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ABSTRACT. Austin-Moore hemiarthroplasty had been critically utilized for aged patients with femoral neck fractures. 

However, this implant became no longer favorable when increasing life activity. A multiobjective shape optimization 

has been integrated to improve its performance. The resulting configuration is called Improved Austin-Moore (IAM) 

model. Probabilistic analysis is very important when the input data are random, that leads to stochastic results. In this 

paper, a probabilistic analysis is applied to solid and IAM stems implanted in a proximal femur in order to show their 

advantages. This way it is possible to control the biomechanical effects of the implanted femur to determine its 

performance. The applied loads are generated randomly using Monte Carlo Simulations (MCS). MSC sampling 

technique is applied and the different von-Mises stresses of the layers (bone and metal) are selected as performance 

indicators. Two simple 2D implant-bone models of the solid and IAM designs are studied with a target reliability index 

equals to 3t , which corresponds to a high level of confidence (reliability) 99.87%. The major finding of this article 

is that the skewness values of all output parameters of the IAM stem are positive which means that the majority of the 

maximum von-Mises stress values are closer to their minimum values than those associated with the solid stem. In 

addition, the sensitivity analysis shows that the input parameters for the IAM stem are more effective on the output 

parameters relative to those associated with the solid stem. The IAM stem shows a high interdependence (correlation) 

between the input and output parameters when comparing with the solid stem. Since this study is carried out 

considering loading uncertainty, the geometry can affect the load transfer. Therefore, a correlation study between the 

input parameters is carried out and showed significant coefficient values for the IAM stem relative to the solid one. The 

results show that the IAM stem is much more advantageous than the solid stem. 

KEYWORDS. Hip Prosthesis, Probabilistic Analysis, Finite Element Analysis, Monte Carlo Simulations, IAM stem. 

1. Introduction 

This work is a continuation of the previous work of the integration of multi-objective structural 

optimization into cementless hip prosthesis design published by Kharmanda (2016), in which a new 

stem design, so-called Improved Austin-Moore (IAM) is developed. In this work, a probabilistic 

analysis of the IAM stem used in cementless total hip replacement considering loading uncertainty 

is carried out in order to show the advantages of the IAM stem relative to the solid one.  

The high complication rates following osteoporotic femoral neck fractures can leads to 

destructive effects on the patient and increase the burden on health care systems. The number of the 

total hip replacement number is increasing accordingly (Huang et al. 2016; Huang et al. 2019). 

Austin-Moore prostheses had been selectively utilized for the total hip arthroplasty. According to 

several studies, the failure rate of the Austin-Moore prosthesis has been found to be 2-10% at mid-

term follow-up and 6-35% at long-term follow-up (Sadoghi et al. 2013; Kanto et al. 2014). There is 

a strong need to decrease complications related to this total hip arthroplasty.  
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When performing the probabilistic studies on total hip replacement models, it has been shown 

that there are many important random variables, such as bone geometry, implant design geometry, 

cement geometry, material properties, magnitude and direction of applied loads, and bone-implant 

relative position that may affect performance (Gonzalez 2009; Kharmanda and Antypas 2018). 

Several considerations have been taken into account with aim of improving the stem design. First, to 

consider the rectangular section stem instead for the circular one, it can lead to much more reliable 

designs (Kharmanda et al. 2017). Gonzalez (2009) showed that the rectangular section stem allows a 

secure diaphyseal press-fit in the frontal plane of the femoral canal, which provides excellent 

rotational stability and increases primary mechanical fixation. In Kharmanda and Albashi (2011), it 

has been also shown that it can reduce the wear. Second, to consider the shouldered stem instead for 

the non-shouldered one, it can lead to a good reduction of the maximum von-Mises stress values in 

the different bone layers relative to the non-shouldered one (Kharmanda et al. 2012; Kharmanda et 

al. 2014). Third, it concerns the hollow stem instead for solid one, that leads to a good fixation and 

increases the prosthesis performance (Kharmanda and Ibrahim 2013; Kharmanda and El-Hami 

2017; Kharmanda et al. 2019). In this context, Kharmanda (2016) integrated a multiobjective 

structural optimization strategy into Austin-Moore stem in order to improve its performance. The 

resulting configuration was called Improved Austin-Moore (IAM). The topology optimization was 

considered as a conceptual design aspect to sketch the IAM stem according to the daily loading 

cases. The shape optimization presented the detailed design aspect considering several objectives. 

