Skip to main content

Advertisement

Log in

Some Central and Peripheral Factors Affecting Human Motoneuronal Output in Neuromuscular Fatigue

  • Issues in Fatigue in Sport and Exercise
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Fatigue may be defined as a reduction in the maximal force-generating capacity of a muscle. It may result from peripheral processes distal to the neuromuscular junction and from central processes controlling the discharge rate of motoneurons. When assessed with a sensitive test using twitch interpolation, most “maximal” voluntary contractions approach but do not attain optimal muscle output. During fatigue, reflex inputs from intramuscular receptors may contribute to a decline in motor unit discharge rate — a decline which optimises force production during maximal efforts. Further studies should investigate how the central nervous system controls the discharge rate of motor units during fatigue produced by different forms of exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Belanger AY, McComas AJ. Extent of motor unit activation during effort. Journal of Applied Physiology 51: 1133–1135, 1981

    Google Scholar 

  • Bellemare F, Woods JJ, Johansson R, Bigland-Ritchie B. Motor unit discharge rates in maximal voluntary contractions of three human muscles. Journal of Neurophysiology 58: 1380–1392, 1983

    Google Scholar 

  • Bigland-Ritchie B, Furbush F, Gandevia SC, Thomas CK. Firing rates of motor units of human tibialis anterior at different muscle lengths. Journal of Physiology Proceedings 499: 33P, 1989

    Google Scholar 

  • Bigland-Ritchie B, Cafaralli E, Vøllestad NK. Fatigue of submaximal static contractions. Acta Physiologica Scandinavica 128 (Suppl. 556): 136–148, 1986a

    Google Scholar 

  • Bigland-Ritchie B, Dawson NJ, Johansson RS, Lippold OCJ. Reflex origin for the slowing of motoneurone firing rates in fatigue in human voluntary contractions. Journal of Physiology (London) 379: 451–459, 1986b

    CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OJC, Woods JJ. Contractile speed and EMG changes during fatigue and sustained maximal voluntary contractions. Journal of Neurophysiology 50: 313–324, 1983

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Jones DA, Woods JJ. Excitation frequency and muscle fatigue: electrical responses during human voluntary and stimulated contractions. Experimental Neurology 64: 414–427, 1979

    Article  PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Woods JJ. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle and Nerve 7: 691–699, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Woods JJ, Furbush F, Karrmann D. Effect of muscle temperature on motor neuron MVC firing rates. Neuroscience Abstracts 12: 186.8, 1986c

    Google Scholar 

  • Binder-Macleod SA, Clamman P. Force output of cat motor units stimulated with trains of linearly varying frequency. Journal of Neurophysiology 61: 208–217, 1989

    PubMed  CAS  Google Scholar 

  • Blimkie CJR, Sale DG, Bar-Or O. Voluntary strength, evoked twitch contractile properties and motor unit activation of knee extensors in obese and non-obese adolescent males. European Journal of Applied Physiology 61: 313–318, 1990

    Article  CAS  Google Scholar 

  • Bongiovanni LG, Hagbarth K-E. Tonic vibration reflexes elicited during fatigue from maximal voluntary contractions in man. Journal of Physiology (London) 423: 1–15, 1990

    CAS  Google Scholar 

  • Burke RE, Rudomin P, Zajac FE. The effect of activation history on tension production by individual muscle units. Brain Research 109: 515–529, 1976

    Article  PubMed  CAS  Google Scholar 

  • Cady EB, Elshove H, Jones DA, Moll A. The metabolic causes of slow relaxation in fatigued human skeletal muscle. Journal of Physiology (London) 418: 327–337, 1989

    CAS  Google Scholar 

  • Cooper S, Eccles JC. The isometric responses of mammalian muscles. Journal of Physiology (London) 69: 377–385, 1930

    CAS  Google Scholar 

  • Dawson MJ, Gadian DG, Wilkie DR. Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorous nuclear magnetic resonance. Journal of Physiology (London) 299: 465–484, 1980

    CAS  Google Scholar 

  • Edwards RHT, Hill DK, Jones DA, Merton PA. Fatigue of long duration in human skeletal muscle after exercise. Journal of Physiology (London) 272: 769–778, 1977

    CAS  Google Scholar 

  • Enoka RM, Robinson GA, Kossev AR. Task and fatigue effects on low-threshold motor units in human hand muscle. Journal of Neurophysiology 62: 1344–1359, 1989

    PubMed  CAS  Google Scholar 

  • Gandevia SC, Macefield G, Burke D, McKenzie DK. Voluntary activation of human motor axons in the absence of muscle afferent feedback: the control of the deaferented hand. Brain 113: 1563–1581, 1990a

    Article  PubMed  Google Scholar 

  • Gandevia SC, McKenzie DK. Activation of human muscles at short muscle lengths during maximal static efforts. Journal of Physiology (London) 407: 599–613, 1988

    CAS  Google Scholar 

  • Gandevia SC, McKenzie DK, Plassman BL. Activation of human respiratory muscles during different voluntary manoeuvres. Journal of Physiology (London) 428: 387–403, 1990b

    CAS  Google Scholar 

  • Garland SJ, Garner SH, McComas AJ. Reduced voluntary electromyographic activity after fatiguing stimulation of human muscle. Journal of Physiology (London) 401: 547–556, 1988

