this is done 
properly, the new radar cross section will be similar to the free-space radar cross section, and they 
can be directly compared with each other. 

An appropriate solution is to measure the distance 4 to the dominant specular point on the 
object, to reference the incident-illumination amplitude to this point, and to factor from the radar 
cross section the loss along the path measured fiom the dominant specular point to the radar. 
With the new definition for radar cross section, which correctly accounts for the loss, crw will be 
given by 

where 1 is the vector fi-om the coordinate-system origin, typically located within the object, to the 
dominant specular point. The radar cross section, op , defined by (14) is consistent with the fiee- 
space radar cross section, 0. Since there is a tendency to compare the cross section of a buried 
object with its free-space counterpart, this definition is more desirable than a definition which is 
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dependent on burial depth. However, it must be emphasized that this definition does not include 
the interaction between the object and the interface. 

Unfortunately, the correct choice for the dominant specular point may not always be obvious. It 
is possible to choose ii in such a way that the radar cross section as given above will increase (or 
decrease) exponentially as the object size is increased, counter to intuition derived from 
experience with free-space radar cross sections. However, if the losses in the modified r<adar 
equation are computed to this same point, the computed received power will be correct. The only 
consequence of a poor choice for the dominant specular point is that the radar cross section no 
longer behaves intuitively, and it can no longer be compared directly to the fi-ee-space radar cross 
section. 

A hrther complication is associated with the fact that the plane-wave illumination in the lossy half 
space becomes a nonuniform plane wave for nonnormal incidence. The plane wave is preserved 
for normal incidence, however, and this case will be treated initially. In addition, the normal to 
the constant-phase planes will be bent toward the normal to the interface, the amount of bending 
increasing as the index of refraction, q = G, increases. When the index of refraction is large 
enough and the incident angle, w, is small, the constant-phase planes will be nearly parallel to the 
interface. Thus, since the planes of constant amplitude are almost parallel to the plane of the 
interface, the uniform-plane-wave approximation will be reasonable when the media has a large 
index of refraction, and the angle of incidence is not too large. 

The approximations can be removed simply by computing the scattered field, Es, with a method 
that includes the interaction with the interface and the effects of the nonuniform plane wave. In 
addition to the added complexity of the computation, this approach would have the drawback that 
the radar cross section will no longer be independent of burial depth or incidence angle. 
However, the definition (14) is still the appropriate definition for use with the modified radar 
equation (1 3), even when the exact scattered field is used. 

4. Radar Cross Section of a Conducting Flat Plate Embedded in Lossy 
Media 

The first object to be considered is scattering from a three-dimensional, perfectly conducting, 
rectangular flat plate that is illuminated by a uniform plane wave, and that is embedded in an 
infinite, lossy medium. Various approaches for calculating the scattering from a flat plate in free 
space have been successfdly applied; the solution derived here parallels the physical optics 
solution outlined by Balanis [2]. 

As depicted in Fig. 10, the flat plate has length equal to a and width equal to b. As shown in Fig. 
11, the incident plane wave is assumed to have TEX polarization (electric field transverse to the i - 
axis) and lies on the f - 2 plane. The incident electric and magnetic fields can therefore be 
written as 

E' = q~,(?cose, + ssin ~,)e-~(YSlne~-ZCOSeJ (15) 
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where the propagation constant y is defined as 

Y = P - @  , 
in which the real part P is interpreted as the phase constant, and the imaginary part a is the 
attenuation constant. 

Fig. 10. Uniform plane wave incident on perfectly conducting, rectangular flat plate 
embedded in lossy media. 

Fig. 1 1. TEX-polarized uniform plane wave incident on flat plate in - 2 plane. 

19 



The total scattered fields are given by 
- - 1 1 E" = - j o A  - j - V (  V A) - -V x P 

QClE E 

- 1 -  - 1 
H " = - V x A - j o F -  j -V(V-F) ,  

where A and F are the magnetic and electric vector potentials, respectively, which can be 
calculated using the expressions 

P OPE 

and 
e-iY' F = -jjlM(x',y',z')-dv' E , 

47c r 

in which 5 and M are electric and magnetic current densities. 

In the far field, the expressions for the electric and magnetic fields simplifj considerably. The 
radial components of the E and H fields become negligible, and it has been shown that the far- 
field components can be written as [2] 

E, 0 (22) 

(23) 

(24) 

E, E -jo[A, + qF,] 

E, E -jo[A, - q&] 

and 
Hr 2 0  (25) 

in which the vector potential components have also simplified to 
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& 
The factors Ne , N+,  Le, and L+ are expressed as 

For this particular problem, the magnetic current density (M) is zero, such that Le = L+ = 0. 
Using the physical optics approximation, the current density ( 5 )  induced on the surface of the 
plate by the incident plane wave can be represented as 

5, = 22 x H i  = f2Hoe -&sinei 
Y=Y' 

The expression given in (36) is exact for a plate of infinite extent, but neglects edge effects for 
finite plates. The radar cross section predicted by this technique therefore becomes less valid 
toward grazing incidence of plane waves. A hrther drawback in using the physical optics 
approximation to calculate the monostatic radar cross section for a flat plate is that the values 
calculated are polarization independent; that is, the calculated RCS for both TEx and TMX 
polarizations are equivalent, despite the fact that measurements have shown this to be incorrect, 
especially near grazing incidence. Nevertheless, physical optics techniques provide results that are 
quite accurate at and near specular directions [2], and provide a straightforward means of gaining 
a greater understanding of the scattering behavior of objects (i.e., flat plates) embedded in lossy 
media. 