The proposed multiplicative formulation was considered as a performance scale in order to define 

the best compromise between several requirements. In this paper, a probabilistic design strategy is 

applied on two kind of stems (solid and IAM stems) to determine the mechanical effects, the 

response sensitivities with respect to input parameters, and the correlation of the used applied loads 

with different output parameters. A numerical application on a 2D problem is carried out to show 

the advantages of the IAM stem relative to the solid one. The skewness which is considered as an 

asymmetry measurement of the probability distribution of the output parameters, is evaluated. Next, 

the sensitivity of the output parameters is performed in order to determine the significant input 

parameters. Finally, the interdependence (correlation) is carried out for the input and output 

parameters and also for the input parameters. This concept represents a statistical relationship 

between two or more parameters such that any modification in the value of one parameter leads to 

systematic changes in the other (others). The correlation between the input parameters is performed 

here because of the change of geometry which can affect the loading transfer.  

2. Material and methods 

2.1. Model description and material properties 

Figs 1a and b show 2D sections for the studied solid and IAM stems implanted in bone tissues 

(cortical and cancellous tissues). Bone materials are generally anisotropic (Mackerle 2006), but in 

the this study for simplicity, the material properties of bone tissues have been assumed as linearly 

elastic and isotropic. In Fig. 1, the cortical tissue is assumed to be a homogeneous and isotropic 

material with Young’s modulus 17E GPa and Poisson’s ratio 33.0 . The corresponding number 

of elements for the cortical region is 605 elements for the solid stem model, while it is 598 elements 

for the IAM stem model. The cancellous bone tissue is also assumed to be a homogeneous and 

isotropic material with Young’s modulus 386E MPa and Poisson’s ratio 33.0  (Senapati and Pal 

2005). The corresponding number of elements for the cancellous region is 417 elements for the solid 

and IAM stem models. The elasticity modulus of titanium alloy of stem is considered to be: 

110E GPa with Poisson’s ratio: 3.0  (Shaik et al. 2012). The corresponding number of elements 

for the metal region is 529 elements for the solid stem model, while it is 784 elements for the IAM 
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stem model. The used element is PLANE82 (8-node, nonlinear). The number of the total nodes is 

5048 nodes for the solid stem model, while it is 5989 nodes for the IAM stem model. 

  
a b 

Fig 1. Geometry models for a) solid stem and b) IAM one. 

2.3. Boundary conditions 

According to Beaupré et al. (1990), three loading cases are considered as daily loading 

conditions: one-legged stance (L1), extreme ranges of motion of abduction (L2), and adduction (L3) 

as shown in Fig. 2. 

 
        a             b                        c 

Fig. 2. a) One-legged stance case (L1), b) Abduction case (L2), and c) Adduction case (L3). 

The component values of applied forces (body and muscles) corresponding to the three loading 

cases (L1, L2 and L3) which are shown in Fig. 2, are presented in Table 1. 
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Loading 

Case 

Body Forces Muscle Forces 

B

xF [N] B

yF [N] M

xF [N] M

yF [N] 

L1 942.41 -2116.68 -330.04 620.71 

L2 -299.71 -1118.54 48.85 347.58 

L3 1283.35 -865.63 -268.43 383.36 

Table 1. Force components (Beaupré et al. 1990). 

According to the simulation results in Kharmanda (2016), the third loading case (L3) is the most 

dangerous case where maximum von-Mises stress values in the bone tissues are the highest values. 

So, in this work, a probabilistic analysis is carried out considering only this loading case (L3).  

2.4. Probabilistic design strategy 

2.4.1. Failure probability  

It is the objective to compute the failure probability corresponding to the occurrence of one or 

several failure modes. The failure probability is then given by 

  n

G

Yf dydyfGP ...)(),(Pr 1

0),(





yx

yyx  
(1) 

where ),( yxG  is a limit state function that is defined by the good functioning conditions of the 

structure (Kharmanda and El-Hami 2016). The limit state 0),( yxG  is a separation curve or surface 

between the failure region 0),( yxG  and the safety region 0),( yxG . )(yYf  is the density function 

of the random variable y. Here, many strategies can be used to evaluate the failure probability. 