    CAS  Google Scholar 

  • Grimby L, Hennerz J, Hedman B. Fatigue and voluntary discharge properties of single motor units in man. Journal of Physiology (London) 316: 545–554, 1981

    CAS  Google Scholar 

  • Hagbarth K-E, Kunesch EJ, Nordin M, Schmidt R, Wallin EU. Gamma loop contributing to maximal voluntary contractions in man. Journal of Physiology (London) 380: 575–591, 1986

    CAS  Google Scholar 

  • Hales JP, Gandevia SC. Assessment of maximal voluntary contraction with twitch interpolation: an instrument to measure twitch responses. Journal of Neuroscience Methods 25:97–102, 1988

    Article  PubMed  CAS  Google Scholar 

  • Harris RC, Sahlin K, Hultman E. Phosphagen and lactate contents of M. quadriceps femoris of man after exercise. Journal of Applied Physiology 43: 852–857, 1977

    PubMed  CAS  Google Scholar 

  • Hultman E, Sjöholm H, Sahlin K, Edström L. Glycolytic and oxidative energy metabolism and contraction characteristics of intact human muscle. In Porter et al. (Eds) Human muscle fatigue: physiological mechanisms, pp. 19–40, Pittman Medical, London, 1981

    Google Scholar 

  • Jones DA. Muscle fatigue due to changes beyond the neuromuscular junction. In Porter et al. (Eds) Human muscle fatigue: physiological mechansims, pp. 178–192, J. Pittman Medical, London, 1981

    Google Scholar 

  • Kernell D. The adaptation and the relation between discharge frequency and current strength of cat lumbosacral motoneurons stimulated by long-lasting injected currents. Acta Physiologica Scandinavica 65: 65–73, 1965

    Article  Google Scholar 

  • Kernell D, Monster AW. Time course and properties of late adaptation in spinal motoneurones of the cat. Experimental Brain Research 46: 191–196, 1982

    CAS  Google Scholar 

  • Kukulka CG, Russell AG, Moore MA. Electrical and mechanical changes in human soleus muscle during sustained maximum isometric contractions. Brain Reserach 362: 47–54, 1986

    Article  CAS  Google Scholar 

  • Lloyd AR, Gandevia SC, Hales JP. Muscle performance, voluntary activation, twitch properties and perceived effort in normal subjects and patients with chronic fatigue syndrome. Brain 114: 85–98, 1991

    PubMed  Google Scholar 

  • Macefield G, Hagbart E-K, Gorman RB, Gandevia SC, Burke D. Decline in spindle support to α-motoneurones during sustained voluntary contractions. Journal of Physiology (London) 440: 497–512, 1991

    CAS  Google Scholar 

  • Merton PA. Voluntary strenth and fatigue. Journal of Physiology (London) 123: 553–564, 1954

    CAS  Google Scholar 

  • Marsden CD, Meadows JC, Merton PA. “Muscular wisdom” that minimizes fatigue during prolonged effort in man: peak rates of motoneuron discharge and slowing of discharge during fatigue. In Desmedt J (Ed.) Advances in neurology: motor control mechanisms — health and disease, pp. 169–211, Raven Press, New York, 1983

    Google Scholar 

  • Meunier S, Pierrot-Deseilligny E. Gating of the afferent volley of the monosynaptic stretch reflex during movement in man. Journal of Physiology (London) 419: 753–763, 1989

    CAS  Google Scholar 

  • McKenzie DK, Gandevia SC. Recovery from fatigue of human diaphragm and limb muscles. Respiration Physiology 84: 49–60, 1991

    Article  PubMed  CAS  Google Scholar 

  • NHLBI Workshop. Respiratory muscle fatigue: report of the respiratory muscle fatigue workshop group. American Review of Respiratory Desease 142: 474–480, 1990

    Google Scholar 

  • Partridge DL. Signal handling characteristics of load-moving skeletal muscle. American Journal of Physiology 210: 1178–1191, 1966

    PubMed  CAS  Google Scholar 

  • Rack PMH, Westbury DR. The effects of length and stimulus rate on tension in the isometric cat soleus muscle. Journal of Physiology (London) 204: 443–460, 1969

    CAS  Google Scholar 

  • Rutherford OM, Jones DA, Newham DJ. Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation. Journal of Neurology, Neurosurgery, and Psychitary 49:1288–1294,1986

    Article  CAS  Google Scholar 

  • Stokes M, Young A. The contribution of reflex inhibition to arthrogeneous muscle weakness. Clinical Science 67: 7–14, 1984

    PubMed  CAS  Google Scholar 

  • Vollestad NK, Sejersted OM, Bahr R, Woods JJ, Bigland-Ritchie B. Motor drive and metabolic responses during repeated submaximal contractions in humans. Journal of Applied Physiology 64: 1421–1427, 1988

    PubMed  CAS  Google Scholar 

  • Woods J, Furbush F, Bigland-Ritchie B. Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. Journal of Neurophysiology 58: 125–137, 1987

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandevia, S.C. Some Central and Peripheral Factors Affecting Human Motoneuronal Output in Neuromuscular Fatigue. Sports Medicine 13, 93–98 (1992). https://doi.org/10.2165/00007256-199213020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199213020-00004

Keywords

Navigation