Combining (22) - (36) allows the scattered field components to now be expressed as follows: 

E, z 0 (3 7) 

Hr z o  
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Using (32) and the result from (36) that Jx = J y  = 0, Ne can be expressed as 

The integrals included in this expression are of the form 

From [SI, it is known that 
em l e m  sin pzdz = (asinpz-Pcospz), 

a2 +p2 

(a cos PZ - P sin P Z )  
euz j euz  cospzdz = 

a2 +p2 
Using these relationships, it can be shown that 

(44) 

(45) 

(47) 

The use of (47) allows the integrals in the expression for Ne to now be easily evaluated. That is, 
setting 

dY' Y 

b12 jW'(-sinei+sine,sin+,) ~ = j  -bl2 e 

and letting 
p'= P(sin e, sin +, - sin e i )  (49) 

a'=a(sinO,sin+, -sinei) , (50) 

the results of (47) allow the integral in (48) to be evaluated by observation, giving the result that 

= [ -$a*+jp) $a*+ip) j e  -e PI- ja' 
The second integral in the expression for Ne can be similarly evaluated by setting 

and letting 
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z 

L 

PI'= fl sin 8, cos$, 

a"= a sin 8, cos$, , 
such that 

The final expression for N ,  can therefore be written as 

N ,  = 2H0XY cose, sin 4, . 
Using these results, the expression for N+ can also now similarly be written as 

N+ = ~HJYcos~,  , 

( 5 3 )  

(54) 

( 5 5 )  

( 5  7) 
Having solved for N,  and N+, the scattered fields are then obtained using Equations (37) - (42), 
such that 

E, z 0 

H, z 0 

As seen in Fig. 10, the plane of the incident electromagnetic field for this problem is defined as 

3n 4.  =- 
' 2 '  

n o l e .  < - .  
' - 2  

For the purposes of this study, the interest is in monostatic backscattering from the plate, meaning 
that 

3n: 
2 

4, = $i = -, e, = ei . 
3 x  
2 

From (60) it can be seen that in the backscattering direction (4, = -), E; z 0; hence, the total 

backscattered field (E') is equivalent to E;. It must also be noted that the factor Xin Equation 
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3n: 
2 

(59) requires hrther investigation, since at 4s = -, X + O/O. Letting f(+,) = numerator ofX, 

g(4,) = denominator of X,  substituting in for a" and p", and invoking L'Hospital's rule, it can be 
found that 

such that X 3rr -+ a .  Similarly, it may be seen from (51) that L'Hospital's rule must also be 
e*=- 

2 

invoked to ascertain the value of the factor Y at normal plane wave incidence (8, = 00). By doing 
so, it can be found that $ -os 4 b . The backscattered electric field can now be expressed as 

5 -  

where Y is as given in Equation (5  l), with (since 8, = e i )  
p'= -2Psin 0, 

a'= -2ctsin 6, . (66) 
Utilizing the new definition of radar cross section as given in (14), in which the amplitude of the 
incident plane wave illumination is referenced to the dominant scattering point, the radar cross 
section of the flat plate can thus be expressed as 

The factor d in  (67) is defined as the distance from the coordinate system origin (center of the flat 
plate) to the dominant scattering point of the target. When the plate is oriented normally to the 
direction of the incident wave (0, = 0, = 0), a specular reflection occurs, and d = 0. However, as 
the incidence angle varies from 6, = 0, the dominant source of energy scattered back to the radar 
is that diffracted from the edges of the flat plate, such that 

b .  d = -sine, . 
2 

4.1. Calculated Radar Cross Section for Buried Fiat Plates 
Fig. 12 - 15 show the calculated radar cross section for a 5h x 5h (h  = free space wavelength) 
rectangular flat plate embedded in four different types of lossy soil (as defined in Table 1) as a 
hnction of aspect angle (-7d2 I 0 5 x / 2 )  at a frequency of 1.0 GHz. Fig. 16 compares the 

i 

A 

1 

4 
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calculated radar cross section for the same 5h x 5h flat plate located in a lossless medium (free 
space) with the calculated radar cross section of the plate embedded in soil 4. 
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Fig. 3. Principle plane monostatic radar cross section for a 5h x 5h rectangular flat 
plate embedded in dry sand. 
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Fig. 4. Principle plane monostatic radar cross section for a 5h x 5h rectangular flat 
plate embedded in San Antonio clay loam with 5% water. 
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Fig. 14. Principle plane monostatic radar cross section for a 5 h  x 5 h  rectangular flat 
plate embedded in San Antonio clay loam with 10% water. 

50 
40 
30 
20 
10 
0 

-1 0 
-20 
-30 
-40 
-50 

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90 
Observation Angle--Theta (degrees) 

Fig. 15. Principle plane monostatic radar cross section for a 5 h  x 5 h  rectangular flat 
plate embedded in San Antonio clay loam with 20% water. 
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Fig. 16. Comparison of principle plane monostatic radar cross section of a 5h x 5h 
rectangular flat plate embedded in free space vs. San Antonio clay loam with 
20% water. 