Monte Carlo Simulation (MCS) is the most conservative probability technique (Haldar and 

Mahadevan 2000). It always gives the correct solution if a sufficient number of trials is evaluated, 

but the computing time consumption is very high (Kharmanda et al. 2018). In order to reduce this 

time consumption, and avoid overlapping of samples and/or lack of samples in some regions of the 

domain, Latin Hypercube Sampling (LHS) can be used (McKay et al. 1979). The evaluation of 

failure probability necessitates a high computing time consumption. So, this technique can be 

replaced by a reliability index evaluation strategy (Kharmanda et al. 2010; Kharmanda 2015).  

2.4.1. Reliability index 

In general, the failure probability is the inverse of the reliability. The reliability R  is related with 

the failure probability by 

RPf 1  (2) 

In order to evaluate the reliability index, several method had been elaborated during the last five 

decades: FORM (First Order Reliability Methods), SORM (Second Order Reliability Method) and 

simulation techniques (Kharmanda and Antypas 2015; Kharmanda and El-Hami 2016). In FORM, 

the probability failure is simply approximated by 

)( fP  (3) 

where )( is the standard Gaussian cumulated function calculated by 
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Equation (3) can give sufficiently accurate assessment of the failure probability, especially when 

increasing the reliability index values. In the nuclear and spatial applications, very small values of 

failure probability are necessary. So, the failure probability should be:  Pf ]1010[ 86   . Using 

Equations 3 and 4, the reliability index should be:  ]6.575.4[  . However, in the structural 

engineering applications, the failure probability should be:  Pf ]1010[ 53   . Using Equations 3 and 

4, the reliability index should be: ]25.43[   (Jeppsson 2003). In the next section, the reliability 

index is considered to be: 3  and the corresponding failure probability is then:  Pf %13.0 . The 

reliability (level of confidence) is  R %87.99 .  

3. Results 

Using ANSYS software, the probabilistic design allows analyzing a component or a system 

involving uncertain input parameters. Here, the input parameters may concern geometry, material 

properties, boundary conditions, etc.... These input parameters are considered as random input 

variables and are characterized by their distribution type (normal, lognormal, uniform, ... etc.) as 

well as their distribution parameters (mean values, standard deviation, ... etc.). The important 

responses are selected as random output parameters. The studied model has four random input 

parameters. Thus, four sources of uncertainty are considered in the present work: B

xF , B

yF , M

xF  and 
M

yF . It is considered that the input parameters follow the normal distribution law. A high confidence 

interval of 99.87% is considered where the failure probability equals 0.13% and then the reliability 

index equal to: 3  (see Equations 3 and 4). Here, Monte Carlo Simulations are used with 30000 

simulations for the third loading case (L3) on the solid and IAM stems. A sensitivity study is 

performed to assess the influence of each input parameter on the maximum von-Mises stress values 

for the cortical and cancellous bone tissues, and for the metal ( 1

max , 2

max  and M

max ). The 

interdependence (correlation) between the input parameters and the output parameters is determined. 

The change of the geometry can affect the input parameters. So, an interdependence study is carried 

out to find the correlation of between the input parameters.  

Parameter  Mean  
Standard 

Deviation  
Skewness  Kurtosis  Minimum  Maximum  

B

xF (N) 12.83  1.283  3.503810
-4

 1.108310
5
 7.555  18.30  

B

yF (N) 8.656  0.8657  2.855610
-6

 1.109410
5
 4.890  12.49  

M

xF (N) 2.684  0.2684  3.338810
-5

 1.108810
5
 1.530  3.858  

M

yF (N) 3.834  0.3833  -1.174210
-4

 1.107210
5
 2.273  5.409 

1

max (MPa) 22.36  2.960  -5.925010
-3

 1.106810
5
 10.25  34.42  

2

max (MPa) 9.507  1.161  -6.426710
-3

 1.106410
5
 4.709  14.25  

M

max (MPa) 11.28  0.8386  1.748210
-2

 1.117210
5
 7.914  14.68  

Table 2. Statistical results of the random input and output parameters for solid stem. 
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In Tables 2 and 3, the statistical results of the input and output parameters are presented for the 

solid stem and for the IAM stem. 

