Skip to main content
Log in

Physical Activity and Epilepsy

Proven and Predicted Benefits

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Epilepsy is a common disease found in 2% of the population, affecting people from all ages. Unfortunately, persons with epilepsy have previously been discouraged from participation in physical activity and sports for fear of inducing seizures or increasing seizure frequency. Despite a shift in medical recommendations toward encouraging rather than restricting participation, the stigma remains and persons with epilepsy continue to be less active than the general population. For this purpose, clinical and experimental studies have analysed the effect of physical exercise on epilepsy. Although there are rare cases of exercise-induced seizures, studies have shown that physical activity can decrease seizure frequency, as well as lead to improved cardiovascular and psychological health in people with epilepsy. The majority of physical activities or sports are safe for people with epilepsy to participate in with special attention to adequate seizure control, close monitoring of medications, and preparation of family or trainers. The evidence shows that patients with good seizure control can participate in both contact and non-contact sports without harmfully affecting seizure frequency. This article reviews the risks and benefits of physical activity in people with epilepsy, discusses sports in which persons with epilepsy may participate, and describes the positive effect of physical exercise in experimental models of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

References

  1. Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurol 2003; 16: 165–70

    Article  PubMed  Google Scholar 

  2. Begley CE, Annegers JF, Lairson LB, et al. Epilepsy incidence, prognosis, and use of medical care in Houston, Texas, and Rochester, Minnesota. Epilepsia 1998; 39 Suppl. 6: 222

    Google Scholar 

  3. Annegers JF. Epidemiology of epilepsy. In: Wyllie E, editor. The treatment of epilepsy: principles and practice. Baltimore (MD): Williams & Wilkins, 1997: 165–72

    Google Scholar 

  4. Yuen AW, Sander JW. Is omega–3 fatty acid deficiency a factor contributing to refractory seizures and SUDEP? A hypothesis. Seizure 2004; 13: 104–7

    Article  PubMed  Google Scholar 

  5. Kwan P, Sander JW. The natural history of epilepsy: an epidemiological view. J Neurol Neurosurg Psychiatry 2004; 75: 1376–81

    Article  PubMed  CAS  Google Scholar 

  6. Sander JW. Some aspects of prognosis in the epilepsies: a review. Epilepsia 1993; 34: 1007–16

    Article  PubMed  CAS  Google Scholar 

  7. Halatchev VN. Epidemiology of epilepsy: recent achievements and future. Folia Medica (Plovdiv) 2000; 42: 17–22

    CAS  Google Scholar 

  8. Duncan JS, Sander JW, Sisodiya SM, et al. Adult epilepsy. Lancet 2006; 367: 1087–100

    Article  PubMed  Google Scholar 

  9. Dichter MA. Emerging insights into mechanisms of epilepsy: implications for new antiepileptic drug development. Epilepsia 1994; 35 Suppl. 4: S51–7

    Article  Google Scholar 

  10. Dalby NO, Mody I. The process of epileptogenesis: a pathophysiological approach. Curr Opin Neurol 2001; 14: 187–92

    Article  PubMed  CAS  Google Scholar 

  11. Babb TL. Synaptic reorganizations in human and rat hippocampal epilepsy. Adv Neurol 1999; 79: 763–79

    PubMed  CAS  Google Scholar 

  12. Engel Jr J. Clinical neurophysiology, neuroimaging, and the surgical treatment of epilepsy. Curr Opin Neurol Neurosurg 1993; 6: 240–9

    PubMed  Google Scholar 

  13. Cendes F, Andermann F, Dubeau F, et al. Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study. Neurology 1993; 43: 1083–7

    Article  PubMed  CAS  Google Scholar 

  14. Bjorholt PG, Nakken KO, Rohme K, et al. Leisure time habits and physical fitness in adults with epilepsy. Epilepsia 1990; 31: 83–7

    Article  PubMed  CAS  Google Scholar 

  15. Nakken KO, Bjorholt PG, Johannessen SI, et al. Effect of physical training on aerobic capacity, seizure occurrence, and serum level of antiepileptic drugs in adults with epilepsy. Epilepsia 1990; 31 (1): 88–94

    Article  PubMed  CAS  Google Scholar 

  16. Steinhoff BJ, Neususs K, Thegeder H, et al. Leisure time activity and physical fitness in patients with epilepsy. Epilepsia 1996; 37 (12): 1221–7