In the course of examining Fig. 12 - 16, it becomes immediately obvious that, counter intuitively, 
the maximum of the scattered field from the flat plate embedded in the lossy media becomes larger 
as the loss factor increases, and in all cases is larger than that of the flat plate in free space. This 
is readily explained, however, by noting that thephysical size specified for the flat plate in each 
simulation was the same, whereas its electrical size increased as the loss factor of the soil 
increased. That is, 

1 
, - ‘soil - 

f f&’ effechve 

where E and p are the complex constitutive parameters (permittivity and permeability, 
respectively) of the media in which the plate is embedded, and f is the frequency of operation. It 
is therefore clear that as the loss factor of the soil increases and 1 ~ 1  becomes larger (p is assumed 
in the above cases to be equal to that of free space: 4x x lO-7), hefictive becomes smaller, and the 
electrical size of the flat plate increases. From (67) it is therefore seen that the scattered field for 
normally incident plane waves will similarly be larger. 

The second observation that can be made from the above plots is that the sin(x)/x pattern that 
typically characterizes the radar cross section of a flat plate (in free space) versus aspect angle is 
progressively attenuated for the flat plate embedded in soils 1, 2, 3, and 4, or in other words, as 
the loss factor of the media increases. This may be understood by observing that the sin(x)lx 
pattern is generated by the energy which is scattered fiom the two edges of the flat plate that are 
parallel to the 2 -axis interacting in a constructive and destructive manner. That is, as the phasing 
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between the diffracted energy from the edges varies in conjunction with the variation in aspect 
angle of the plate, a pattern of peaks and nulls occurs. In a free space medium, the magnitude of 
the diffracted energy from each of the edges is essentially equivalent, such that destructive 
interference produces deep nulls in the RCS pattern. In a lossy medium, however, the diffracted 
energy from the far edge of the flat plate (with respect to the radar) is significantly attenuated in 
comparison to the energy scattered from the near edge. Therefore, as the aspect angle of'the 
plate is varied from normal incidence such that the relative distance between the edges increases 
(with respect to the radar) and the amplitude of the scattered energy from the far edge is 
significantly reduced with respect to the near edge, the RCS of the plate becomes dominated by 
the scattering from the near edge, and the interference pattern dampens out. 

This phenomena is well-illustrated by Fig. 17- 18. Fig. 17 is a 4096-point IFFT of the stepped 
frequency response (0.5 - 2.0 GHz) of a rectangular flat plate (a = b = 59.02 inches) in free space 
oriented at an angle of 8i = 8, = 30" with respect to the radar. The scattering fiom the two edges 
is clearly resolved, and the amplitude of the diffracted energy from each of the edges is seen to be 
equivalent. Fig. 18 is a 4096-point IFFT of the stepped frequency response (0.5 - 2.0 GHz) of the 
same rectangular flat plate (a = b = 59.02 inches) oriented at an angle of Oi = 8, = 30' with 
respect to the radar, but embedded in San Antonio clay loam with 5% water. Again the scattering 
from the two edges is clearly resolved; however, the energy diffracted from the far edge of the 
plate is highly attenuated (by - 40 dB) in comparison to that of the near edge. It therefore 
becomes clear as to why the interference pattern disappears. 

Fig. 17. One-dimensional image of scattering from rectangular flat plate (a = b = 59.012 
inches) located in free space and oriented at angle of 30" with respect to radar. 
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Fig. 18. One-dimensional image of scattering from rectangular flat plate (a = b = 59.02 
inches) embedded in San Antonio clay loam with 5% water and oriented at 
angle of 30" with respect to radar. 

As a final observation, the fact that scattering from the far edge of the flat plate is highly 
attenuated relative to scattering from the near edge of the plate leads one to conclude that the 
process of attempting to identi@ objects embedded in a lossy medium by means of a 
"characteristic" radar cross section signature may be a very difficult task. Since physical objects 
of even modest complexity are typically composed of a number of scattering centers which are not 
equidistant in space relative to the illuminating radar, the radar cross section of an object 
embedded in a lossy medium will change dramatically fkom its analogous free space value (as has 
been seen), and the measured value will be highly dependent not only on the orientation of the 
object, but also on the constitutive parameters of the medium. 

5. Radar Cross Section of a Perfectly Conducting Circular Cylinder 
Embedded in Lossy Media 

5.1. TMZ Polarization 
The second object to be considered is scattering from a two-dimensional (infinitely long), 
perfectly conducting circular cylinder having a radius of a that is illuminated by a uniform plane 
wave and that is embedded in a lossy medium. Cylinders are an important class of geometrical 
objects to consider, since they are representative of a wide range of practical scatterers, such as 
missiles, fkselages, storage tanks, pipelines, etc. The exact solution for scattering from a two 
dimensional cylinder in free space is well known and can be found in several references. The 
derivation given here parallels those given in [2] and [9]. 
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To begin, it is assumed that a normalized plane wave traveling in the +i direction is incident upon 
the cylinder as shown in Fig. 19. This plane wave is TMZ-polarized, and can be represented as 

E' = z o e - n x  , (70) 

where the propagation constant y remains as previously defined in (1 7). In calculating scattering 
from the cylinder, it is convenient to express this rectilinear form of the incident plane wave in 
terms of cylindrical wave functions, since the surface of a cylindrical structure is most 
conveniently defined using cylindrical coordinates. It has been shown [2,9] that the plane wave 
can in fact be expressed as an infinite sum of cylindrical wave fbnctions, such that 

1 

where J ,  ( yp) is an n*-order Bessel function of the first kind, and n is an integer. 