Parameter Mean  
Standard 

Deviation  
Skewness  Kurtosis  Minimum  Maximum  

B

xF (N) 12.83  1.283  -6.669810
-5

 1.107210
5
 7.565  17.97  

B

yF (N) 8.656  0.8657  2.116810
-5

 1.108610
5
 4.929  12.37  

M

xF (N) 2.684  0.2684  5.104510
-4

 1.109010
5
 1.562  3.869  

M

yF (N) 3.834  0.3834  -7.296910
-4

 1.107810
5
 2.143  5.381  

1

max (MPa) 22.42  2.963  5.837710
-4

 1.108210
5
 10.45  34.00  

2

max (MPa) 9.527  1.162  7.672010
-4

 1.107410
5
 4.878  14.10  

M

max (MPa) 11.29  0.8776  0.1650  1.214010
5
 7.969  15.55  

Table 3. Statistical results of the random input and output parameters for the IAM stem. 

Fig. 3 shows the skewness values of the output parameters ( 1

max , 2

max  and M

max ) for the solid and 

IAM stems.  

 

Fig. 3. Skewness values of the different output parameters for the solid and IAM stems. 

The sensitivity evaluation of the output parameter with respect to the input random variables are 

shown in Fig. 4. Fig. 4a and b show the sensitivities of the maximum von-Mises stress value ( 1

max ) 

with respect to the significant parameters ( B

xF , M

xF  and M

yF ) for the solid stem and for the IAM 

stem, respectively. Fig. 4c shows the sensitivities of the maximum von-Mises stress value ( 2

max ) 

with respect to the significant parameters ( B

xF  and M

xF ) for the solid stem, while Fig. 4d shows the 

sensitivities of the maximum von-Mises stress value ( 2

max ) with respect to the significant 

parameters ( B

xF , B

yF  and M

xF ) for the IAM stem. Fig. 4e shows the sensitivities of the maximum 

von-Mises stress value ( M

max ) with respect to the significant parameters ( B

xF  and B

yF ) for the solid 

stem, while Fig. 4f shows the sensitivities of the maximum von-Mises stress value ( M

max ) with 
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respect to the significant parameters ( B

xF , B

yF  and M

xF ) for the IAM stem. The sensitivities of a 

certain random output parameter are modeled. The plots of the sensitivities are performed only for 

the significant random input parameters. 

 

  

a b 

  
c d 

  

e f 

Fig. 4. Sensitivities of the output parameters: 
1

max  for a) solid stem, and b) IAM stem; 
2

max  for c) solid 

stem, and d) IAM stem; and  
M

max  for e) solid stem, and f) IAM stem. 



© 2019 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                    Page | 8 

Here, it is shown the statistical interdependence (correlation) between the input and output 

parameters and also between the inputs parameters. When the correlation coefficient values are 

close to zero, it means that the two parameters are weakly correlated. On the other hand, when the 

values are close to 1 or -1, the two parameters are highly correlated either in positive or negative 

sense, respectively. Table 4 shows the correlation coefficients between the input and output 

parameters for the solid and IAM stems.  

 

Parameters 
Solid stem IAM stem 

1

max (MPa) 
2

max (MPa) 
M

max (MPa) 
1

max (MPa) 
2

max (MPa) 
M

max (MPa) 

B

xF (N) 0.979 0.981 0.899 0.979 0.981 0.916 

B

yF (N) -0.011 0.014 0.428 -0.003 0.022 0.384 

M

xF (N) -0.196 -0.189 --- -0.192 -0.184 -0.025 

M

yF (N) -0.022 0.007 --- -0.023 0.006 -0.003 

Table 4. Correlation coefficients between the input and output parameters for solid and IAM stems 

Table 5 shows the correlation coefficients between the input parameters for the solid and IAM 

stems. 