    Article  PubMed  CAS  Google Scholar 

  17. Wong J. Wirrell E. Physical activity in children/teens with epilepsy compared with that in their siblings without epilepsy. Epilepsia 2006; 47 (3): 631–9

    Article  PubMed  Google Scholar 

  18. American Medical Association Committee on the Medical Aspects of Sports. Convulsive disorders and participation in sports and physical education. JAMA 1968; 206: 1291

    Article  PubMed  Google Scholar 

  19. American Academy of Pediatrics Committee on Children with Handicaps. The epileptic child and competitive school athletics. Pediatrics 1968; 42: 700–2

    PubMed  Google Scholar 

  20. American Medical Association Committee on the Medical Aspects of Sports. Epileptics and contact sports. JAMA 1974; 229: 820–82

    Article  PubMed  Google Scholar 

  21. American Academy of Pediatrics Committee on Children with Handicaps and Committee on Sports Medicine. Sports and the child with epilepsy. Pediatrics 1983; 72: 884–5

    PubMed  Google Scholar 

  22. Commission of Pediatrics of the International League Against Epilepsy. Restrictions for children with epilepsy. Epilepsia 1997; 38: 54–6

    Article  Google Scholar 

  23. Roth DL, Goode KT, Williams VL, et al. Physical exercise, stressful life experience, and depression in adults with epilepsy. Epilepsia 1994; 35 (6): 1248–55

    Article  PubMed  CAS  Google Scholar 

  24. Jalava M, Sillanpaa M. Physical activity, health–related fitness, and health experience in adults with childhood—onset epilepsy: a controlled study. Epilepsia 1997; 38 (4): 424–9

    Article  PubMed  CAS  Google Scholar 

  25. Eriksen HR, Ellertsen B, Gronningsaeter H, et al. Physical exercise in women with intractable epilepsy. Epilepsy 1994; 35: 1256–64

    Article  CAS  Google Scholar 

  26. LS Denio, ME Drake, Pakalnis A. The effect of exercise on seizure frequency. J Med 1989; 20 (2): 171–6

    PubMed  CAS  Google Scholar 

  27. Nakken KO. Physical exercise in outpatients with epilepsy. Epilepsia 1999; 40 (5): 643–65

    Article  PubMed  CAS  Google Scholar 

  28. Arida RM, Scorza FA, Albuquerque M, et al. Evaluation of physical exercise habits in Brazilian patients with epilepsy. Epilepsy Behav 2003; 4: 507–10

    Article  PubMed  Google Scholar 

  29. Aisenson MR. Accidental injuries in epileptic children. Pediatrics 1948; 2: 85–8

    PubMed  CAS  Google Scholar 

  30. Pearn J, Bart R, Yamaoka R. Drowning risks to epileptic children: a study from Havaii. BMJ 1978; 2 (6147): 1284–5

    Article  PubMed  CAS  Google Scholar 

  31. Kemp AM, Sibert JR. Epilepsy in children and the risk of drowning. Arch Dis Child 1993; 68 (5): 684–5

    Article  PubMed  CAS  Google Scholar 

  32. Ryan CA, Dowling G. Drowning deaths in people with epilepsy. CMAJ 1993; 148 (5): 781–4

    PubMed  CAS  Google Scholar 

  33. Livingston SL, Berman W. Participation of epileptic patients in sports. JAMA 1983; 224 (2): 236–8

    Article  Google Scholar 

  34. Haglund Y, Bergstrand G. Does Swedish amateur boxing lead to chronic brain damage? A retrospective study with CT and MRI. Acta Neurol Scand 1990; 82: 297–302

    Article  PubMed  CAS  Google Scholar 

  35. Annegers JF, Hauser WA, Coan SP, et al. A population—based study of seizures after traumatic brain injuries. N Engl J Med 1998; 338: 20–4

    Article  PubMed  CAS  Google Scholar 

  36. van Linschoten R, Backx FJG, Mulder OGM, et al. Epilepsy and sports. Sports Med 1990; 10 (1): 9–19