Fig. 19. Uniform plane wave incident on perfectly conducting circular cylinder 
embedded in lossy media (TMZ polarization). 

The total field that exists with the conducting cylinder present is given by 
E t  = E' + a s  , 

where E' is the scattered field. Since the scattered field travels in the outward direction away 
from the cylinder, it can be expressed using the same form as the incident field, but with Hankel 
functions replacing the Bessel fbnctions, such that 

f 

m 

E' = i~~ j - " a , ~ f ) (  yp)ejn+ (73) 
n=-rn 

in which a, represents the as yet unknown amplitude coefficients of the cylindrical wave 
functions. These coefficients may be solved for by utilizing the boundary condition that the total 
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field at the surface of the cylinder must be equal to zero (since the cylinder has been chosen to be 
perfectly conducting); that is, 

Et = SE'(p = a , O I +  I2x) = 0. (74) 

Therefore, combining (72), (73), and (74), 
m 

?Eo n=-m c [j-flej4(Jn(ya)+a,HF)(ya))]=0, 

such that 

The scattered field from the cylinder may now be written as 

where 
1 n=O 

2 n+O 

(75) 

For the purposes of calculating scattering from the cylinder in the far-field region, the large 
argument approximation for the Hankel fbnction can be used to reduce the expression for the 
scattered field. According to [ 5 ] ,  

where z is a complex number. This expression can be rewritten as 

such that in the far field, (77) can be expressed as 

For a two-dimensional target, the scattering parameter is typically referred to as the scattering 
width or radar cross section per unit length, and is conventionally expressed as [2] 
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However, in order to be consistent with the new definition for the radar cross section for an 
object embedded in a lossy full space as given in (14) in which the loss along the path from the 
dominant specular point of the object to the radar is factored out, the above expression for the 
scattering width must similarly be modified, resulting in 

where as before, a is the distance from the coordinate system origin to the dominant specular 
point of the object, and the amplitude of the incident wave is normalized to that at the specular 
point. In the case of the cylinder, the distance to the specular point is a, the radius of the cylinder. 
Substituting the expression for E' given in (81) into (83) provides the result for the TMz 
scattering width of the two-dimensional cylinder that 

As previously noted, for purposes of this study, the interest is in monostatic backscattering; as 
seen in Fig. 19, the angle + is therefore equal to 1 SOo, and the expression above can finally be 
written as 

where E, is as given in (78). 

5.2. TEZ Polarization 
The second problem of interest with regard to the cylinder is scattering when a TEZ-polarized 
plane wave is normally incident upon it as shown in Fig. 20. Again, the cylinder is assumed to be 
a two-dimensional (infinitely long), perfectly conducting circular cylinder having a radius of a, and 
is embedded in a lossy (full space) medium. It is most convenient in solving this problem to use 
the magnetic field to find the scattering width of the cylinder. Proceeding as before, then, the 
normalized plane wave is assumed to be traveling in the +f direction, and can be represented as 

Again, the total field that exists with the cylinder present is the sum of the incident and scattered 
fields, such that 
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where H" is the scattered field. The scattered field can be expressed using the same form as the 
incident field with Hankel fiinctions replacing the Bessel fiinctions (since the scattered field is 
traveling outward away from the cylinder), such that 

n=-w 

where b, are the presently unknown amplitude coefficients of the cylindrical wave fiinctions. The 
total magnetic field is therefore given by 

Fig. 20. Uniform plane wave incident on perfectly conducting circular cylinder 
embedded in lossy media (TEZ polarization). 

The boundary condition that may be utilized to solve for the coefficients b, is that the tangential 
component of the total electric field must go to zero at the surface of the cylinder since the 
cylinder is a perfect conductor. That is, 

&'(p = a,O I($ I 2 n )  = 0 

The electric field can be found using Maxwell's Ampere equation, 

c; 

which in this instance reduces to 

- t  1 E = - V x H t ,  
j m  
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since H' is composed solely of i - polarized components. Solving, then, for the 6 - polarized 
component of the total E field results in 

where the ' sign indicates a partial derivative with respect to the argument of the Bessel or Hankel 
function. Combining (90) and (93), 

m 

j yH" n=-m [j-ne'n@(Ji(ya)+bnHf)(ya))]=O, (94) 

leading to the result that 

The scattered magnetic field from the cylinder may therefore now be written as 

where E ,  is as given in (78). 