Parameters 
Solid stem IAM stem 

B

xF (N) B

yF (N) M

xF (N) M

yF (N) B

xF (N) B

yF (N) M

xF (N) M

yF (N) 

B

xF (N) 1.000 -0.010 0.004 ---  1.000 -0.002 0.009 -0.001 

B

yF (N) -0.010 1.000 -0.007 --- -0.002 1.000 -0.008 -0.005 

M

xF (N) 0.004 -0.007 1.000 --- 0.009 -0.008 1.000 0.003 

M

yF (N) --- --- --- 1.000 -0.001 -0.005 0.003 1.000 

Table 5. Correlation coefficients between the input parameters for solid and IAM stems 

4. Discussion 

In this work, a probabilistic analysis is carried out to study in details the role of the different input 

and output parameters when designing the solid and IAM stems. MCS technique is used as a robust 

tool with a big number of simulations to provide with accurate results. Three aspects are presented 

for the solid and IAM stem models: the skewness of the output parameter distributions ( 1

max , 2

max  

and M

max ), the sensitivity of the output parameters with respect to the significant input parameters, 

and the interdependence (correlation) between the input and output parameters and also between the 

input parameters. 

The skewness values of the output parameters for the IAM stem are different than those for the 

solid stem. The skewness values of all output parameters of the IAM stem are positive. Positively 

skewed distribution means that the majority of the maximum von-Mises stress values fall toward the 

lower side of the scale (their minimum values). However, for the solid stem, the maximum von-

Mises stress values for the cortical and cancellous tissues ( 1

max  and 2

max ) have negatively skewed 
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distributions, which means that their scores fall toward the higher side of the scale (their maximum 

values). In addition, when comparing the skewness values of the maximum von-Mises stress values 

for the metal which have positively skewed distributions for the solid and IAM stem models as 

shown in Fig. 3, it is noted that the skewness value for the IAM stem model is much higher than that 

for the solid one. 

The sensitivity analysis for the output parameters with respect to the input random parameters is 

next carried out in order to determine the significant input parameters. Three input parameters ( B

xF , 
M

xF  and M

yF ) has almost same roles on the maximum von-Mises stress values for the cortical tissue 

( 1

max ) for the solid and IAM stems. However, there is a difference when comparing the maximum 

von-Mises stress values for the cancellous tissue and the metal ( 2

max  and M

max ). For the solid stem 

model, only two significant parameters are found:  B

xF  and M

xF have influence on 2

max  and B

xF , and 
B

yF  have influence on M

max  as shown in Figs 4c and e. For the IAM stem model, three significant 

parameters are found: B

xF , B

yF  and M

xF  have different influence on 2

max  and M

max  as shown in Figs 

4d and f.  

According to the correlation (interdependence) study, the correlation coefficient values between 

the input and the output parameters for the IAM stem are higher than those for the solid stem where 

the correlation coefficient values between the input parameters ( M

xF  and M

yF ) and the output 

parameter M

max   are close to zero as presented in Table 4. Since the geometry describing the IAM 

stem is different than that describing the solid one, the loading transfer can be changed. An 

interdependence (correlation) between the input parameters is then necessary. Table 5 shows that the 

correlation coefficient values between the input output parameters for the IAM stem are much 

higher than those for the solid stem where the correlation coefficient values between M

yF  and the 

other input parameters ( B

xF , B

yF  and M

xF ) are close to zero. According to the presented probabilistic 

design strategy, the IAM stem has several advantages relative to the solid one. 

5 Conclusion 

A probabilistic analysis is performed in order to find the different probabilistic bounds with a high reliability 

(confidence) level. The results show that the IAM stem is much more advantageous than the solid stem. The 

present study is limited to a 2D modeling in order to reduce the computing time since 30000 simulations are 

performed. In future work, it is recommended to deal with 3D models and to integrate anisotropy behavior 

for bone tissues instead of bone isotropy. In addition, the variations of the forces are considered to be 

normally distributed. To improve the study accuracy, statistical data should be introduced. A six sigma 

methodology can be performed with the aim to determine the extent to which uncertainties in the model 

affect the results. 
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