    Article  PubMed  Google Scholar 

  37. Ogunyemi AO, Gomez MR, Klass DW. Seizures induced by exercise. Neurology 1988; 38: 633–4

    Article  PubMed  CAS  Google Scholar 

  38. Korczyn AD. Participation of epileptic patients in sports. J Sports Med 1979; 19: 195–8

    CAS  Google Scholar 

  39. Schmitt B, Thun-Hohenstein L, Vontobel H, et al. Seizures induced by physical exercise: report of two cases. Neuropediatrics 1994; 25 (1): 51–3

    Article  PubMed  CAS  Google Scholar 

  40. Simpson RK, Grossman RG. Seizures after jogging [letter]. N Engl J Med 1989; 321: 835

    PubMed  Google Scholar 

  41. Werk MA. Idiopathic generalized tonic—clonic seizures limited to exercise in a young adult. Epilepsy Behav 2005; 6 (1): 98–101

    Article  Google Scholar 

  42. Sturm JW, Fedi M, Berkovic SF, et al. Exercise—induced temporal lobe epilepsy. Neurology 2002; 59 (8): 1246–8

    Article  PubMed  Google Scholar 

  43. Gotze W, Kubicki ST, Munter M, et al. Effect of physical exercise on seizure threshold. Dis Nerv Syst 1967; 28: 664–7

    PubMed  CAS  Google Scholar 

  44. Kuijer A. Epilepsy and exercise, electroencephalographical and biochemical studies. In: Wada JA, Penry JK, editors. Advances in epileptology: the 10th Epilepsy International Symposium. New York: Raven Press, 1980: 543

    Google Scholar 

  45. Cordova F. Epilepsy and sport. Aust Fam Physician 1993; 22: 558–62

    PubMed  CAS  Google Scholar 

  46. Albrecht H. Endorphins, sport, and epilepsy: getting fit or having one [letter]. N Z Med J 1986; 99: 915

    PubMed  CAS  Google Scholar 

  47. Temkin NR, Davis GR. Stress as risk factors for seizures among adults with epilepsy. Epilepsia 1984; 25: 450–6

    Article  PubMed  CAS  Google Scholar 

  48. McLaurin R. Epilepsy and contact sports: factors contraindicating participation. JAMA 1973; 225: 285–7

    Article  PubMed  CAS  Google Scholar 

  49. Boucharlat J, Maitre A, Ledru J. Sport et epilepsy de l’enfant. Ann Med—Psychol 1973; 131: 392–401

    Google Scholar 

  50. Bennett HT, Wagner T. Acute hyponatremia and seizures in an infant after a swimming lesson. Pediatrics 1983; 72: 125–7

    PubMed  CAS  Google Scholar 

  51. Noakes ID, Goodwin N, Raymer BL, et al. Water intoxication, a possible complication during endurance exercise. Med Sci Sports Exerc 1984; 17: 370–5

    Google Scholar 

  52. Biswas R, Parajuli R, Naik L, et al. A conscientious hypertensive who had seizures after a trek. Int J Clin Pract 2003; 57 (5): 449–50

    PubMed  CAS  Google Scholar 

  53. French JK. Hypoglycaemia—induced seizures following a marathon [letter]. NZ Med J 1983; 96: 407

    CAS  Google Scholar 

  54. Millington JT. Should epileptics scuba dive? [letter]. JAMA 1985; 254 (22): 3182–3

    Article  Google Scholar 

  55. van Willigen J. Running and exhaustion; hyperthermia in a moderate climate [in Dutch]. Nederlands Tijdschrift voor Geneeskunde 1988; 132: 437–40

    PubMed  Google Scholar 

  56. Esquivel E, Chaussain M, Plouin P, et al. Physical exercise and voluntary hyperventilation in childhood absence epilepsy. Electroenceph Clin Neurophysiol 1991; 79: 127–32

    Article  PubMed  CAS  Google Scholar 

  57. Wasserman K, Wipp B, Koyal S, et al. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 1973; 35: 236–43

    PubMed  CAS  Google Scholar 

  58. Loscher W, Schmidt D. New drugs for the treatment of epilepsy. Curr Opin Invest Drugs 1993; 2: 1067–95

    Google Scholar 

  59. Loscher W, Schmidt D. Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res 1994; 17: 95–134

    Article  PubMed  CAS  Google Scholar 

  60. Wolf P. Epileptic seizures and syndromes. London: John Libbey, 1994

  61. Goodman JH. Experimental models of status epilepticus. In: Peterson SL, Albertson TE, editors. Neuropharmacological methods in epilepsy research. Boca Raton (FL): CRC Press, 1998: 95–125