The large argument approximation for the Hankel function as given in (80) can again be used to 
reduce the expression for the scattered field in the far-field region, such that 

Using this expression for Hs in the modified definition of the scattering width as given in (83), 
and again noting that 4 = 180" for monostatic backscattering, the scattering width for a two- 
dimensional cylinder having a normally-incident TEZ-polarized plane wave can thus be written as 

5.3. Calculated Radar Cross Section for Buried Cylinders 
Fig. 21 - 24 show the calculated scattering width as a knction of frequency for a two- 
dimensional, perfectly conducting cylinder of infinite length having a radius of 0.5 m. The 
cylinder is embedded in the same lossy soil types as used in the flat plate calculations (as defined 
in Table 1). Fig. 25 then compares the calculated scattering width for the same cylinder located in 
a lossless medium (free space) with the calculated scattering width of the cylinder embedded in 
San Antonio clay loam with 20% water. 
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Fig. 21. Monostatic scattering width for a two-dimensional cylinder of radius 0.5 meters 
embedded in dry sand. 
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Fig. 22. Monostatic scattering width for a two-dimensional cylinder of radius 0.5 meters 
embedded in San Antonio clay loam with 5% water. 
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Fig. 23. Monostatic scattering width for a two-dimensional cylinder of radius 0.5 meters 
embedded in San Antonio clay loam with 10% water. 
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Fig. 24. Monostatic scattering width for a two-dimensional cylinder of radius 0.5 meters 
embedded in San Antonio clay loam with 20% water. 
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Fig. 25. Comparison of monostatic scattering widths for a two-dimensional cylinder of 
radius 0.5 meters embedded in free space vs. San Antonio clay loam with 20% 
water. 

It can be seen from Fig. 21 and 25 that the TEZ-polarized scattering width of the cylinder located 
in free space or in a relatively low-loss medium displays an oscillatory behavior at the lower 
frequencies; the oscillations dampen out with increasing frequency, approaching a constant value 
of 7 ~ a  as the wavelength becomes small with respect to the size of the cylinder. The oscillations 
are caused by a creeping wave that is excited by the TEZ-polarized incident field which travels 
around the rear of the cylinder and which therefore varies in and out of phase with the specular 
scattering from the near side of the cylinder as the frequency changes. The contribution from the 
creeping wave to the scattering width becomes progressively smaller as the electrical size of the 
cylinder increases (due to the decreasing wavelength), such that the oscillations are attenuated as 
the frequency is increased. 

More importantly with regard to this study, these figures show that the oscillations are also 
severely attenuated as the loss factor of the medium in which the cylinder is embedded increases. 
For instance, the oscillations are barely discernible for the cylinder embedded in San Antonio clay 
loam with 5% water (Fig. 22), and have completely disappeared for the cylinder located in San 
Antonio clay loam with 10% and 20% water. The reason for the dampening of the oscillatory 
behavior is that the creeping wave return from the cylinder in a lossy medium is significantly 
attenuated in comparison to the specular backscattered energy, largely because the creeping wave 
must traverse a longer distance in the lossy medium (with respect to the radar) than does the 
specular return. As the loss factor of the medium in which the cylinder is embedded is increased, 
the amplitude of the creeping wave is increasingly attenuated, such that the scattering becomes 
completely dominated by the specular return; hence, the oscillations vanish. 
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These results fbrther substantiate the conclusion previously suggested that the process of' 
attempting to identifl objects embedded in a lossy medium by means of a "characteristic" radar 
cross section signature may be a very difficult task, due to the fact that scattering from an object 
embedded in a lossy medium changes dramatically from its analogous free space value, dependent 
not only on the orientation of the object with respect to the incident field, but also on the 
constitutive parameters of the medium. 

6. Radar Cross Section of a Perfectly Conducting Sphere Embedded in 
Lossy Media 

The exact solution for the field scattered from a conducting sphere in free space was obtained in 
the early part of this century by Mie, and is quite well known. The solution is also valid when the 
media has electric permittivity and magnetic permeability different from free space. For 
completeness, the solution is summarized here. The geometry is described in Fig. 26. Assuming a 
time dependence of el"' , and using the vector spherical harmonics as described in Jackson [4], the 
scattered field from a sphere of radius a can be written 

Es = + q - m q a * ( P ) h p  ( 2 )  ( h ) x p,,l +-v PAP) k x h;) (h)x , , , ] ,  (99) 
2 p=l 

where the coefficients a, (p)  and P,(p) are obtained by forcing the continuity of the tangential 
electric field intensity and the normal magnetic flux density at the surface of the sphere. This 
results in 

(100) 
= - [ +I], 

The spherical Hankel's fbnctions are [5] 

I?;)( z) = (-jlP+l e jz  (P + 4)' 1 
Z q=o q! (p -q ) !  (-2jzy ' 

and 

- 
X,,, is the vector spherical harmonic given by 



b 

z 

7 

where E is called the angular momentum operator, 

and the scalar spherical harmonics are 

2p+1 ( p - m ) !  
47t (p+m)! 

pPm ( cose)dm4 = (- i)m I--,,, (e, 4) 

with P:(x) the associated Legendre hnction of orderp and degree m [4] 

The f refers to the two senses of circular polarization as the incident field is assumed to be a 
circularly polarized plane wave incident along the 1 -axis, given by [4] 

Note that, when the media is lossy, the incident plane wave has unity amplitude at the origin, but 
not at the specular point, z = a (k is chosen to have a negative imaginary part, indicating loss in 
the direction of propagation). 

A 

Conducting sphere 
radius = a 

Fig. 26 Plane wave incident on a conducting sphere with radius a. 
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6.1. The Angular Momentum Operator and Vector Spherical Harmonics 
In evaluating the vector spherical harmonics, it is usehl to represent the angular momentum 
operator (105) as [4] 

where the operators L,, Ly, and L, have usehl properties and are given by 

and 

When operating on the spherical harmonics, these operators have the simple properties 

and 

Lzy,,(e,+) = mu,,,(e,+>. 
Thus, the vector spherical harmonics become 

A usehl recursion relation can be obtained for the scalar spherical harmonics using the recursion 
relations for the associated Legendre hnctions [SI 

-{ ( 2 P + l ) ~ ~ ’ c o s e Y p , m  2p  + l ) (p  - m)! -(p+m)p-=yp-,,m}* 2p - l ) ( p  - m - l ) !  
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The first few scalar spherical harmonics are tabulated in [4] and [6] .  

6.2. Back-scatter Cross Section of Spheres in a Lossy Media 
The case of interest is the back-scatter case where 0 = + = 0. Since 

1e=o = le=o = y~2le=, = ~ 2 2  le=o = 0 7  

YA (e=o = 0 ,  

yp,*2 le=o = 0 7  

the recursion relation (1 17) shows that 

and 

for all p .  The vector spherical harmonic becomes 

1 (2P+1)(2*jf) 
2 J 4n: 

1 
2 

x,,, (e = o,+) = -Yp,,(O = o,+)( i * Jf) = - 

The scattered field given by (99) simplifies to 

where we have also used the fact that 

and the interesting result that 
- 

3 xp,,l(e,+)le=o = +~xp,&+)lo=o. 
The back-scatter radar cross section for the conducting sphere (using the definition (14)) is 

6.3. Behavior of Large Spheres in Lossy Media 
The value of the new definition for radar cross section (14) can be appreciated by examining the 
behavior of the series for the scattered field for large spheres. To this end, it is usefbl to examine 
the coefficients, a, ( p )  and p+ ( p ) ,  in (99). Using the series expressions, (102) and (103), for the 
spherical Hankel's functions, - 

1 
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and 

- 1.  

The point to note is that for large spheres in lossy media, the coefficients grow as 

By normalizing the radar cross section as described in (14), the loss path is measured to the 
specular point of the sphere, and the radar cross section is consistent with the free-space radar 
cross section. Thus, the growth in the coefficients is canceled in the expression (124) for the 
radar cross section ow. 

The radar cross section behaves in the way intuition would predict, as will be demonstrated in the 
examples which follow. Because of the loss, the creeping wave is attenuated, and the specular 
return remains fairly constant with frequency. 
6.4. Calculated Radar Cross Section for Buried Spheres 
The monostatic radar cross section of a perfectly conduction sphere with a 1 m diameter 
embedded in dry sand is illustrated in Fig. 27. Since the dry sand is not very lossy, evidence of the 
creeping wave is quite evident for frequencies below about 1 GHz. The oscillation due tal the 
interference between the creeping wave and the specular return is essentially gone for f > 2 GHZ. 
However, the same sphere embedded in free space would show significant creeping wave 
interference to nearly 3 GHz (see Fig. 3 1). The radar cross section of the sphere is behaving as if 
the frequency were increased by a factor of JE,,,d = 1.6. 

Fig. 28 - 30 show the radar cross section when the same sphere is embedded in San Antonio clay 
loam with 5%, lo%, and 20% water by weight. This soil has a higher dielectric constant than dry 
sand and is a much more lossy medium. As the water content is increased, the loss and the 
dielectric constant both increase. Evidence of the creeping wave is present only in the soil with 
5% water because of the much higher losses in the other soil models. Clearly, the simple model 
for large spheres in lossy media is simply 

(127) 2 o , z m ,  
just as it is for large spheres in free space. Using (127) for the 1 m diameter sphere embedded in 
any of the San Antonio clay loam soils results in less than 1 dB error. Fig. 3 1 compares the 1 m 
diameter sphere in free space with the same sphere embedded in San Antonio clay loam with 20% 
water. Obviously, the high-frequency approximation for the radar cross section (127) is valid at 
much lower frequencies for the sphere embedded in the soil than for the sphere in free space. In 
fact, a good approximation for the response of the embedded sphere would be the response of the 
sphere in free space with the frequency scaled by a factor of 6 = 6 .  
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Fig. 27 Monostatic radar cross section of a perfectly conducting sphere of radius 0.5 
meters embedded in dry sand. 

5 
4 
3 

E 2  
m " 1  

0 2. 
.o -1 

-2 $ 
v1 -3 
v, -4 2 
0 -5 

n 

C 
c, 

L -6 
-7 
-8 
-9 

-1 0 

'CI 

c I 

0 0.5 1 1.5 2 2.5 
Frequency (GHz) 

3 3.5 4 

Fig. 28 Monostatic radar cross section of a perfectly conducting sphere of radius 0.5 
meters embedded in San Antonio clay loam with 5% water. 
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Fig. 29 Monostatic radar cross section of a perfectly conducting sphere of radius 0.5 
meters embedded in San Antonio clay loam with 10% water. 
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Fig. 30 Monostatic radar cross section of a perfectly conducting sphere of radius 0.5 
meters embedded in San Antonio clay loam with 20% water. 
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Fig. 3 1 Comparison of monostatic radar cross sections for a sphere of radius 0.5 meters 
embedded in San Antonio clay loam with 20% water vs. free space. 