    Google Scholar 

  62. Arida RM, Vieira AJ, Cavalheiro EA. Effect of physical exercise on kindling development. Epilepsy Res 1998; 30: 127–32

    Article  PubMed  CAS  Google Scholar 

  63. Arida RM, Scorza FA, Santos NF, et al. Effect of physical exercise on seizure occurrence in a model of temporal lobe epilepsy in rats. Epilepsy Res 1999; 37 (1): 45–52

    Article  PubMed  CAS  Google Scholar 

  64. Arida RM, Fernandes MJS, Scorza FA, et al. Physical training does not influence interictal LCMRglu in pilocarpine—treated rats with epilepsy. Physiol Behav 2003; 79: 789–94

    Article  PubMed  CAS  Google Scholar 

  65. Arida RM, Sanabria ERG, Silva AC, et al. Physical training reverts hippocampal electrophysiological changes in rats submitted to the pilocarpine model of epilepsy. Physiol Behav 2004;83: 165–71

    PubMed  CAS  Google Scholar 

  66. Arida RM, Scorza CA, Scorza FA, et al. Effects of different types of physical exercise on the staining of parvalbuminpositive neurons in the hippocampal formation of rats with epilepsy. Prog Neuro—Psychopharmacol Biol Psychiatry 2007; 31: 814–22

    Article  CAS  Google Scholar 

  67. Racine RJ. Modification of seizure activity by electrical stimulation II: motor seizure. Electroenceph Clin Neurophysiol 1972; 32: 281–94

    Article  PubMed  CAS  Google Scholar 

  68. Brown B, Van Huss C. Exercise and rat brain catecholamines. J Appl Physiol 1973; 34 (5): 664–9

    PubMed  CAS  Google Scholar 

  69. De Castro J, Duncan G. Operantly conditioned running: effects on brain catecholamine concentrations and receptor densities in the rat. Pharmacol Biochem Behav 1985; 23: 495–500

    Article  PubMed  Google Scholar 

  70. Westerberg V, Lewis J, Corcoran ME. Depletion of noradrenaline fails to affect kindling seizures. Exp Neurol 1984; 84: 237–40

    Article  PubMed  CAS  Google Scholar 

  71. Bortolotto ZA, Cavalheiro EA. Effect of DSP4 on hippocampal kindling in rats. Pharmacol Biochem Behav 1986; 24: 777–9

    Article  PubMed  CAS  Google Scholar 

  72. Welsh KA, Gold PE. Attenuation of epileptogenesis: proactive effect of a single epinephrine injection on amygdaloid kindling. Behav Neural Biol 1984; 40: 179–85

    Article  PubMed  CAS  Google Scholar 

  73. Le Gal La Salle, G. Amygdaloid kindling in the rat: regional differences and general properties. In: Wada JA, editor. Kindling 2. New York: Raven Press, 1981

    Google Scholar 

  74. Vissing J, Andersen M, Diemer NH. Exercise—induced changes in local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab 1996; 16: 729–36

    Article  PubMed  CAS  Google Scholar 

  75. Sloviter RS. Calcium—binding protein (calbindin—D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol 1989; 280 (2): 183–96

    Article  PubMed  CAS  Google Scholar 

  76. Freund TF, Ylinen A, Miettinen R, et al. Pattern of neuronal death in the rat hippocampus after status epilepticus: relationship to calcium binding protein content and ischemic vulnerability. Brain Res Bull 1991;28: 27–38

    Article  Google Scholar 

  77. Celio MR. Calbindin D28k and parvalbumin in the rat nervous system. Neuroscience 1990; 35: 375–475

    Article  PubMed  CAS  Google Scholar 

  78. Freund TF, Buzsáki G. Interneurons of the hippocampus. Hippocampus 1996; 6: 345–470

    CAS  Google Scholar 

Download references

Acknowledgments

Research supported by CNPq, FAPESP, CAPES and CinAPCe (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo M. Arida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arida, R.M., Cavalheiro, E.A., da Silva, A.C. et al. Physical Activity and Epilepsy. Sports Med 38, 607–615 (2008). https://doi.org/10.2165/00007256-200838070-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200838070-00006

Keywords

Navigation