7. Conclusion 
Electromagnetic imaging of objects buried beneath the surface of the soil is complicated by the 
dispersion and loss of the soil dielectric. We have demonstrated its effect on loss, resolution, and 
image contrast. Not only do soil dielectric properties have implications with regard to appropriate 
frequencies and bandwidths for optimum imaging, the introduction of loss also requires a new 
definition for the radar cross section. We have introduced a new definition for radar cross section 
which is valid for objects in lossy media, while being consistent with, and comparable to, the free- 
space radar cross section definition. This new definition is not only usehl, but necessary in order 
to compare the radar cross section of an object buried in soil with its free-space radar cross 
section. Finally, we have presented methods of computing this radar cross section for several 
canonical objects, and have included examples. In summary, the following conclusions and 
guidelines can be drawn from this study: 

0 

0 an optimum bandwidth exists; 
0 

0 

0 

8 

0 

0 

0 

in the absence of surface clutter, lower frequencies are optimum; 

loss increases as bandwidth increases; 
very large bandwidths are not usehl for imaging objects at large depths; 
in the absence of additional processing, contrast is reduced as depth increases; 
vertical polarization is best for large angles of incidence; 
the appropriate depth for computing losses is the depth to the dominant specular 
scattering point on the object; 
free-space radar cross sections scaled by the wavelength in the lossy media provide 
reasonable estimates of the object's buried radar cross section; 
multiple scatterer interactions are less significant for objects buried in lossy media. 
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I Appendix A -- Dielectric Soil Models 

~ 

A complete description of the model for the soil dielectric constant is contained in [ 11; a brief 
description is included here . The dielectric constant is given by 

4 

E = &,E,, (Al-1) 
I 

where E, is the relative dielectric constant (in general complex) and E, is the permittivity of free 
space. The model for E, uses the Debye model [2] for the real part of the dielectric constant and 
the losses due to relaxation in the dielectric, and it also includes a conduction-current loss term. 
For the case of soil, which is a mixture of various minerals, water, etc., it is reasonable to assume 
there will be static conductivity and more than one relaxation time constant, so the model used 
here is 

(Al-2) 

where 
to the relative dielectric constant from the n" relaxation term, z, is the nfh relaxation time 
constant, o is the angular frequency, and 0, is the static conductivity. The real and imaginary 
parts can be separated 

is the relative dielectric constant at very high frequency, AE; is the static contribution 

and 
AELoz,, CT, 

" l+o z, a&, 
E;=C 2 2 + - .  

(Al-3) 

(Al-4) 

Our approach will be to use measured soil dielectric constants obtained from the literature to 
obtain a fit to 
of interest. 

A&:, z,, and os that will provide a representative soil model for the conditions 

Dry sand has been measured and reported by Von Hippel 171. Using the parameter-based model 
above, and assuming that E: has only small, smooth variations between the data points reported 
in [7], the fit shown in Fig. Al-1 can be obtained. The model uses five relaxations and the 
parameters are shown in Table Al-1 . 

An example of soil with significant static conductivity is gray San Antonio clay loam as measured 
by Hipp [lo]. Fig. A1-2 shows the real part, E:, of the relative dielectric constant as a fbnction of 
frequency for various dry-soil densities and various fractions of water by weight. Fig. A1-3 
shows the imaginary part, E:. Not only is the soil very dispersive, but there is a large variation 
between the samples. Three cases are chosen to represent this soil: 1.2 g/cc dry density with 5% 
water by weight, 1.6 g/cc dry density with 10% water by weight, and 1.8 g/cc dry density with 
20% water by weight. Using parameter-based modeling, the data was fit with four relaxation 
terms. The parameters are listed in Table AI-2, and the resulting models are illustrated in Fig. 
A1-4-6 along with the data points obtained fiom [lo]. 
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I Table Al-1 
Dry Sand 

Parameters to Fit Data from Von Hippel [7] 
- 

1 
- 

E:, 0, ( S m  AE 27n, 
2.48 4. SE-07 0.06 1 

0.058 9 
0.04 80 
0.03 600 
0.02 6000 

- 
-- 
- 

Dry Sand 
I 0.05 

w' 
cc 
0 

2.5 

2 

1.5 

1 

0.5 

0.045 

0.04 

0.035 

0.03 

0.025 

3 
'il. 

a 
9 

0.02 a 
0.015 ' yo.ol 

1 0.005 
-J  0 

1 10 100 1,000 10,000 

Frequency (MHz) 
Fig. Al-1 Curve fit for E, for dry sand, based on data from Von Hippel [7]. 
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! 
J. E. Hipp, 1974, Gray San Antonio Clay Loam 
Equivalent Dry Density: 1.2 - 1.8 glcubic cm 
Fraction Water by Weight: 5%, looh, 20% 
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Fig. A1-2 Real part, E:, of relative dielectric constant for various densities and water 
content for gray San Antonio clay loam. 

J. E. Hipp, 1974 
All Samples of Gray San Antonio Clay Loam 

Frequency (MHz) 

Fig. A1-3 Imaginary part, E:, of relative dielectric constant for various densities and 
water content for gray San Antonio clay loam. 
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I Table A1-2 
Gray San Antonio Clay Loam 

Parameters to Fit Data from Hipp [ 101 

I 3.65 I 0.006 I 35 1.2 5 ?'o 

0.55 1200 
0.15 2500 

I 1.6 I 10% I 8.3 1 0.036 I 3.5 I 40 
I I 0.85 I 110 

2.0 1000 
0.7 3 000 

3.5 110 
1.8 I 20% 16.0 I 0.123 12.5 65 

I 2.8 6000 

10 100 1,000 l0,OOO 

Frequency (MHz) 

Fig. A1-4 Curve fit (solid line) to data (points) taken from Hipp [ 101 for gray San 
Antonio clay loam with dry density of 1.2 g/cc with water content 5% of dry 
weight. 
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Fig. A1-5 Curve fit (solid line) to data (points) taken from Hipp [lo] for gray San 
Antonio clay loam with dry density of 1.6 g/cc with water content 10% of dry 
weight. 
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Fig. A1-6 Curve fit (solid line) to data (points) taken from Hipp [lo] for gray San 
Antonio clay loam with dry density of 1.8 g/cc with water content 20% of dry 
weight. 

51 



This Page Intentionally Blank 

52 

i 



? 

[31 

[41 
PI 

[71 

[91 

References 
B. C. Brock, W. E. Patitz, Optimum Frequency for Subsurface-Imaging Synthetic 
Aperture Radar, SAND93-0815, May 1993. 

C. A. Balanis, Advanced Engineering Electromagnetics, John Wily & Sons, New York, 
1989. 
A. W. Doerry, A Model for Forming Airborne Synthetic Aperture Radar Images of 
Underground Targets, SAND94-0139, January 1994. 

J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., New York, 1962. 
M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, 
Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1972 
(originally published by the National Bureau of Standards, 1964). 
J. Mathews, R. L. Walker, Mathematical Methods of Physics, second edition, The 
BenjamidCummings Publishing Company, Menlo Park, 1970. 
A. R. Von Hippel, ed., Dielectric Materials and Applications, The Technology Press of 
M.I.T. and John Wiley & Sons, Inc., New York, 1954. 

B. 0. Peirce, A Short Table of Integrals, Fourth Edition, Ginn and Company, Boston, 
1956. 

R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill Book 
Company, New York, 196 1. 
J. E. Hipp, "Soil Electromagnetic Parameters as Functions of Frequency, Soil Density, and 
Soil Moisture", Proceedings of the IEEE, vol. 62, no. 1, January 1974, pp. 98-103. 

53 



Distribution: 

MS-0 100 
MS-0304 
MS-03 55 
MS-0358 
MS-047 1 
MS-0509 
MS-0509 
MS-0529 
MS-0529 
MS-0529 
MS-0529 
MS-053 1 
MS-053 1 
MS-053 1 
MS-053 1 
MS-053 1 
MS-053 1 
MS-0570 
MS-06 19 
MS-0705 
MS-0705 
MS-0899 
MS-90 1 8 
MS-053 1 
MS-053 1 

Document Processing for DOE/OSTI (76 13-2) (10) 
C. M. Hart (9100) 
D. H. Cress (9134) 
B. Boverie (9135) 
M. W. Callahan (5802) 
R. D. Andreas (2300) 
W. D. Williams (2304) 
B. C. Walker (2345) 
B. L. Burns (2343) 
A. W. Doerry (2345) 
R. B. Hurley (2345) 
W. H. Schaedla (2343) 
W. E. Patitz (2343) 
R. M. Axline (2344) 
D. L. Bickel(2344) 
J. T. Cordaro (2344) 
W. H. Hensley (2344) 
B. F. Johnson (5900) 
Technical Publications (7 15 1) 
T. W. H. Caffey (61 14) 
M. W. Scott (6114) 
Technical Library (7141) (5) 
Central Technical Files (8523-2) 
B. C. Brock (2343) (10) 
K. W. Sorensen (2343) (2) 

i 

- 
4 


	1 Introduction and Summary
	2 Band-limited impulse response of lossy media
	2.1 Impulse Response of Dry Sand
	2.2 Impulse Response of San Antonio Clay Loam With 5% Water
	2.3 Effect of Increased Water Content
	2.4 Comparison of Different Bandwidths
	2.5 Additional Comments

	3 Definition of Radar Cross Section in Lossy Media
	3.1 The Radar Equation
	3.2 Modification of the Radar Equation for Lossy Media
	3.3 New Definition of Radar Cross Section in Lossy Media

	4 Radar Cross Section of a Conducting Flat Plate Embedded in Lossy Media
	4.1 Calculated Radar Cross Section for Buried Flat Plates

	Lossy Media
	5.1 TMZ Polarization
	5.2 TEZ Polarization
	5.3 Calculated Radar Cross Section for Buried Cylinders

	6 Radar Cross Section of a Perfectly Conducting Sphere Embedded in Lossy Media
	6.1 The Angular Momentum Operator and Vector Spherical Harmonics
	6.2 Back-scatter Cross Section of Spheres in a Lossy Media
	6.3 Behavior of Large Spheres in Lossy Media
	6.4 Calculated Radar Cross Section for Buried Spheres

	7 Conclusion
	Appendix A Dielectric Soil Models
	References

